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Abstract

The complexity and low efficiency of the reuse of various computational mechanisms and conceptual
solutions at the architectural and microarchitectural levels during the creation of embedded and cyber-
physical systems is still an open problem. The paper proposes a microarchitectural pattern that allows
to represent the structure of the system being designed at various levels of abstraction and to guide the
design process methodologically. The concept of the kernel, a special functional block, is introduced,
which acts as the central reusable element of the pattern. The pattern organization the principles of
the computational process representation in it are based on the aspect design model, the multi-level
representation of the embedded system, and abstractions of the computing mechanism, platform, vir-
tual machine. An example of the application of the proposed approach in some projects of distributed
heterogeneous embedded systems is presented.
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1. Introduction

The need for mass design and programming of microprocessor-based controllers is determined
by the further rapid digitalization of society. The era of cyber-physical systems (CPS) and the
Internet of things presuppose deep automation of almost all areas of human life and activity
[1]. The use of a limited number of standard solutions (info-communication design platforms)
for a variety of different tasks, without being able to influence the internal, deep structure of
these platforms, significantly limits the developer’s capabilities and degrades the quality of the
product. However, existing custom low-level design and programming technologies for em-
bedded systems (ES) and networked (distributed) embedded systems are still very troublesome
and time-consuming. The results of such design are poorly scalable and have a low reuse ratio
[1, 2]. Moreover, a paradoxical situation arises when technologies for creating embedded and
cyber-physical systems aimed at implementing one of the key propositions of the Industry 4.0
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initiative, namely, creating a fully automated production of customized goods “using a unified
production line”, exclude automation systems themselves from the list of such custom systems.

One of the ways to solve the problem is to improve the technologies for creating complex
embedded systems in the direction of developing methods and tools of the microarchitectural
level in the end-to-end design route [3, 4]. In this case, the microarchitectural representation of
an embedded system or its part (for example, a controller) can be defined as the most important
meta-level in the hierarchy of the design route abstractions [3, 5, 6, 7].

Here we use the term microarchitecture as the organization of a system or its component at
a level below the level of the architectural description (the responsibility of the architect), but
above the level of the final implementation (software code, hardware schematics, etc.). In fact,
these are the abstractions and principles of organization that the developer uses when creating
an implementation of the architecture defined in the specification.

This information in many projects (usually low-budget, although quite complex) remains
poorly documented (as good as comments in the source code). This leads to an excessively
large gap between the architectural specifications and the implementation. Because of this, the
implementation becomes non-transparent, and the system design is difficult to verify, maintain,
and upgrade. As a result, it can become unmanageable.

Complex embedded systems projects in most cases, along with behavioral (functional) re-
quirements, are characterized by many so-called non-functional requirements. It is useful to
divide them into the final product requirements (for example, performance, reliability, energy
efficiency) and requirements related to process/phases of the product life cycle, such as design,
testing/certification, replication, maintenance, modernization, etc. The complex nature of ES
design, which requires the developer to work with the requirements in a balanced manner, is
still poorly supported with industrial-level methods and tools. The above examples of non-
functional requirements in hardware and software projects are most often implemented and
controlled as a residual. The situation is even worse with the technologies and tools for CPS
creating, since requirements from the application area related to the automation object are
added to the list of own ES design requirements [8, 9].

A large number of research groups are working to overcome these problems, the results
of which are methodologies and tools related to the areas of “HW/SW Codesign” [10], ESLD
[6, 11], aspect-based design [12, 13], languages for architectural design (architecture description
languages, ADL) [14], which are based on the advances in systems engineering [9, 15, 16].

This paper proposes a set of formalisms aimed at organizing and managing general and
application-specific (including local) design routes with an emphasis on the project stages pre-
ceding the implementation phase (architectural and microarchitectural design phases). For-
malisms allow us to have a holistic view of the architecture of the product being created and
its transformation while moving along the design route, as well as actively use and, if necessary,
extract reusable design artifacts of various abstraction levels.

2. Problem statement

Existing reuse strategies during ES creation do not provide an opportunity to find an accept-
able compromise between the design and development efforts and the quality of the product



being created. As a result, to obtain the optimal result from an engineering point of view, it is
necessary to develop the system essentially from scratch. On the other hand, if it is necessary
to reduce the development costs, a complete solution is used without the possibility of proper
adaptation to the project requirements. This happens because the traditionally used design
platforms are characterized by at least one of the following disadvantages:

+ insufficient documentation of engineering solutions (only final implementation is avail-

able);

- weak possibilities for configuring (adapting) the proposed engineering solutions to achieve
the required characteristics;

« incomplete coverage of the stack of the necessary ES organization level (only the soft-
ware level or only the level of the hardware platform);

« incomplete coverage of the necessary aspects (requirements) of the project.

For example, real-time operating systems (FreeRTOS, eCos, Embedded Linux) represent only
the level of the system software, and often do not include components for implementing such
important service functions as in-system software updates. However, at the same time, they
may have ports for different families of microcontrollers and include rich standard driver li-
braries.

The ready-made programmable logic controller (PLC) covers the full stack of levels from
hardware to user programming but is used as a “black box” without the possibility of any
significant adaptation of its platform to the requirements of the project (adding new service
functions, optimization to reduce costs).

A family of microcontrollers with a library of standard drivers (for example, the STM32
family and the STM32Cube tools) partially cover the ES hardware and system software layers,
but the rest must be developed from scratch. Moreover, even the use of ready-made driver
implementations is often problematic due to their inflexibility and low level of optimization by
performance, memory consumption, etc.

We see the possibility of resolving the existing situation in the use of special design patterns
as reusable objects, that cover the full set of organization levels [17, 18] and design aspects
[19] for the target class of computing systems, as well as including several levels of description
of engineering solutions. We will call such objects microarchitectural design patterns. This
highlights the critical importance of the microarchitectural level of the project documentation
for the project maintenance.

3. Aspect-based design

The complex nature of ES projects, combined with their growing complexity, requires the cre-
ation of design methods and technologies that will effectively consider, analyze, synthesize
and track the quality of all recognized as essential parts of the ES organization and the infras-
tructure existing around it throughout the life cycle, especially at the stages of creation and
modifications. Isolation of such relatively independent parts is a nontrivial process. We will
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Figure 1: Steps of the aspect-based design process

refer to such localized parts of a project or target system as aspects. In other words, aspect is
some particular design problem within the ES creation problem. Let us emphasize once again
that aspects do exist not within the framework of any stage or step in the development of a
project or target system, but they exist throughout the entire design process or the entire life
cycle of the system (the “weight” of an aspect in a project changes over time and can degen-
erate to zero). The set that includes all aspects of the design will be called the aspect space of
the ES design process. The set that directly belongs to the target system under creation will be
called the aspect space of the target system [19].

So, an aspect is an artificially allocated segment of the design space, reflecting a particular
problem of the project during its implementation (conceptual, local aspect). The designer him-
self forms a list of aspects, which he then uses. The designer highlights the conceptual aspects
that exist throughout the whole project duration and can highlight, if necessary, local aspects
at individual steps of the project (see Fig. 1) [19, 20].

Fig. 2 shows the result of transforming a traditional Y-diagram of a computing system into
an aspect diagram of an ES project:

« the center of the diagram, depending on the chosen interpretation of concentric circles,
is the endpoint of the design process (implemented by ES) or the starting point (initial
specifications);

« concentric circles indicate the levels of the target system hierarchy or steps in the design
process;

« axes correspond to the allocated (conceptual and local) aspects of the project;
« local aspects can cover a limited number of levels or project steps;

« points at the intersections of axes and circles are significant categories of objects or pro-
cesses of the target system or ES project [21, 22].
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Figure 2: Aspect diagram of a project

The design process for complex ES should involve a hierarchical representation of computa-
tional platforms, functional description languages with their translators, and application-level
solutions in a unified system of abstractions. This representation is aimed at project (func-
tional and non-functional) aspects description, management, and maintenance in a uniform
style, which makes it possible to increase the unification in the design of all ES components.
The central idea is the consistent refinement/elaboration of the target system through the hi-
erarchy of projects with a decreasing level of abstraction.

Fig. 3 illustrates an ES design process pattern based on the aspect model and composition of
computational platforms. Its advantages are:

« parallel balanced work with functional and non-functional requirements;
« generation of architecture from the basis of the proposed system of abstractions;

« combining the design and execution phases of the computational process within a single
space of engineering solutions;

+ a deferred phase of hardware-software partitioning.

4. Microarchitectural pattern

In any relatively complex computing system, the project designer can extract patterns that
allow some variation in implementation within the boundaries of this project. This is important
both for the successful fulfillment of the requirements of the technical assignment and for
improving the quality of the project itself due to:

« providing a reserve of flexibility to fix bugs;

« the ability to easily adapt to new requirements arising during validation, integration,
etc.;
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Figure 3: ES design flow based on the aspect model and composition of computational platforms

« providing the potential for modernization;
« providing the possibility to reuse engineering solutions.

The microarchitectural pattern is designed to create complete systems of a certain class, so
it is an object of a coarse granularity and has a fairly narrow scope of application. It is a pattern
for both the target system and its design process.

The microarchitectural pattern differs from the framework, library, and platform in its coarser
granularity and self-sufficiency, as well as in the mandatory availability of information at the
architectural and microarchitectural levels, although in a particular case it can be reduced to
them at the implementation level.

The microarchitectural pattern differs from design patterns both in its coarser granularity
and specialization, and in its deeper implementation, and there may be several options for
implementing the pattern, both at the microarchitectural level and at the final implementation
level.

Let us consider the complex microarchitectural pattern applied to the design of the dis-
tributed automation systems controllers implemented on a microcontroller platform. Such
a platform includes one or more programmable microprocessors (including homo- and het-
erogeneous multicore ones) with a set of coprocessors, input-output controllers, and memory
devices (both included in the microcontroller and external).

Since the microarchitectural pattern corresponds to a complete system, part of the pattern
is a subsystem focused on some particular task. Like the system as a whole, such a subsystem
cannot be implemented using any standard library component, but is a specialized composition



of ready-made and original technical solutions. In the context of a microarchitectural pattern,
we will call such a subsystem a kernel. The kernel is a specially allocated functional unit that
has the following properties:

clearly defined functionality;

several possible implementation variants at the software, hardware, or software-hardware
level;

vectors of characteristics in various design aspects;
the ability to scale by functionality and required resources;

significant potential for reuse in a certain class of projects.

During the design process of distributed automation controllers, it is convenient to represent
as kernels the following elements:

components responsible for input/output and networking;

basic mechanisms for controlling the computational process (timers, interrupt system,
scheduler, etc.);

service functions (diagnostics, remote and in-system updating, configuration, informa-
tion security, etc.);

standard data processing functions (encryption algorithms, work with various data/file
formats, filtering, image processing, etc.);

virtual machines, translators.

One of the most important properties of the kernel, in contrast to other functional blocks, is
its focus for reuse. Firstly, its microarchitectural specification, and then its final implementa-

tions.

Kernel reuse is possible in the following ways (see Fig. 4a):

1. At the implementation level (source codes and hardware are reused).

At the microarchitecture level (the way of computations organization and hardware/software
partitioning (if any) is reused).

At the level of the functional interface (only the functionality and methods of interfacing
with components of the same level are reused).

Design and development of kernels require the biggest part of work when implementing a
project “from scratch”, but the requirements for them are usually weakly connected with the
applied problem being solved and are often not detailed in the system specification. They are
primarily responsible for organizing system and service processes. At the same time, the main
(non-functional) applied characteristics and properties of the target system (cost, performance,
power consumption, reliability, maintainability, etc.) depend on the quality of implementation
of very these objects. In this regard, the set of kernels is the backbone for the controller project,
and their design and implementation are the most critical parts of the project.



Level of description: Level of description: Level of description: Eunctional
final imlementation microarchitecture functional specification unit 2
.......... ' [ .

Functional | Functional 1 | Functional 1 Functional Kernel 3
interface, i interface, : i interface, : unit 1
characteristics ! characteristics , : characteristics
Implementation ' i
at system level 1 Feooet - "i o Karnel 4
- '
. ' Micro- i! Functional
1!
Implementation ' architectural |1 \
at system level 2 ' checification i i Kernsl 2
: ? - = ! ——"
Implementation me———- - L ! .
L]
at system level 3 ! e e
1
".',.'.'.'.'.'.‘h)‘.".- '
...... -1
"
Variants Variants
a) b)

Figure 4: a) Levels of description and reuse of the kernel. b) An example of combining kernels within
some organization level of the system

Since kernels can use lower-level kernels, their functionality and interface should be de-
signed as versatile and flexible as possible, while keeping the overhead low. In this regard, the
allocation of kernels may turn out to be nontrivial and not interfere with the usual functionality
of drivers in existing systems.

The vector of kernel characteristics is determined both by the its functions and by the variant
of its implementation, including the characteristics of the lower-level kernels used.

The basis of the microarchitectural pattern is the integration of kernels in a single scalable
structure. Since each kernel can have several implementation options, the pattern is flexible
and adaptable to the requirements of a particular project (see Fig. 4b).

During the design process using a specific pattern, first of all, the required configuration
and the necessary expansion of the pattern are defined. This provides conditions for the im-
plementation of application functions with a given quality and the fulfillment of non-functional
requirements. Then, on this basis, the main functionality of the system is developed.

From the target system design process point of view, the microarchitectural pattern solves
the following tasks:

- specifies a set of requirements for the internal system organization (they are usually
absent in the initial specification);

« offers a set of engineering solutions for the target functions implementation;

« provides methodology on the use of engineering solutions;

« defines the segment of the design space in which the target system will be created;
« adjusts the design process by refining aspect weights and identifying local aspects.

Setting target characteristics for the pattern as a whole and each kernel imposes restric-
tions on the choice of implementation options for each kernel in the pattern, including the
pattern microarchitecture itself. Due to the many options for combinations of characteristics,



the choice of a particular option is a non-trivial task. Provided a kernel characteristics formal-
ization exists, mathematical optimization methods are applicable (annealing method, genetic
algorithms, etc., used, i.e. in high-level synthesis tools [10, 23]).

Certain sets of requirements may not have appropriate implementation options within the
existing pattern and the pattern will need to be extended.

Depending on the degree of pattern kernels reuse, the following scenarios for using a pattern
in the design process are possible:

« direct use, only proper configuration is required;

« partial implementation changes (for example, because of a partial change in hardware
components);

« partial redesign including developing new kernels and microarchitecture changes (for
example, if there are specific requirements or significant changes in hardware compo-
nents).

A complete redesign of the pattern should only be required when the requirements or class
of the system change radically.

Each new project that required a change in the microarchitectural pattern enriches it with
new engineering solutions. This expands the pattern and therefore increases its value as a
reusable artifact. To achieve this effect, all engineering solutions in the pattern must be prop-
erly designed and documented, the necessary usage methodology must be provided. Thus, the
method of describing a pattern can be considered as a type of architectural style or architecture
description language [24, 25], focused on displaying the relationships between key objects and
groups of reusable objects in the project.

Specification of a microarchitectural pattern consists of the following elements:

1. Kernels specifications:
« description of functionality, dependencies, characteristics;
« microarchitectural specifications of different implementation variants;

« reusable implementations (including the necessary configuration and automation
tools).

2. Guidelines for:
« use of kernels and their integration;

« expansion of kernels with new variants of microarchitectural and target (low-level)
implementation;

« development of new kernels.

5. Experiments and results

As an example of the application of the proposed approach, let us consider a pattern devel-
oped and used at LMT Ltd. [26] to create controllers for various purposes. The pattern covers
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three levels of controller organization (hardware, system software, and application software) to
provide complete coverage of design tasks. The pattern uses: microcontrollers of the Coldfire
family; a typical set of circuitry solutions and electronic component base; in-house system and
application software platforms.

The pattern includes the following kernels:

+ low-level input-output drivers (including UART, CAN, 12C, SPL, Ethernet);

« drivers for various protocols of controller networks and the Internet (including Modbus,
CANPro, TCP/IP, in-house secure Internet protocol);

« drivers for supporting various memory chips and specialized devices (including DataFlash,
GSM modems, radio transceivers);

« mechanisms of organizing parallel processes and interprocess communication;
« service mechanisms (diagnostics, in-system software update);

« avirtual machine of the user application programming language and the library of stan-
dard functions.

Depending on their functions, kernels cover one to three levels of organization (see Fig. 5).

Let us list and briefly describe some projects implemented using this pattern:

1. A PLC for distributed automation systems SCG-4. The controller uses all three levels of
the organization presented in the pattern. A project-specific extension of the pattern is the
external input/output and synchronization controllers implemented on the FPGA connected
to the microcontroller.

2. Network communicator of SCG-3.6 family for automated city lighting control system and
automated energy measurement system. The controllers do not use the user programming
layer because they have a fixed mission and do not imply changes in functionality by the end
user. They most widely use the set of communication channels and protocols supported by the
pattern.

3. Controller of the scanning probe microscope MiniLab. The main mission of this con-
troller is the implementation of high-performance digital signal processing to control measur-
ing equipment. It is based on two patterns:



« controller of automation systems used as a control and communication core;

« FPGA-based digital signal processing processor with its own specific set of input-output
controllers.

The second pattern also implements a three-level organization of the computational process
and has its own level of user application programming [27].

Due to the high level of engineering solutions unification within the pattern, all kernel im-
plementations are reused in the listed and other projects, which significantly (up to 50-80 %)
reduces efforts required for creating a new version of controller.

It is planned to port the pattern to a new family of microcontrollers, which will require to
create new implementations of all kernels that directly interact with the functional blocks of
the microcontroller. However, due to the reuse of functional interfaces and microarchitectural
specifications, it will be possible to carry out practically seamless transfer of the applied func-
tionality implementations and application-level user software.

Thus, the proposed approach to the allocation and structuring of reuseable objects in CPS and
ES projects based on microarchitectural patterns demonstrates high efficiency when creating
several systems of similar purpose and/or long-term maintenance of the single system.

In contrast to the existing solutions, the proposed approach involves the conscious formation
and reuse of variable patterns at the level of the entire system, instead of developing similar
systems almost "from scratch" on the basis of fine-granularity reusable objects.

Fig. 6 shows an example of a microarchitectural description of the industrial automation
controller project with focus of the infrastructure for remote data storing to the FLASH memory
area of application programs. This subsystem is used when updating the user image of the
software and recording settings (only the part of the process that is directly responsible for
data transfer is displayed).

The figure contains elements of the computational process connected by arrows that show
a logical end-to-end sequence of actions (but do not display secondary transitions, loops, and
other feedbacks). The boxes below the description of the actions show the microarchitectural
elements and mechanisms used at each stage (implemented both at the purely software and
hardware levels, and with a mixed implementation).

6. Conclusion

Improving the design efficiency of embedded and cyber-physical systems is a very complex
and time-consuming task, which today is solved with low-level patterns, prototypes, and the
implementation-level reusable elements. This narrows the search space for design solutions,
complicates scalability, and reduces the effectiveness of verification, debugging and testing
tools. At the same time, “direct” attempts to implement complex projects at an abstract level,
followed by hardware-software partitioning, are “stalling”.

We propose a compromise option that increases the abstraction degree of reusable (docu-
mentable) solutions, methodologically “pushing” developers to this design style.

The question of choosing/creating a convenient and effective expressive means for this kind
of abstractions with access to the automatic generation of an implementation-level spectrum
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of solutions remains open.
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