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Abstract. Game-based learning environments enable effective and engaging 
learning experiences that can be dynamically tailored to students. There is grow-
ing interest in the role of reflection in supporting student learning in game-based 
learning environments. By prompting students to periodically stop and reflect on 
their learning processes, it is possible to gain insight into students’ perceptions 
of their knowledge and problem-solving progress, which can in turn inform adap-
tive scaffolding to improve student learning outcomes. Given the positive rela-
tionship between student reflection and learning, we investigate the benefits of 
jointly modeling post-test score and reflection depth using a multimodal, multi-
task stealth assessment framework. Specifically, we present a gated recurrent 
unit-based multi-task stealth assessment framework that takes as input multi-
modal data streams (e.g., game trace logs, pre-test data, natural language re-
sponses to in-game reflection prompts) to jointly predict post-test scores and writ-
ten reflection depth scores. Evaluation results demonstrate that the multimodal 
multi-task model outperforms single-task neural models that utilize subsets of the 
modalities, as well as non-neural baselines such as random forest regressors. Our 
multi-task stealth assessment framework for measuring students’ content 
knowledge and reflection depth during game-based learning shows significant 
promise for supporting student learning and improved reflection. 

Keywords: Multimodal learning analytics, multi-task learning, natural lan-
guage processing, reflection, game-based learning 

1 Introduction 

Recent years have witnessed growing interest in game-based learning environments 
due to their potential to foster student learning and create personalized learning experi-
ences [1-3]. By embedding story-based problems within interactive virtual environ-
ments, game-based learning environments can promote student interest and provide en-
gaging opportunities for problem solving. An important factor in game-based learning 
environments is students’ ability to self-regulate their learning processes [4, 5]. Game-
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based learning environments with robust student performance assessment capabilities 
show significant promise for identifying gaps in student knowledge and informing 
adaptive scaffolding designed to support self-regulated learning and problem solving. 

A key challenge is how to reliably model student knowledge without disrupting en-
gagement during learning activities. Stealth assessment addresses this challenge by an-
alyzing fine-grained sequences of game interaction data to automatically infer students' 
knowledge and learning competencies without disrupting students’ game-based learn-
ing experiences [6, 7]. Following an evidence-centered assessment approach [8], stealth 
assessment can be formulated as a regression task to predict students’ post-test scores 
based on the observed sequences of students' problem-solving interactions during 
game-based learning. Accurate predictions of post-test scores could inform instructors 
about students in need of help. The predictions can also be utilized in-game to provide 
scaffolds to dynamically remediate gaps in knowledge and support problem solving. 

While in-game action sequences have been investigated as a traditional source of 
predictive features for stealth assessment [7], students’ written reflections also hold 
significant potential to improve prediction of student competencies when combined 
with in-game action sequences [5]. Moreover, supporting effective reflection is itself 
an important goal in game-based learning due to its central role in self-regulated learn-
ing. To identify whether students are reflecting effectively, reflections are often evalu-
ated in terms of their depth (e.g., non-reflective, slightly reflective, and highly reflective 
[9]). However, analyzing written reflections is typically a manual process that is time 
and resource-intensive, so a key question is how to automatically model student written 
responses in order for stealth assessors to make robust predictions of learning outcomes. 

This paper presents a multimodal multi-task machine learning framework for stealth 
assessment that involves generating sequential predictions of students’ post-test and 
reflection depth scores based upon students’ pre-test scores, game trace logs, and writ-
ten reflections. The multimodal multi-task stealth assessment models utilize features 
extracted from students’ game trace logs, including in-game events and dynamically 
changing learning goals, as well as linguistic features extracted from written reflections 
using a pre-trained ELMo language model based on a stacked bidirectional recurrent 
neural network [10]. We train stealth assessment models based on gated recurrent unit 
(GRU) neural architectures [11] that employ hybrid fusion to model multimodal data 
consisting of game trace logs and written reflection responses. We evaluate the predic-
tive performance of multimodal, multi-task stealth assessment models against a random 
forest regressor as well as variants of unimodal and single-task GRU models.  

2 Related Work 

Multimodal machine learning techniques leverage information obtained across multiple 
data channels and have been found to show improvement in predictive performance as 
compared to unimodal models across a range of tasks [12]. These techniques have been 
widely investigated for a range of learning environments in the context of multimodal 
learning analytics [13, 14]. Aslan et al. developed a real-time multimodal analytics 
framework for measuring student engagement using appearance and context-based 
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features in an authentic classroom setting [15]. Emerson et al. analyzed multi-channel 
data including gaze, facial expression, and posture for predicting learner engagement 
in interactive museum exhibits [16, 17]. To effectively deal with heterogeneous streams 
of data, various data fusion methods have been explored along with multimodal learn-
ing analytics approaches. Zheng et al. [18] categorized data fusion techniques as being 
feature-based [19], stage-based [20] and semantic meaning-based [21]. Henderson et 
al. used multimodal data fusion for affect detection in game-based learning environ-
ments exploring feature-level as well as decision-level multimodal data fusion ap-
proaches [22]. Their results demonstrate that different data fusion approaches are suited 
to different affect detection tasks.  

Another strand of related work is research on stealth assessment [6]. Stealth assess-
ment is an application of evidence-centered design (ECD) [8], an assessment design 
framework that utilizes task-level evidence to infer learners’ competencies on higher-
level concepts in game-based learning environments. Stealth assessment often utilizes 
game trace logs (e.g., sequence of events, locations visited) to model student 
knowledge, skills, and abilities using machine learning techniques [7, 23]. A promising 
approach for augmenting stealth assessment models is using data from student reflec-
tions [24]. Game-based learning environments can be designed to ask students to sub-
mit written reflections detailing what they have learnt and how their past experiences 
might shape their future learning plans, providing an important source of evidence for 
stealth assessment. Carpenter et al. analyzed students written reflections in a game-
based learning environment by rating students’ reflections on a continuous scale based 
on their reflection depth [25]. They evaluated several machine learning techniques for 
their predictive performance on reflection scores. They reported the best performance 
using an SVM model utilizing ELMo embeddings. Geden et al. examined modeling 
approaches for predicting students’ post-test scores using game-based features, pre-test 
scores and word embedding representations of reflection responses [5]. Our work lev-
erages feature representations extracted from game interaction data and students’ writ-
ten reflections to predict a sequence of reflection scores and post-test scores cast as a 
time-series regression task in the context of multi-task learning [26]. 

3 Dataset 

In this work, we use data from a pair of classroom studies conducted in 2018 and 2019 
with CRYSTAL ISLAND, a game-based learning environment for middle school microbi-
ology education [5, 25, 27]. The objective of the game is to find a disease that is spread-
ing among a group of scientists on a remote island research station. In the game, the 
students explore the virtual environment, talk to non-player characters, read science 
books, articles and posters, test objects in a virtual laboratory, and submit a final diag-
nosis to the camp nurse. In both studies, a 17-item microbiology content knowledge 
pre-test (M = 6.78, SD = 2.75) was administered a week before the students first inter-
acted with the game. Prior to game-based learning activities, researchers briefly intro-
duced the students to the game, and then students interacted with the game until they 
solved the mystery, or approximately 100 minutes of gameplay time had elapsed. As 
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students interacted with CRYSTAL ISLAND (Figure 1, left), their game trace logs and 
written responses were recorded, providing a detailed account of each students’ actions 
in the learning environment. After completion of the game, students completed a 17-
item microbiology content knowledge post-test (M = 7.36, SD = 3.36), among other 
post-game measures. Our dataset consists of data from 119 students. Of these students, 
51% identified as females, and their ages ranged from 13 to 14 (M = 13.6, SD = 0.51).  

Fig. 1. (left) CRYSTAL ISLAND game-based learning environment, (right) In-game reflection 
prompt.  

While playing the game, students were prompted at several checkpoints (Figure 1, 
right) to reflect on their progress in the game and state their plans moving forward. At 
the end of the game, two additional prompts appeared, requiring students to detail their 
approach towards solving the current problem and propose a way to solve a similar 
problem in the future. Across all types of reflection, there were 729 written reflection 
responses. The average length of a reflection response was approximately 20 words. A 
rubric was formulated for evaluating the reflection depth of written responses on a scale 
of 1 to 5 [25]. Two researchers individually rated the written responses following the 
rubric, and the final reflection rating was calculated by averaging the rating values for 
each written response (M = 2.41, SD = 0.86). An intraclass correlation of 0.669 was 
achieved indicating moderate inter-rater reliability.  

4 Stealth Assessment Frameworks 

4.1 Data Representation and Preprocessing 

This work focuses on two game trace log features: events and completed plot points. 
We only consider 8 distinct game event types in CRYSTAL ISLAND—conversing with a 
virtual character, reading books and articles, filling out the diagnosis worksheet, en-
countering a written response prompt, accomplishing a goal, reading a poster, testing a 
virtual object, and submitting a diagnosis—and 20 distinct plot points, which are in-
game milestone events important to successfully completing the game. The event fea-
ture is a cumulative count vector, with each element representing the number of occur-
rences of a specific event from the start of the game. We apply the standard score (z-
score) for the count of each event in the event vector to standardize count-based repre-
sentations. The plot point vector is a binary representation with each element 
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representing a unique gameplay milestone, set to zero by default and changed to one 
once the milestone is accomplished.  

In addition to game trace log features, we also use ELMo embeddings [10] of stu-
dents’ written reflections. These written reflections are the responses provided by the 
students to the in-game prompts. ELMo sentence embeddings have the benefit of en-
coding contextual information. We use an ELMo model pre-trained with the 1 Billion 
Word Benchmark comprising approximately 800M tokens of news crawl data from 
WMT 2011 [10]. We consider the average of the ELMo word embeddings in each of 
the written responses to construct a single embedding of length 1,024 for each response. 
Since the embedding size is prohibitively large to effectively model our dataset, we 
reduce the dimensionality of the embeddings by applying principal component analysis 
(PCA) and preserving the 32 features that have the most variance. In our stealth assess-
ment models, the most recent reflection embedding is passed as input, along with the 
game trace logs, at each time step. For predictions prior to a student’s first reflection, 
an embedding with uniform random noise is used to indicate that no information is yet 
available. We also include students’ standardized pre-test scores as input to our models. 

We subsample each student’s trace data into overlapping subsequences of 20 con-
secutive actions, such that each action taken by a student has a corresponding subse-
quence, comprising the current and past 19 actions. Both cumulative and binary vectors 
in these subsequences are based on actions performed from the start of gameplay until 
the current timestamp. The first few entries whose lengths are shorter than 20 are pad-
ded with zeros to keep the length of each subsequence to exactly 20 timesteps. The task 
of predicting the series of reflection ratings is formulated as sequential inferences on 
the rating of the next written response based on the current subsequence. We model our 
problem as a regression task. For each in-game event, we predict the post-test score as 
well as the reflection rating. The reflection rating label corresponds to the next written 
response that the student is expected to submit at a later time step. 

4.2 Modelling Techniques 

In our current work, we experiment with early, late, and hybrid fusion of multimodal 
data. We hypothesize that how to fuse different modalities plays a crucial role to obtain 
high-fidelity predictive models, particularly because each modality has a different na-
ture, number of features, and representation method.  We compare performance 
achieved using the three data fusion techniques and identify the best performing tech-
nique for each task. Multi-task learning (MTL) allows a model to share intermediate 
latent representations between related tasks, enabling the model to leverage information 
across related tasks to achieve better generalization performance [26]. We evaluate 
MTL focusing on whether shared representations for modeling related learning out-
comes of post-test scores and written reflection ratings can benefit predictive perfor-
mance for one or both tasks. For training each model, we used Adam optimizer [28] 
with mean squared error (MSE) as the loss function. The models are detailed as follows: 

Early fusion model. This model takes a concatenation of pretest scores, written reflec-
tion embeddings and game trace logs as input, which is then passed through a GRU 
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layer (128 hidden units, 0.1 dropout, 0.01 L2 kernel/recurrent/bias regularization fac-
tor), followed by a dense (64 units, ReLU activation) and a dropout layer (0.1). The 
hidden representation is passed through a dense layer and a separate dense layer for 
predicting post-test score and time-series reflection rating (each with 8 shared hidden 
units followed by 1 output unit). (Please note that the following late and hybrid fusion 
methods use the same hyperparameter configurations reported above.)  
 
Late fusion model. This model takes written reflection embeddings and gameplay logs 
as inputs through separate GRU layers followed by dense and dropout layers. Pre-test 
scores are passed through a dense network. These three outputs are concatenated and 
passed to two dense layers predicting post-test score and time-series reflection rating.  
 
Hybrid fusion model. This model (Figure 2) adopts a hybrid approach of early and 
late fusion. Written reflection embeddings and game trace logs are concatenated as in-
put (i.e., early fusion) to a GRU layer. The output is passed through dense and dropout 
layers. The pre-test scores are combined with the output (i.e., late fusion) and passed 
through dense layers for predicting post-test score and time-series reflection rating.  
 

 
Fig. 2. Hybrid fusion model for multi-task learning. 

5 Results 

To evaluate each model, we use student-level 5-fold cross validation. For the training 
set in each fold, we perform an 80-20 split to create a training and validation set, re-
spectively. For evaluating model performance, we use R2 score and MSE metrics. We 
use a random forest (RF) model as a baseline. This model takes one subsequence as 
input each time and predicts each label individually (i.e., single-task models only). We 
obtain one final post-test score by averaging multiple subsequence-level predictions for 
each student, since post-test score for a student is the same across all subsequences. On 
the other hand, number of reflection ratings varies per student. We thus average predic-
tions across actions performed between consecutive reflection prompts.  

The average cross-validation results comparing the performance of single and multi-
task models for different data fusion techniques can be seen in Table 1. For multimodal 
MTL experiments, the hybrid and late fusion GRU models have similar performance 
on post-test score prediction (R2 score 0.30 and MSE 0.026), while the hybrid fusion 
GRU model outperforms both early and late fusion models for time-series reflection 
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rating prediction (R2 score 0.28 and MSE 0.004). For single-task models, we note that 
the best performing GRU models show similar performance on post-test score predic-
tion as our RF baseline with R2 score 0.20 and MSE 0.030. However, all single-task 
models perform poorly for reflection rating prediction, as they exhibit negative R2 
scores. This indicates that single-task learning is not an effective modeling approach 
for the task, fitting worse than the average value of unseen data. We further evaluate 
the contribution of each modality in the performance of the best performing models 
(i.e., GRUs with hybrid fusion) by testing different combinations of input modalities. 
We compare single and multi-task models’ performance for post-test score prediction 
in Table 2 and for time-series reflection rating prediction in Table 3. A model has better 
performance if it has higher R2 score and lower MSE. The results show that best per-
formance is achieved with MTL models that utilize all three modalities.   

Table 1. Comparison of predictive performance of stealth assessment models using different 
data fusion techniques along with the random forest (RF) baseline (STL: single-task learning, 

MTL: multi-task learning, EF: early fusion, LF: late fusion). 

Models Post-test score 
prediction (R2) 

Post-test score 
prediction (MSE) 

Time-series 
reflection rating  
prediction (R2) 

Time-series 
reflection rating 
prediction (MSE) 

STL-RF 0.20 0.030 -0.41 0.008 
STL-EF 0.20 0.030 -0.32 0.008 
STL-LF 0.19 0.031 -0.20 0.007 
STL-Hybrid 0.20 0.030 -0.33 0.008 
MTL-EF 0.15 0.032 0.08 0.005 
MTL-LF 0.30 0.026 0.13 0.005 
MTL-
Hybrid 0.30 0.026 0.28 0.004 

 

Table 2. Comparisons of single and multi-task GRU models with hybrid fusion for predicting 
post-test scores using different combinations of modalities. 

Modalities Single-task  
(R2) 

Single-task 
(MSE) 

Multi-task 
(R2) 

Multi-task 
(MSE) 

Pre-test score 0.23 0.029 0.23 0.029 
Reflection  0.08 0.035 0.11 0.033 
Game trace  -0.10 0.041 0.001 0.040 
Pre-test, reflect 0.28 0.027 0.27 0.028 
Pre-test, game trace 0.12 0.033 0.17 0.031 
Reflect, game trace 0.09 0.034 0.15 0.032 
Pre-test, reflect, game trace 0.20 0.030 0.30 0.026 
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We observe that the hybrid fusion, multi-task GRU model outperforms the RF base-
line by achieving an R2 score of 0.30 and 0.28 and MSE 0.026 and 0.004 for post-test 
score and time-series reflection rating prediction, respectively. We also note that the 
best single-task GRU models’ performance for post-test score prediction is achieved by 
using a combination of pre-test scores and written reflections (Table 2). 

Table 3. Comparisons of single-task and multi-task GRU models with hybrid fusion for pre-
dicting time-series reflection ratings using different combinations of modalities. 

Modalities Single-task  
(R2) 

Single-task 
(MSE) 

Multi-task 
(R2) 

Multi-task 
(MSE) 

Pre-test score -0.29 0.008 -0.29 0.007 
Reflect  -0.24 0.007 0.04 0.005 
Game trace  -0.46 0.008 -0.22 0.007 
Pre-test, reflect -0.27 0.008 0.11 0.005 
Pre-test, game trace -0.23 0.007 -0.16 0.006 
Reflect, game trace -0.18 0.007 0.17 0.004 
Pre-test, reflect, game trace -0.33 0.008 0.28 0.004 

 
The single-task learning results indicate that students’ post-test scores primarily de-

pend on prior knowledge about the subject matter and how well they reflect in the game, 
while game trace data added noise to the model by decreasing predictive performance. 
However, we observe that MTL (0.30 R2 score, 0.026 MSE and 0.28 R2 score, 0.004 
MSE for post-test scores and time-series reflection ratings respectively) lends itself to 
successfully model the features, outperforming all single-task models for both tasks. 
Among the three fusion techniques, hybrid fusion outperforms both early and late fu-
sion in MTL, suggesting that (1) combining gameplay logs with written response em-
beddings early facilitates modeling of complementary relationships between these two 
modalities, and (2) fusing intermediate representations learned from gameplay logs and 
written response features with pre-test features late is effective for both prediction tasks. 
Together with the significant improvement achieved by MTL over single-task learning 
utilizing multimodal data for time-series reflection rating prediction, the results suggest 
it is beneficial to simultaneously learn shared intermediate representations using labels 
from two related tasks, boosting predictive accuracies of both learning outcomes.   

6 Conclusion 

Stealth assessment in game-based learning environments shows significant potential to 
support effective learning experiences for students. Given the positive relationship be-
tween student reflection and learning, we introduced a multimodal, multi-task stealth 
assessment framework to dynamically infer student competencies on content 
knowledge and reflection. We investigated multimodal data fusion techniques for GRU 
models to predict post-test scores and a series of written reflection ratings utilizing pre-
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test scores, reflection embeddings, and game trace logs. We derived ELMo embeddings 
to represent written responses and explored three multimodal data fusion mechanisms 
including early, late and hybrid fusion combined with single and multi-task learning 
architectures. The results suggest that the multi-task, hybrid fusion model significantly 
outperforms the RF baseline. The best predictive performance was achieved by com-
bining all modalities in a multi-task setting using our hybrid fusion GRU model.  

In future work it will be important to experiment with other contextual language 
embeddings to further improve models’ generalization performance. Subsequences at 
later timestamps are expected to be better predictors of post-test scores. Early prediction 
measures for regression tasks could help us understand how early in the game we can 
accurately predict scores. It will be important to investigate additional data modalities 
to pick up cues that could further improve prediction of learning outcomes. Other 
measures including affect and engagement have important relationships to learning and 
could offer additional insight into learning processes and outcomes. 
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