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Abstract

While there have been many advancements in generative models for 3D design, there has been a limited
amount of user interface work in this co-creation domain. The user interface controls and interaction
paradigms emerging in this field tend to be unintuitive and hard to standardize, as they are often based
upon complicated work related to latent space disentanglement, dimensionality reduction, and other
bespoke computational techniques.

We demo a user interface that provides intuitive controls for the generation of basic 3D animal
shapes. These controls, a set of semantic sliders, map to simple and universal operations such as scale
and rotation. By adjusting these parameters over animal limbs, users can semantically guide generative
models towards their goals, optimizing the mapping between Al action and user intention.

Our user interface operates over a generative model that implements Wei et. al’s semi-supervised
architecture for learning semantically meaningful embeddings [1]. To train it, we collected artist data
and generated synthetic data by authoring a parametric animal shape generator. This generator produces
low-fidelity, abstracted animal shapes we refer to as metashapes.

Our system is an instance of a neurosymbolic generative system, which is when the generative system
learns dually from data as well as from symbolic, algorithmic constraints. We conclude with an analysis
of the benefits and drawbacks of neurosymbolic generation for 3D animal shapes and the utility of
metashapes for user control over AL
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1. Introduction ingful signals from latent spaces has become
an active area of research. Techniques such
1.1. Related Work as beta-variational autoencoders, InfoGAN [3],

and latent space factorization have been de-

veloped for the purposes of disentangling the

latent space. However, all these methods work
to varying degrees of success and tend to be

contingent upon the curation and training of

large datasets.

Recently, Wei et. al. (2020) proposed an ar-
chitecture that challenges latent spaces with
a semi-supervised model that learns a seman-
Joint Proceedings of the ACM IUI 2021 Workshops, April  tic space. A semantic space can generate in-
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Prior work has shown that generative net-
works such as variational autoencoders and
GANS s can learn latent spaces and generatively
produce 3D shapes [2]. However, the dimen-
sions of these latent spaces are often highly
entangled and too hyperdimensional to be hu-
man interpretable. Reverse engineering mean-
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Figure 1: Our user interface generates animal metashapes, which are generic low-fidelity animal
shapes. Above are nine animal metashapes arrived at from our user interface. In the top left rectangle,
we picture six of the "semantic sliders" used to generate these shapes. These sliders give users control
over the following semantically meaningful parameters such as torso length, neck length, neck rotation,
tail length, tail rotation, and leg length. These parameters operate on the shape outputs using intuitive

mental operations like scale and rotation.

chitecture and methods proposed by Wei et.
al on the domain of quadruped animals. Wei
et. al. demonstrate the success of their method
using state of the art academic datasets on
well-established generative task domains such
as chairs, airplanes, and human bodies. We
choose to focus on the domain of animals, be-
cause animals are one of the most common
classes of 3D assets created. They display a
high variance in their shapes, which make
them far harder to statistically parameterize
than easier shapes like human silhouettes. In
spite of this variance, animals share struc-
tural similarities that humans can intuitively
characterize. For example, we can generalize
quadrupeds to be four-legged animals with a
head, neck, and a tail, and teach this abstrac-
tion to our system. We refer to this abstrac-
tion as a metashape: a generic, low-fidelity
shape that can abstractly characterize a class
of 3D objects. We utilize these metashapes
and the aforementioned architecture for our
neurosymbolic generative system.

2. System

Our system utilizes point clouds as our 3D
shape representations, as neural networks have
shown success on a number of 3D tasks in-
volving point clouds from instance segmen-
tation [4] to shape editing to interpolation
[2].

To create a dataset of animals, we first web-
scraped 228 3D mesh assets made public on
Sketchfab by artists [5] and sampled point
clouds from these assets. Using open3d, a
Python package for 3D graphics, we rotated,
normalized, and scaled our data to fit within
a unit sphere, center around the 3D origin,
and face the same direction.

2.1. Metashape Generator

To create a synthetic dataset of 20,000 ani-
mal metashapes in accordance with Wei et.
al’s architecture, we utilized Blender’s mod-
ule for Python scripting to spawn metaballs
that coagulate into basic animal shapes. Meta-
balls are 3D primitives common to computer



graphics software that can additively or sub-
tractively react to one another to form organic-
looking shapes. Our metashapes were sym-
bolically parameterized by vector directions,
limb lengths, and limb rotations. Our inspi-
ration for this approach comes from an idea
long theorized by cognitive science that 3D
shapes can be decomposed into more basic
primitives known as geons [6].

We created two versions of the generative
model for this demo that work with one con-
sistent user interface. The first is parame-
terized by six semantic axes, the second by
twenty one semantic axes. These parameters
corresponded to length, width, height, rota-
tion, radius, position, spacing and other la-
bels that characterized the primitives corre-
sponding to parts of the animal metashape.
The exact labels can be found in the appendix.

These labels supervise the learning of the
semantic space and teach the model 3D oper-
ations such as scale and rotation over specific
parts. While generating a synthetic dataset
from a template is a source of inductive bias,
we attempted to mitigate this by informing
our template with results from Superquadrics,
a recent part-segmentation model that was
applied successfully to animal meshes [7].

3. Results

We present a user interface designed in the
Unity3D game engine, which abstracts over
the generative model and allows users to in-
teract with it in real-time using semantic slid-
ers. These sliders map to the original axes of
the semantic supervision and offer explain-
ability for the model’s actions. We addition-
ally demo preliminary features for direct ma-
nipulation, camera view movement, user his-
tory, generative Al history, and transparency.
The real-time nature of the interactions, the
explainability of the model through the se-
mantic sliders, and the concept of memory

are all in accordance with best practices pro-
posed by Llano et. al. for explainable compu-
tational creativity systems [8].

Author interactions with the system effi-
ciently exposed the generative model’s abil-
ities and shortcomings. It was moderately
successful at learning from its semantic su-
pervision and able to produce transformations
in scale and rotation over torso length, neck
length, and tail length. Exploration through
the user interface produced the varied results
as pictured in Figure 1. However, the model,
in its first iteration with six semantic param-
eters, failed to completely disentangle the se-
mantic space. The model showed an on and
off ability to control parameters such as neck
rotation, tail rotation, leg length, and tail length.
By on and off, we mean that while in cer-
tain clusters of parameters the 3D transfor-
mations over rotation and scale were accu-
rate, in other clusters the sliders produced
suboptimal behavior. For example, one spe-
cific problem was that the model sometimes
mixed up the posterior extrusion of the neck
with the anterior extrusion of the tail. An-
other problem was that the model seemed un-
able to capture the extreme ends of our syn-
thetic training data (i.e. long legs). More ex-
amples of malformed edits are illustrated and
captioned in Figure 2.

4. Discussion

In this section, we discuss the following learn-
ings from this demo.

4.0.1. Efficient design space exploration

Though many generative models can now be
interacted with in realtime [9, 10], it is often
still intractable to completely visualize the de-
sign space these models sample over. How-
ever, our design space is low-dimensional; six-
dimensional in one version, 21-dimensional



Figure 2: Cases of bad output animal metashapes for three semantic axes. Left: edits on tail rotation
result in changes of neck rotation. The model mixes up posterior extrusion of neck with the anterior
extrusion of the tail. Center: Editing tail length leads to a "negative" tail length, which appears as a
posterior indent in the animal shape. Right: Maximizing the leg length parameter leads to an outward,
noisy extension of legs. The affected areas in the images and parameters are saturated and highlighted

respectively.

in another. Users have access to the entire de-
sign space and can traverse through it within
minutes. They can find best and worst case
outputs within seconds. The efficient explo-
ration that we allow implements the follow-
ing principle established by Gero et. al.: in-
teractions between humans and Al are im-
proved when humans can efficiently explore
and understand the global knowledge distri-
butions underlying generative models [11].

4.0.2. Using metashapes as abstractions
between users and Al

We argue that metashapes are an ideal ab-
straction between users and AL In our sys-
tem, metashapes gave users ways to operate

over the design space with universal concepts
like scale and rotation, mental operations that
are intuitive and shared by everyone. The se-
mantic meaning attached to each slider opti-
mized the translation of user intention into
Al output. While metashapes are 3D con-
cepts, they translated well to a user interface
that would be intuitive even to non-technical
end users. The minimal interface is a good
counterexample to the many heavier gener-
ative model user interfaces which encourage
users to interact with lower-level complexi-
ties like data distributions [12] and hyperpa-
rameters [10].



4.0.3. Challenges for neurosymbolic
generation

We acknowledge that there are limitations to
neurosymbolic generation with metashapes.
One of the most significant challenges is find-
ing the right metashape abstraction to encap-
sulate a class of 3D shapes. While methods
to find these abstractions do exist [13, 14, 7],
it is hard to evaluate the correctness of their
abstractions. Furthermore, these methods do
not often lend to intuitive user interface con-
trols and metaphors.

5. Conclusion

We present a demo of a neurosymbolic gen-
erative system that allows users to create 3D
animal shapes with semantically meaningful
controls. Additionally, we illustrate how sym-
bolically generated metashapes can be a use-
ful abstraction going forward for human-AI
interaction.
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A. Appendix

A.0.1. Generative model: Iteration 1

Iteration 1 with 6 semantic parameters con-
sisted of the following parameters: torso length,
neck length, neck rotation, tail rotation, leg

length, tail length.

A.0.2. Generative model: Iteration 2

Iteration 2 with 21 semantic parameters from
the following set of parameters: torso length,
(front) torso width, (front) torso height, (back)
torso width, (back) torso height, a choice be-
tween head type 1 (which emphasizes ear vari-
ation) and head type 2 (which emphasizes jaw
variation), head size, head feature (ear / jaw)
prominence, mouth angle, neck length, neck
rotation, neck size, leg length, position of front
legs, position of back legs, leg gap, leg angle,
tail length, tail rotation, tail radius, tail vari-
ance, a choice between a tail that increases in
width or decreases, and leg radius.
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