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Abstract
Given the success of deep generative models in many creative tasks, it is natural to ask how to best lever-
age them to support human designers. We study this problem in the context of mixed-initiative design
of platformer levels, a paradigmatic co-creative task. This setting is especially challenging, because –
like all functional content – platformer levels must satisfy complex validity constraints, like coherency
and playability. We explore mixed-initiative interaction with constrained adversarial networks (CANs),
a class of deep generative models that synthesize structures satisfying one or more validity constraints.
As such, CANs can be used to complete user-supplied partial levels while retaining full control of the
constraints to be applied. We go one step beyond, and consider the issue of customizing a pre-trained
CAN to some target design task at hand and to the designer’s preferences. We discuss how to achieve
this by combining CANs with coactive learning, a very natural mixed-initiate interaction protocol that
acquires the necessary supervision from the designer in a transparent manner. Finally, we illustrate how
to extend coactive learning to acquire informative supervision in the form of interpretable constraints.
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1. Introduction
Deep generative models have achieved remark-
able results in image synthesis [1, 2], music
generation [3], style transfer [4], and many
other creative tasks. It is only natural to ask
how these models, which are designed to work
in full autonomy, can be adapted for assisting
and complementing human designers.

To ground the discussion, we focus on a
concrete application, namely mixed-initiative
design of 2-D platformer game levels [5, 6, 7].
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This and other forms of semi-autonomated
content generation are very relevant for the
game industry, as they promise to lower pro-
duction costs and facilitate scalability [8]. A
key feature of this problem is that – in con-
trast to, e.g., natural images – game levels are
functional [7], that is, they obey complex va-
lidity constraints like coherence (for instance
props must be complete, non-flying enemies
must touch the ground) and playability (the
goal tile must be reachable), see Figure 1. Stan-
dard deep generative models, however, do not
handle validity constraints and hence strug-
gle to generate valid objects.

This motivates us to explore mixed-initiative
level design with constrained adversarial net-
works (CANs) [9]. CANs are generative ad-
versarial networks (GANs) [1] designed specif-
ically for functional objects. Like other gen-
erative models, once trained on existing con-
tent, CANs can be invoked to create novel
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Figure 1: Example Mario levels generated by a constrained adversarial network. Left: Pipe props
are constrained to be complete and symmetric (coherency). Right: The rightmost column must be
reachable from the starting position, regardless of gaps (playability). Images taken with permission
from [9].

content from scratch [1] or to finish incom-
plete sketches supplied by a designer [10]. As
a bonus, during interaction the designer can
turn on and off different constraints, allow-
ing her to synthesize different types of struc-
tures and boost diversity [9].

In this setup the model is trained to gen-
erate content that mimics the training data,
which might be quite different from the con-
tent needed by the designer for the task at
hand. Compatibly with recent work [11, 12],
we argue that effective content synthesis re-
quires customizing the generative model for
the target domain. To this end, we propose
to leverage coactive learning (CL) [13], an in-
teraction protocol whereby the machine ac-
quires pairwise preferences (that is, “object 𝑥
is better than object 𝑥′”) by tracking the mod-
ifications made by the designer to its own sug-
gestions. The generative model is then pe-
riodically adjusted to comply with the col-
lected preferences. Coactive learning inte-
grates seamlessly into mixed-initiative work-
flows and is completely transparent to the de-
signer [14, 15].

Given the tension between the amount of
feedback that can reasonably be acquired dur-
ing a design session and the number of pref-
erences needed to adjust deep generative mod-
els like CANs [12], we also discuss how to ex-
tend CL to collect both preferences and con-

straints. In our view, constraints are a power-
ful form of feedback as they provide informa-
tion about entire sets of candidate levels: lev-
els that do satisfy a constraint are preferred
to levels that do not, all else being equal. Im-
portantly, constraints can be imposed on top
of both outputs (e.g., tile and enemy patterns)
and disentangled latent representations of the
generative models.

In the following, we overview GANs and
CANs. Next, we discuss mixed-initiative level
design with CANs and distinguish between
strategies based on conditional generation and
adaptive strategies based on coactive learn-
ing and constraint acquisition. In Section 4
we discuss related work and then conclude
with some final remarks.

2. Background
Generative Adversarial Networks (GANs) [1]
are a popular class of generative models where
two neural networks, the generator 𝑔 and the
discriminator 𝑑 , are trained jointly in an ad-
versarial fashion. Specifically, the discrim-
inator 𝑑 is trained to distinguish “real” ob-
jects in the training set  from “fake” objects
synthesized by the generator 𝑔. At the same
time, 𝑔 is trained to output objects that fool
𝑑 . The generator is typically implemented as



a feed-forward or a deconvolutional neural
network that maps random vectors 𝐳 (sam-
pled from some simple distribution, like a mul-
tivariate normal) into objects 𝐱. The discrim-
inator is a feed-forward or convolutional neu-
ral network that takes objects 𝐱 and output
their probability of being real or fake.

Training is typically performed using (vari-
ants of) stochastic gradient descent by inter-
leaving updates to 𝑔 and 𝑑 , and it proceeds
until the synthesized objects look indistinguish-
able from those in the training set  . Under
idealized assumptions [1], the learned gen-
erator eventually recovers the data distribu-
tion. Once trained, the generator 𝑔 can be
used to synthesize new objects 𝐱 by simply
sampling random vectors 𝐳 and computing
their image under the generator, that is, 𝐱 =

𝑔(𝐳). This operation is extremely efficient.
This form of training has the advantage of
not requiring to compute an objective based
on likelihood or other probabilistic metrics,
which are in general intractable and thus ap-
proximated. For this reason, GANs have found
successful applications in domains where for-
malizing the target distribution is hard.

GANs and other standard deep generative
models are not designed to generate valid struc-
tures [9]. Indeed, generating objects consis-
tent with a constraint involves first discover-
ing that such a constraint exists (at least im-
plicitly) by looking at the data, and genera-
tive models are not designed to carry out this
non-trivial task. Furthermore, if the training
data contains infeasible examples (because of,
e.g., mistakes during the data collection), then
the validity constraint cannot be acquired per-
fectly even in principle.1

1It can be shown that in this case GANs will acquire
a wrong validity constraint [9].

2.1. Constrained Adversarial
Networks

Constrained Adversarial Networks (CANs) ad-
dress this issue by taking both training ex-
amples and validity constraints into consid-
eration. CANs train the generator 𝑔 so that
it jointly maximizes the probability of fool-
ing the discriminator 𝑑 and the probability of
synthesizing valid objects. This is achieved
by augmenting the adversarial loss used in
standard GANs (denoted by 𝓁

𝑎𝑑𝑣
) with the se-

mantic loss (SL), a technique proposed in [16]
to encourage neural networks to output pre-
dictions consistent with constraints. Letting
𝜓 be a user-supplied validity constraint (en-
coded as a propositional logic formula over
the elements of 𝐱), CANs train 𝑔 and 𝑑 to op-
timize (resp. minimize and maximize) the fol-
lowing expression:

𝓁
𝑎𝑑𝑣

(𝑔, 𝑑) + 𝜆 ⋅ 𝑆𝐿
𝜓
(𝑔) (1)

where 𝜆 > 0 is a hyper-parameter controlling
the importance of the constraint. The SL is
designed to be large whenever the probabil-
ity that the generator outputs a valid object
is small. To this end, the SL is defined as the
negative logarithm of this probability:

𝑆𝐿
𝜓
(𝑔) = − log

[

∑

𝐱 satisfies 𝜓
𝑃𝑔 (𝐱)

]

(2)

The sum measures the total probability allo-
cated by the generator to valid objects. Eval-
uating the sum involves enumerating all pos-
sible objects (e.g., tile arrangements) 𝐱, check-
ing which ones are feasible, and computing
their probability with respect to the genera-
tor (written 𝑃𝑔 (𝐱)). Since the number of pos-
sible objects is typically exponential, naïve
enumeration is infeasible. Knowledge com-
pilation (KC) [17] is thus used to compile the
sum into a compact polynomial (or more pre-
cisely, an arithmetic circuit) that can be eval-
uated efficiently during training. KC works



by leveraging distributivity to rewrite 𝑆𝐿
𝜓
(𝑔)

as compactly as possible, enormously speed-
ing up evaluation. This is achieved by identi-
fying shared sub-components and compactly
representing the factorized expression using
a DAG.

If 𝜓 is very complex, the polynomial out-
put by KC may be large. This is not a huge is-
sue during training, which is performed once
(or infrequently) on powerful machines, but
it could be problematic for inference. A ma-
jor advantage of CANs is that – as in regular
GANs – synthesizing new objects boils down
to a simple forward pass over the generator,
independently of the KC polynomial, which
can thus be thrown away after training.

3. Mixed-initiative Level
Design with CANs

We are concerned with mixed-initiative de-
sign of 2-D platformer levels. In this setting, a
human designer and a generative model take
turns in proposing modifications to a shared
level map [5, 6, 7]. The designer can reject or
modify any suggestions made by the model.
The process can be considered a success if the
machine proposes useful suggestions (that is,
modifications that improve the overall qual-
ity of the level) thus saving time and resources,
or if it inspires the human designer to create
an overall better level [18, 19].

Co-designing with a pre-trained model
Perhaps the most straightforward co-design
strategy is to use a pre-trained generative model
to synthesize levels conditioned on the user’s
input. The simplest setup is inpainting: in
this case, the user supplies an incomplete level
and the network fills in the missing parts based
on the context [10]. CANs, in particular, can
be easily adapted to inpainting under con-
straints [9]. In a second, orthogonal approach,

the designer specifies some desired features
of the output and lets the network generate a
level compatible with those features. For in-
stance, one could condition the generator to
output objects from a specific class (e.g., un-
derground vs. open air levels) [20], to include
a given quantity of certain elements (enemies,
amount of water) [21], or to satisfy expected
length/playtime or leniency (a proxy of ex-
pected difficulty) requirements [22].

CANs support an additional form of condi-
tional generation that makes it possible dur-
ing synthesis to enable or disable different
groups of constraints. A technical descrip-
tion of this mechanism can be found in [9].
Hence CANs not only inherit the conditional
capabilities of traditional GANs, but also sup-
port the generation of objects conditioned on
properties expressed in logical terms. Using
this technique, the designer can generate di-
verse levels by turning on and off constraints
like “a room contains a boss fight if and only
if it contains a treasure chest” or “if the exit is
locked then the room must contain a key some-
where”. The requirement is that these optional
constraints are all baked into the CAN gen-
erator during training.

In complex co-creative scenarios like level
generation, the output of the model is un-
likely to satisfy all of the designer’s desider-
ata from the get go. To solve this issue, re-
cent work has investigated strategies that al-
low the designer to iteratively refine an ini-
tial suggestion by interacting with the gener-
ative model [23, 24, 25]. In this sequential set-
ting, a crucial aspect is how to ensure consis-
tency of the generated object with respect to
previous iterations. This is particularly chal-
lenging when the designer’s feedback is ex-
pressed in natural language and the output is
relatively unstructured [26]. Since game lev-
els are inherently structured it is easier to un-
ambiguously describe the desired changes, to
maintain consistency with respect to previ-
ous iterations, and to identify possibly con-



tradictory feedback from the user. For in-
stance, it is much easier to effectively account
for feedback like “turn all the water tiles into
lava” or “the first half of the level should not
contain enemies” than “the subject in the photo
should smile”.

Co-designing and customization So far,
we considered interaction based on condition-
ing a pre-trained generative model during syn-
thesis. Since the model generates content that
mimics the training data, unless the training
data is designed appropriately, the synthesized
content will not fit the target application. This
introduces a fundamental tension between the
effort required to create the training data and
the effort saved by using the generative model [12].

A sensible option is then to collect feed-
back on the model’s suggestions while inter-
acting with the designer, and then to incor-
porate the latter into the generative model
itself [15, 14, 11]. We propose to do so by
leveraging coactive learning [13, 14], an in-
teractive learning protocol in which the ma-
chine iteratively suggests content to the user,
the user improves – even by changing just
a few tiles – the suggested content, and the
process repeats. The meaning of “improve-
ment” is entirely defined by the designer’s
preferences and requirements. At the end of
each iteration, the machine has access to a
suggested object 𝐱 and an improved configu-
ration 𝐱

′, and extracts a pairwise preference
of the form “𝐱′ is better than 𝐱”. Such pref-
erences are collected in a data set and then
used to adjust the generative model. A sim-
ple procedure to do this is to re-train the cur-
rent generative model to better comply to the
collected preferences using a ranking loss, as
proposed in [27]. As interaction proceeds,
more preferences are collected and the model
progressively aligns to the designer’s needs.
Notice that coactive learning is completely
transparent to the user and integrates natu-

rally in mixed-initiative interaction via ma-
nipulative interfaces [14], which are common-
place in level co-design [5, 6, 7].

The nature of the feedback highly impacts
the performance of the model. Preferences
are very effective for capturing the designer’s
needs [28], however they do not explanation
why one object is preferred to the other. As
a concrete example, if the user is presented
with a Super Mario level 𝐱 and improves it
by removing some coins from it, leading to
𝐱
′, the system does not know whether the

coins were removed because they were un-
reachable, because there were too abundant
already, because they did not look good, etc.
This kind of explanatory supervision conveys
a lot of information [29] and can dramatically
improve the speed of adaptation, especially
for data hungry models like GANs. We pro-
pose to do so by combining constraint acqui-
sition [30] with CANs. The human designer
not only can adjust the generative model by
modifying the presented output, but is also
empowered with tools for specifying constraints
on the desired output. Of course, encoding
preferences in formal/logical terms can be hard
for the end user. Nonetheless, there exists a
body of work on translating natural language
into various formal representations [31, 32,
33]. Most crucially, the system must be able
to learn the building blocks of this interaction
language, that is, the logical predicates that
the designer uses to specify her needs. While
many predicates of practical interest can be
specified a priori, like the presence or num-
ber of specific elements in a portion of the
level, we can go further and provide an in-
terface for learning new predicates from the
user. As shown in [9], it is indeed possible to
use learned (neural) predicates in the CAN
framework, opening up the possibility of ex-
tending the base language with new high-level
concepts. For instance, the designer may want
to specify that a portion of the level refer-
enced by its coordinates represents a castle,



𝑖𝑠𝐶𝑎𝑠𝑡𝑙𝑒(𝑥1, 𝑦1, 𝑥2, 𝑦2). Even if the concept
is unknown to the system, it can be learned
from user examples and possibly refined with
interactions where the user is presented with
some positive examples and labels whether
they represent a castle or not.

CANs readily provide an interface for learn-
ing from such constraints, hence once col-
lected these constraints can simply used to
re-train the CAN until it complies with them.
It is to be expected that very complex con-
straints require an expensive compilation step
and many re-training epochs. We admit for
adaptation to occur in the background or dur-
ing periodic sleep cycles, rather than during
the design session as in CL. Delayed learning
of this kind is completely sound from a ma-
chine learning perspective [34] and widely
adopted in settings characterized by compu-
tationally demanding concept drifts like anomaly
detection [35] and some reinforcement learn-
ing applications [36, 37].

4. Related Work
Procedural (game) content generation (PCG)
has been traditionally addressed with search-
based or rule-based methods. In recent years,
the focus has shifted toward techniques based
on machine learning [38, 8] and deep learn-
ing [7]. Game content can be divided into
functional content, like game levels, game me-
chanics or behavioural rules for non-player
characters, and cosmetic content, such as tex-
tures, music and sound effects. Functional
content is arguably more challenging for au-
tomatic generators. While tasks in computer
vision or natural language processing are sup-
ported by very large and accessible datasets,
the training data for the generation of func-
tional content for games is typically very scarce.
Game level generation is by far the most stud-
ied problem in this area, with most works fo-
cusing on 2D tile-based video games. Although

annotated datasets of levels exist [39], they
are relatively small in size and cover a hand-
ful of popular games. The available data is of-
ten insufficient for effectively training a fully
autonomous deep generative model and, most
crucially, different approaches must be adopted
for training a generator for a novel game with
no data available. While some works miti-
gate this problem with bootstrapping tech-
niques [40] or by allowing for diverse sources
of supervision (like gameplay videos [41] or
transfer learning across different games [42,
43]), involving human interaction in the train-
ing of these systems is likely a necessity for
all but the most trivial settings.

Automated creation tools are unlikely to
output content that fits the target application
perfectly. Successful applications of computer-
aided design (CAD) tools have spurred research
in developing mixed-initiative co-creation tech-
niques for level generation. This interaction
paradigm is not only deemed effective for reach-
ing satisfiable end results, but it also useful
in fostering the creativity of the human de-
signer [18].

Coactive learning was first proposed in the
context of interface optimization [44] and in-
formation retrieval [13]. A useful feature of
CL is that it integrates seamlessly with mixed-
initiative interaction: preferences are extracted
whenever the human supervisor modifies, ex-
plicitly or implicitly, any suggestion made by
the machine. For this reason, CL was adopted
in constructive preference elicitation with ma-
nipulative interaction [14]. Our proposed ap-
proach is directly inspired by this line of work.

Recently, Guzdial et al. [11] introduced an
interaction protocol reminiscent of CL. The
difference is that, whereas in CL the model
used to synthesize structures and the model
used to learn from the designer’s feedback
are the very same, Guzdial et al. allow the
two models to be different [11]. From a learn-
ing perspective this is sub-optimal, as the two
models might make different mistakes and have



different biases, and therefore feedback use-
ful for one model might be less (than) useful
for the other. Finally, our idea of integrat-
ing interpretable constraint acquisition into
coactive learning extends prior work in con-
structive preference elicitation [15] by com-
bining it with constraint learning [30] and
explanatory interactive learning [29, 45].

5. Conclusion
We discussed mixed-initiative level design with
constrained adversarial networks. Our con-
tribution is conceptual: on the one hand, we
show that these models – which are designed
for autonomously generating functional con-
tent – can be used for helping human design-
ers, and on the other that they can be adapted
to the task at hand by combining them with
coactive learning and constraint acquisition.
Of course, these insights must be validated
through extensive experiments and user stud-
ies. This is left to future work.
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