
An Enhanced Rewriting Logic Based Semantics
for High-Level Petri nets

Ammar Boucherit1, Kamel Barkaoui2, and Osman Hasan3

1 Computer Science Department, University of El-Oued, Algeria
ammar-boucherit@univ-eloued.dz

2 SYS: Équipe Systèmes sûrs, Cedric/CNAM, France
kamel.barkaoui@cnam.fr

3 SEECS, National University of Sciences and Technology (NUST), Pakistan
osman.hasan@seecs.nust.edu.pk

Abstract. Petri nets and their numerous extensions (or subclasses) are
one of the popular traditional formalisms for the specification and ver-
ification of concurrent systems. Furthermore, due to the expressivity
of rewriting logic, Maude and its associated analysis tools have been
adopted in many recent works for executing and analyzing Petri nets.
In this paper, we first present the existing semantics for the standard
Petri nets. Then, we demonstrate the usefulness and the expressivity of
the new enhanced semantics —that encodes the sets of tokens in a place
by their cardinality — for such type of Petri nets. Thereafter, we show
that such semantics can naturally express different variants of high-level
Petri nets such as Petri nets with inhibitor arcs, variable arc weights, and
coloured Petri nets. The distinguishing feature of this semantics is that it
facilitates the checking of behavioral properties related to boundedness
and liveness via the Maude LTL model checker.

Keywords: Maude · Petri nets · Rewriting logic.

1 Introduction

Petri nets were first introduced in 1962 [23], and are still one of the most effective,
useful and reliable formalisms in practice for modeling, and analyzing discrete
and dynamic systems [12]. The success of Petri nets is mainly due to some of
their distinguishing features, such as the graphical notation, simple semantics,
and the rich mathematical theory [24]. However, the analysis and simulation of
complex systems modeled by Petri nets require user-friendly formal tools [11, 9,
30].
Maude [7] is an executable programming language that has been adopted in
many recent works for specifying, executing and analyzing Petri nets [3, 25, 14,
16], thanks to the expressivity of rewriting logic [20] and its associated analysis

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

156 Boucherit et al.

tools. In particular, its support for module hierarchies, meta-level programming
and parameterization allows designers to conceptually decompose the specifi-
cation into parts (modules) [6, 27, 10]. This results practically in modularity,
reusability, reduction of the development effort and time, as well as facilitating
specification and verification of large and complex Petri net-based models.
In this context, there exists a rewriting logic-based semantics for Petri nets [20,
28] that uses the names of places to represent tokens and it has always been
accepted as a simple way for representing token instances. However, this repre-
sentation causes a difficulty in manipulating arcs multiplicities and the number
of tokens within places. Moreover, this also gives the impression as if the marking
change of a Petri net is a change made on tokens rather than a change of states
of places. Moreover, the existing semantics makes the representation of priority
or testing boundedness of a Petri net quite difficult even with some additional
equations and major modifications. Therefore, having a counter may facilitate
the manipulation of arcs multiplicities and avoid having to continuously count
the number of tokens in a place.
In this paper, we propose an enhanced semantics based on a simple, intuitive and
structured notation for Petri nets in rewriting logic. While tokens are repeated
and not counted in the existing semantics, the number of tokens in a place is
recorded in the proposed semantics. This leads to the easiness of specification of
Petri net models unambiguously. It also accommodates inhibitor arcs, variable
arc weights, and thereafter facilitates — since it uses an intentional and reduced
notation — the simulation and analysis of both basic and high-level Petri nets
by using Maude formal analysis tools.
The rest of the paper is organized as follows: Section 2 presents some necessary
concept about Petri nets and rewriting logics. In Section 3, the existing rewrit-
ing logic semantics for Petri nets is described. Section 4 presents our proposed
semantics, followed by some experimental results in Section 5 to show the rele-
vance of the proposed enhancements. Finally, Section 6 concludes the paper with
some perspectives for future work.

2 Preliminaries

2.1 Petri Nets

In this section, we briefly recall basic notions about Petri nets: both structural
and dynamical parts of a Petri nets with the usual associated graphical repre-
sentation and some of their relevant extensions related to our work. For this
purpose, consider the following definition.

Definition 1 A Petri net is defined as a 5-tuple N = (P, T, Pre, Post,M0) where:

– P : a finite set of places with |P | = n,
– T : a finite set of transitions with |T | = m and P ∩ T = ∅,
– Pre: P × T −→ N, is the Pre incidence function
– Post: T × P −→ N, is the Post incidence function

An Enhanced Rewriting Logic Based Semantics for High-Level Petri nets 157

– M0: P → N, function mapping a number of tokens to each p ∈ P (so-called
initial marking)

The structural aspect of a Petri net (see, Figure 1(a)) is extremely simple and
it basically consists of a set of places, transitions and directed arcs that connect
places with transitions. The places (depicted by circles) represent system states
or conditions and may hold a non-negative integer number of tokens, which
are represented by black dots. The transitions (depicted by bars) represent the
system state changes or events that may occur. The directed arcs (signified by
arrows) define pre-conditions and/or post-conditions for each transition in terms
of places.
The set of places linked to a transition t with arcs starting from places are called
input places (or preset) is noted by •t = {p|Pre(p, t) > 0}, and the set of places
linked to a transition t with arcs starting from the transition are called output
places (or postset) is noted by t• = {p|Post(t, p) > 0}. A transition that does not
have any input place is called a source transition and a transition that does not
have any output place is called a sink transition. An arc may have a given integer
value that defines its weight, i.e., the number of tokens that will be consumed
or produced following this arc.
Note that MPre (resp, MPost) is an n × m matrix that is commonly called
the pre (resp, post) incidence matrix, where MPre[i, j] = Pre(pi, tj) (resp,
MPost[i, j] = Post(tj , pi)). In addition, Pre(•, tj) and Post(tj ,•) denote all
input and output arcs of a transition tj with their weights, i.e., the j-th columns
of the MPre and MPost matrices, respectively.
A function Mf : P × T −→ N is called a marking function that assigns to each
place of the Petri net a non-negative integer number of tokens. With the implicit
ordering (p1, p2, ..., pn) on the set of places P , a marking M — that describes
the Petri net state — can be represented as a column vector M where M [i] (i’th
row) contains Mf (pi). Therefore, the dynamical aspect of a Petri net, starting
from an arbitrary initial marking, is defined by the evolution of its marking,
i.e., the sequence of markings generated by the set of the fired transitions. A
transition t may be fired at a marking M if : M [i] ≥ Pre(pi, t) {∀ pi ∈ •t}
Thereafter, firing of a transition t at marking M removes a number of tokens
equals Pre(pi, t) from each of its input places and puts another number of tokens
equals Post(t, pi) to each place of its output places. In other words, whenever a
Petri net is marked with M , its new marking M ′ after firing a transition t, is
defined as follows:

M ′ = M − Pre(•, t) + Post(t,•)

A Petri net is said to be “k-bounded” if the number of tokens in all of its places
does not exceed a finite number k for any marking reachable from M0. A Petri
net is called safe if k = 1, i.e., for all reachable markings, no place of the Petri
net has more than one token.
Petri nets have been extended by many researchers. Some of the relevant exten-
sions related to our work are described below:

158 Boucherit et al.

– One of the most widely used extensions is the introduction of inhibitor arcs
[1]. Such arc is denoted graphically by an arc with a small circle attached
to a transition (see, Figure 1(b)). The inhibitor arc reverses the logic of the
enabling and firing rules, i.e., a transition will only be enabled if the input
place contains less tokens than the weight of the inhibitor arc. In addition,
tokens in the input place of inhibitor arcs are not consumed after firing.
This extension notably increases the expressiveness by allowing a ‘test to
zero’ and thus makes Petri nets as powerful as counter automata and Turing
machines [18].

– The second extension, i.e., a Petri net with variable (dynamic) arc weights is
proposed as a powerful modeling, analysis and simulation tool for complex
dynamical systems [4]. In these Petri nets, the weight of an arc is a variable
(dynamic) that is specified by the actual number of tokens in a place and
thus depends on the current marking.

– The third extension is called coloured Petri nets (CPN) [15], which preserve
the useful properties of standard Petri nets and enrich them with complex
data structures (see, Figure 1(c)). The main characteristic that makes CPN
models more compact and practical lies in the token definition. In the simple
case, tokens have a simple data value (called token color) attached to them.
Usually places contain tokens of one type that is called color set of the place.

Fig. 1. Example of Petri nets

2.2 Rewriting Logic and Maude

Rewriting logic [19, 20] defines a simple, expressive and efficient logic for rea-
soning about concurrency and specifying concurrent systems. In fact, rewriting
logic extends equational algebraic specifications with rewrite rules to deal with
changes in concurrent systems [21]. However, Maude [7] is the executable spec-
ification language based on rewriting logic that we have used to implement our
current prototypes. A concurrent system is specified by means of a rewrite the-
ory as R = (Σ, E, L, R). Its static structure is described by the equational

An Enhanced Rewriting Logic Based Semantics for High-Level Petri nets 159

theory (Σ, E), whereas its dynamic behavior is described by the set of labelled
conditional rewrite rules (L, R). As rewriting-based logic, systems evolution is
emulated by matching and replacing parts of the system state according to the
rewrite rules. Specifically, rewriting logic has proven to be a well-suited unifying
framework for Petri nets [28] and a wide range of other concurrency models.
Practically, a Maude specification consists principally of two types of modules:

– Functional modules (enclosed within fmod ... endfm) are used to de-
scribe the static aspect of the system. Such modules are based on member-
ship equational logic to define data types (sorts and subsorts), operations
on them (by means of equational theories) and constructor operators (that
can have some equational attributes such as commutativity or associativity).
The equational rewriting serves as a replacement of equals by equals from
left to right, until the equivalent value is fully evaluated.

– System modules (enclosed within mod ...endm) are very general rewrite
theories (mod ...endm) that may have equations (or import functional mod-
ules) in addition to rewrite rules, which can be conditional in order to define
the dynamic part of the studied system.

Maude rewrite system offers a large number of powerful tools such as: an explicit-
state LTL model checker, reachability tool and an inductive theorem prover to
facilitate formally verifying systems.

3 Existing Rewriting Logic Semantics for Petri nets

The existing semantics for Petri nets is based on a number of previous works
such as [29, 2, 17, 22]. The rewriting logic semantics for standard Petri nets was
proposed in [20] and was then generalized for a wide range of Petri nets in [28].
To briefly illustrate this semantics, we consider the Petri net, given in Figure
1(a), describing the behaviour of the classic vending machine [5] that is used to
buy cakes (place C in the Petri net) and apples (place A); a cake costs 1 dollar
(place $) and an apple 3 quarters (place q). For simplicity, we assume that this
machine only accepts dollars and it permits changing four quarters into a dollar.

3.1 Structural Aspects

The basic sorts needed to describe a Petri net are: place and marking . A
marking on a Petri net is viewed as a multiset4 over its set of places, representing
(a snap-shot of) a Petri net state and denoting the available tokens (resources) in
each place. These elements are defined as sorts with a subsort relation as follows:

sorts Place Marking . subsort Place < Marking .

4 Mathematically, a multiset (or bag, or mset) is a set-like, unordered collection of
elements in which elements are allowed to be repeated.

160 Boucherit et al.

Then, the Petri net place’s names are declared as operators as follows:

ops C A $ q :-> Place .

Thereafter, the current state (marking) of a Petri net can be defined with a finite
multiset union operator as follows:

op null : -> Marking .

op : Marking Marking -> Marking [assoc comm id: null] .

According to this declaration, we can see that a marking (or partial marking)
can be represented by an element of the finite multiset sort Marking and the
union of two markings is a new marking. The empty marking is represented by
the constant null. In addition, the attribute "assoc" (resp. "comm") is used to
declare that the operator is associative (resp. commutative). Finally, the initial
marking may also be declared as an operator and then defined by an equation:

op initial :-> Marking . eq initial = $ $ $ q q q .

In such a declaration, only the names of the places that hold tokens appear in
the initial state with an occurrence equal to the number of tokens they contain.

3.2 Behavioral Aspects

The evolution of a Petri net is related to the transitions firing. For that, the
specification of a transition consists of two multisets (termsets), where the first
multiset (marking representing the transition pre-set) may be replaced with
the second one (marking representing the transition post-set). Therefore, each
transition t is described by a labelled rewrite rule with the following syntax:

rl [〈Transition-Label〉] : 〈Termset-1〉 => 〈Termset-2〉 .

In such a rule, the Termset-1 (resp. Termset-2) contains only the set of input
(resp. output) places of the corresponding transition t, where a place name is
repeated in the left-hand or right-hand side of the rule, as many times as the
weight of the arc linking the place to the transition t.

In that case, a transition specified by a rewrite rule can take place if its left-
hand side (Termset-1) matches. Then, the sub-marking is transformed into the
right-hand side (Termset-2) of such rule. The process of rewriting will start with
a rewrite rule that matches its left-hand side in the initial marking, and stop if
no rule matches anymore.

In addition, a sink (resp. source) transition is a special case and its corre-
sponding rewrite rule remains the same and a variable (M, for example) of sort
Marking is added to the Termset-2 (resp. Termset-1) and also, used to completely
replace the Termset-1 (resp. Termset-2) since it has not a pre-set (resp. post-set).

Finally, by following the pre-described steps, we give the complete specifica-
tion of the Petri net, presented in Figure 1 (a), as follows:

fmod PETRI-NET-SIGNATURE is mod VENDING-MACHINE is

An Enhanced Rewriting Logic Based Semantics for High-Level Petri nets 161

sorts Place Marking . protecting PETRI-NET-SIGNATURE .

subsorts Place < Marking . var M : Marking .

op null : -> Marking .

ops C A $ q : -> Place . rl [add-$] : M => M $.

op __ : Marking Marking -> Marking rl [add-q] : M => M q .

[assoc comm id: null] . rl [buy-C] : $ => C .

op initial : -> Marking . rl [buy-A] : $ => A q .

eq initial = $ $ $ q q q . rl [change] : q q q q => $.

endfm endm

As we can see, in this specification, the static part (the signature) of the machine
is given in a functional module PETRI-NET-SIGNATURE. This module has been
imported in the system module VENDING-MACHINE, in which we add one rule for
each transition to complete describing the dynamic part of the vending machine.
Notice that the two rules "[add-$]" and "[add-q]" are used to describe the
source transitions in the Petri net, and because of that, the rewriting in the
module VENDING-MACHINE does not terminate.

4 Proposed Petri net Semantics Based on Rewriting Logic

In the semantics we propose here, our focus is on how to overcome the above-
mentioned drawbacks in order to make the specification of Petri nets more nat-
ural. It has been found that, according to [26], there are various mathematical
presentations of multisets. The one used in the existing semantics is “sequential”,
which represents a multiset as a sequence in which the multiplicity of an element
equals the number of times the element occurs in the sequence. By contrast, we
propose to use an alternative coherent style for presenting the multiset of the
marking of a Petri net. More precisely, a multiset M can also be viewed as a set
of tuples (p,x), where p is the sequence identifier (element) and x is a function
from the set P (set on which M is defined) to the set of non-negative integers,
sending to each element p its multiplicity. For illustrating this further, we will
use the Petri net given in Figure 1(a) in the subsequent sections.

4.1 Structural Aspects

Starting from the fact that places and tokens are two passive and distinguishable
components in a Petri net and, therefore, each new proposed semantics for Petri
nets has to clearly define and distinguish between these two primitive concepts.
Thus, we propose to represent a token k that resides in place p as a tuple (p, x)
(may also be called pair)5 where p is a place identifier (label) belongs to P (set
of places) and x is a variable ranging over non-negative integers that represents
the number of occurrences of token k in place p.
Of course, the use of tuple-based notation may seem to be no more than a simple
modification of the original representation. However, we argue that the use of

5 A pair can only have two values — neither less nor more —. However, a tuple, has
almost no semantic limitation on the number of values.

162 Boucherit et al.

a counting-based notation is very beneficial. Intuitively, this notation facilitates
the counting of tokens, drops the ambiguity between places and tokens and
considerably enhances the description of long Petri net marking (very compact).
In addition, this notation will help developers to naturally specify high level
Petri nets.
Practically, a tuple is defined by enclosing two items in angle brackets, separated
by a comma <_,_>. The first item is used to define a place by its name (sort :
PlaceName) followed by the number of tokens6 it holds (sort : Int)7.
On the other hand, the marking8 is consequently defined as a set of tuples.
Mathematically, the elements of a set have no order among them; hence, tuples
in a marking do not have any particular order. Thus, the basic sort Marking

is used to define the marking of a Petri net. In addition, the operator "__" is
also used to allow combining (union) two or more tuples and then produce a
new set of tuples. The result may be a subset of tuples related to one transition
(pre-set and post-set) or the whole set of tuples describing the global state of
the Petri net (marking). The empty marking is represented by the constant
"null". Moreover, the attribute "assoc" (resp. "comm") is used to declare that
the operator is associative (resp. commutative). Therefore, the corresponding
new signature is given as follows:

sorts PlaceName Place Marking .

subsort Place < Marking .

ops C A $ q :-> Placename .

op < , > : PlaceName Int -> Place [ctor] .

op null : -> Marking .

op : Marking Marking -> Marking [assoc comm id: null].

op initial :-> Marking .

eq initial = < $,3 > < q,3 > < C,0 > < A,0 > .

The first advantage of the proposed specification is that the test for the number
of tokens in a place as well as the specification of inhibitor arcs is now possible.
Moreover, the declaration of the initial marking in our proposal describes the
overall Petri net, including all its places, and is not limited to the places holding
tokens. Therefore, this declaration gives a clear snap-shot of the initial marking
of the system and one can thereby know all the names of the Petri net places
along with the tokens they hold.

4.2 Behavioral Aspects

Theoretically, the global state of a Petri net is generally represented by a mark-
ing M . Thereafter, when firing a transition t, the change in such a state of the

6 For the sake of simplicity and since tokens are indistinguishable in basic Petri nets,
we were only interested in their number in a place.

7 We use the sort Int since the subtraction is not defined with sort NAT.
8 It is noticed that the Petri net marking in the proposed semantics has the commuta-

tive monoidal structure since the set of tuples (p,x) is equipped with an associative
binary operation () and an identity element.

An Enhanced Rewriting Logic Based Semantics for High-Level Petri nets 163

Petri net occurs at the level of the set of input and output places by removing
tokens from the former and adding tokens to the latter. Such evolution can be
naturally specified in the rewriting logic by rewrite rules. In general, these rules
are conditional and a rewrite rule has to be defined for each transition as follows:

crl [〈Transition-Label〉] : 〈LHS〉 => 〈RHS〉 if Cond .

During execution, Maude uses the whole set of tuples given in initial marking
and whenever a subset (sub-marking) matches the LHS then that part can be
replaced by RHS if the enabling condition9 is verified. In fact, the LHS (resp. RHS)
describes the state of both the input and output places before (resp. after) firing
the transition t, and are defined as follows:

LHS, RHS = set of tuples(p, x), where p ∈ {•t ∪ t•}

In addition and according to the number of input places, a condition — defined
by the expression Cond — can be either a single equation or a conjunction of
equations using an associative binary conjunction connective such as: /\ or "and".
Consequently, a rewrite rule could be somewhat larger, yet it is considerably
more clear — in terms of presentation— than the one in the existing semantics.
We now present the complete specification of the previous Petri net according
to the proposed specification.

fmod NEW-PETRI-NET-SIGNATURE-1 is

protecting INT .

sorts PlaceName Place Marking .

subsort Place < Marking .

ops C A $ q : -> PlaceName .

op <_,_> : PlaceName Int -> Place [ctor] .

op __ : Marking Marking -> Marking [ctor assoc comm id: null] .

ops null initial : -> Marking .

eq initial = < $,3 > < q,3 > < C,0 > < A,0 > .

endfm

mod NEW-VENDING-MACHINE-1 is

inc NEW-PETRI-NET-SIGNATURE-1 .

vars x y z : Int .

rl [add-$] : < $,x > => < $,x + 1 > .

rl [add-q] : < q,x > => < q,x + 1 > .

crl [buy-c] : < $,x > < C,y > => < $,x - 1 > < C,y + 1 > if (x > 0) .

crl [buy-a] : < $,x > < A,y > < q,z > => < $,x - 1 > < A,y + 1 > < q,z + 1 >

if (x > 0) .

crl [change] : < $,x > < q,z > => < $,x + 1 > < q,z - 4 > if (z >= 4) .

endm

9 The condition is not needed in the case of a source transition since it is uncondition-
ally enabled and therefore, the corresponding rewrite rule will be unconditional.

164 Boucherit et al.

5 Comparison with the Existing Semantics

In this section, we present the effectiveness of the proposed rewriting logic-based
semantics for Petri nets. For that, some experimental comparison results have
been presented in order to assess the advantages and evaluate of the performance
of the proposed specification compared to the existing ones.

5.1 Compact Representation of Petri nets Marking

As the proposed semantics use tuples to describe a marking, there is a clear dif-
ference between a place and its tokens. Therefore, a marking will be very clear
and the number of tokens in each place is shown without the need to manually
count them. To show that, let’s explore the behavior of our machine from the
given initial marking. For that, we use the command "rewrite"10 (abbreviated
"rew"). For instance, consider the same command "rew [5]" (resp. "rew [100]")
to see and compare the presentation of the resulted marking — for both existing
and enhanced semantics — after 5 (resp. 100) times of rule applications from
the initial marking, which has 3 dollars and 3 quarters.

Existing Semantics Enhanced Semantics
Maude> rewrite [5] in VENDING-MACHINE : initial . Maude> rewrite [5] in NEW-VENDING-MACHINE-1 :
rewrites: 6 in 541371105387ms cpu (0ms real) initial .
(0 rewrites/second) rewrites: 23 in 541371105385ms
result Marking: $ $ $ $ $ $ q q q cpu (0ms real) (0 rewrites/second)

result Marking: < q,3 > < $,0 > < C,2 > < A,2 >

Maude> rewrite [100] in VENDING-MACHINE : initial .Maude> rewrite [100] in NEW-VENDING-MACHINE-1 :
rewrites: 101 in 541371105435ms cpu (0ms real) initial .
(0 rewrites/second) rewrites: 481 in 541371105397ms cpu (0ms real)
result Marking: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ (0 rewrites/second)
$ result Marking: < q,2 > < $,0 > < C,18 > < A,2 >
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ q

As we can see, the execution results of the command "rewrite" in the exist-
ing semantics may become impractical and non-understandable, especially in
the case of a marking with a considerable number of tokens.

5.2 Describing Inhibitor Arcs

In order to examine the ability of describing inhibitor arcs, we consider the sec-
ond machine, presented in Figure 1(b), in which we imply users to not insert
more than 4 dollars (resp. 4 quarters) in the coins box before buying something
(resp. making change). However, the returned quarters after buying an apple are
added without control.
In addition, we have added two places (S1 and S2) to describe the vending ma-
chine capacity in delivering items (cake and apple). The capacity of the vending
machine is assumed to be 50 items for both cakes and apples. This capacity is
declared in the initial state and after delivering all items, the machine has to be
refilled (this process is not considered here).

10 It is necessary to determine the upper bound allowed for the number of rule appli-
cations when using such commands. Otherwise, infinity is assumed.

An Enhanced Rewriting Logic Based Semantics for High-Level Petri nets 165

The Existing Semantics
In the existing semantics, the number of tokens in a place cannot be naturally

obtained and, in order to get it, one can use an additional operator (enclosing
the entire marking) such as the usual system-grabbing operator as follows:

op { } : Marking -> PN .

Thereafter, one could similarly define a second operator as follows:

op number : PN Place -> Int .

that is simply defined as:

eq number({M M’},M) = 1 + number({M’},M) .

eq number({M’},M) = 0 [owise] .

With this new operator, one could describe transitions with inhibitor arcs. For
instance, the rules add-$ and add-q could now be written as follows:

crl [add-$] : {M} => {M $} if number({M},$) < 4 .

crl [add-q] : {M} => {M q} if number({M},$) < 4 /\ number({M},q) < 4 .

The Proposed Semantics
The specification of Petri nets with inhibitor arcs is made naturally due to the

proposed representation of places. Therefore, the specification of the machine
presented in Figure 1(b) is given as follows:

fmod NEW-PETRI-NET-SIGNATURE-2 is

protecting INT .

sorts PlaceName Place Marking . subsort Place < Marking .

ops C A $ q S1 S2 : -> PlaceName .

op <_,_> : PlaceName Int -> Place [ctor] .

op __ : Marking Marking -> Marking [ctor assoc comm id: null] .

ops null initial : -> Marking .

eq initial = <$,3> <q,3> <C,0> <A,0> <S1,50> <S2,50> .

endfm

mod NEW-VENDING-MACHINE-2 is

inc NEW-PETRI-NET-SIGNATURE-2 .

vars x y z t : Int .

crl [add-$] : < $,x > => < $,x + 1 > if (x < 4) .

crl [add-q] : < $,x > < q,z > => < $,x > < q,z + 1 > if (z < 4) and (x < 4) .

crl [buy-c] : < $,x > < C,y > < S1,z > => < $,x - 1 > < C,y + 1 > < S1,z - 1 >

if (x >= 1) and (z >= 1) .

crl [buy-a] : < $,x > < A,y > < q,z > < S2,t > => < $,x - 1 > < A,y + 1 >

< q,z + 1 > < S2,t - 1 > if (x >= 1) and (t >= 1) .

crl [change] : < $,x > < q,z > => < $,x + 1 > < q,z - 4 > if (z >= 4) .

endm

In this specification, the transitions add-$ and add-q have been described with
conditional rewrite rules with the necessary test for the number limit.

166 Boucherit et al.

5.3 K-Bounded testing

The boundedness testing is possible since our system is terminating. In addition,

we already know that the place $ is bounded with 17 because the studied system

has a limited number (50) for both cakes and apples. Therefore, we would like to

demonstrate the ability to check the correctness of such characteristic. To do so,

one can use the reachability tool or Maude LTL model checker11 to look for the

existence of a marking where the place $ holds 18 tokens by using the following

command.

Maude> search in NEW-VENDING-MACHINE-2 : initial =>* M < $,18 > .

No solution.

states: 714867 rewrites: 15490529 in 4281906278ms cpu (105312ms real)

(3 rewrites/second)

In this result, we can see that the Maude reachability tool did not find a solu-
tion, which means that the place $ will not have 18 tokens during the system
evolution12. So, such place may be bounded and in order to confirm that, we
have to check if there are some markings where the number of tokens in such
place is equal to 17.

Maude> search in NEW-VENDING-MACHINE-2 : initial =>! M < $,17 > .

Solution 1 (state 714857)

states: 714864 rewrites: 15490426 in 4281906278ms cpu (109750ms real)

(3 rewrites/second)

M --> < q,1 > < C,50 > < A,50 > < S1,0 > < S2,0 >

Solution 2 (state 714863)

states: 714866 rewrites: 15490496 in 4281906278ms cpu (109750ms real)

(3 rewrites/second)

M --> < q,2 > < C,50 > < A,50 > < S1,0 > < S2,0 >

Solution 3 (state 714866)

states: 714867 rewrites: 15490529 in 4281906278ms cpu (109750ms real)

(3 rewrites/second)

M --> < q,0 > < C,50 > < A,50 > < S1,0 > < S2,0 >

No more solutions.

states: 714867 rewrites: 15490529 in 4281906278ms cpu (109750ms real)

(3 rewrites/second)

11 Maude LTL model checker cannot be used for the existing semantics without the

additional operator given in Section 5.2. In addition, it would be unsuitable to use

the reachability tool with the existing semantic since the number of tokens have to

be repeated as many as number of tokens to be searched.
12 In this case, we have used the parameter " =>! " for search command in order to

minimize (reduce) the set of solutions to the canonical final states, i.e., states that

cannot be further rewritten. Otherwise, parameter " =>* " can be used (see [5] for

more details).

An Enhanced Rewriting Logic Based Semantics for High-Level Petri nets 167

As we can see, the place $ contains — and never holds more than — 17 tokens,

and thus it is bounded with 17.

On the other hand, the LTL model-checker can also be used to check the previ-

ous property by defining the following modules:

mod VENDING-MACHINE-2-PREDS is

protecting NEW-VENDING-MACHINE-2 .

including SATISFACTION .

subsort Marking < State .

op Bound(_,_) : PlaceName Int -> Prop .

var M : Marking . var P : PlaceName . vars x y : Int .

************** PLACE BOUNDEDNESS PROPERTY ***************

ceq < P,x > M |= Bound(P,y) = true if x <= y .

endm

mod VENDING-MACHINE-2-CHECK is

inc VENDING-MACHINE-2-PREDS .

inc MODEL-CHECKER .

inc LTL-SIMPLIFIER .

op Place-Bounded(_,_) : PlaceName Int -> Prop .

op PN-Bounded(_,_) : PlaceName Int -> Prop .

var P : PlaceName .

var x : Int .

eq Place-Bounded(P,x) = [](Bound(P,x)) .

endm

In the following, we give the boundedness verification results of places $ and q.

Maude> reduce in VENDING-MACHINE-2-CHECK : modelCheck(initial, Bounded($,17)) .

rewrites: 16920270 in 48121469397ms cpu (99937ms real) (~ rewrites/second)

result Bool: true

5.4 Petri nets With Variable Arc Weights

To better understand the notion of Petri nets with “variable arc weights”, we
consider the example, given in Figure 2(a), that is inspired by [4].

In this example, the transitions T1 and T2 are used to control and maintain

the marking of the place P1 at a desired level. In this example, the marking shall

not be less than 3. Therefore, the transition T1 will be fired when the marking

of the place P1 is greater than the desired level and a token is added to the

place P2. Thereafter, T2 will be enabled and then fired to remove the excess of

tokens from the place P1 through the weight (M(P1)−3) of the arc (P1, T2). The

168 Boucherit et al.

Fig. 2. Examples of Petri nets extensions

following code represents the initial marking and the rewrite rules describing the

transitions T1 and T2 according to the proposed semantics as given in Section 4.

eq initial = <P1,5> <P2,0> <P3,0> .

crl [T1] : < P1,x > < P2,0 > => < P1,x > < P2,1 > if (x >= 4) .

crl [T2] : < P1,x > < P2,1 > < P3,y > => < P1,3 > < P2,0 > < P3,y + x - 3 >

if (x > 3) .

We should note that it is not possible to describe a Petri net with variable
arc weights (i.e., produce or remove a variable number of tokens) in the existing
semantics neither naturally nor with the additional operator, given in Section 5.2.
Thus, for this purpose, one has to explore other alternatives (strategies, loops
...etc).

5.5 Coloured Petri nets

To show the extensibility of the proposed semantics for describing colored Petri

nets, we consider the model shown in Figure 2(b). The given coloured Petri net

has four places P1, P2, P3 and P4 and four colors of tokens that are: Color1

(A), Color2 (B), Color3 (C) and Color4 (D).

Of course, the specification of coloured petri nets is also based on tuples as seen

in basic Petri nets, possibly defined with two generic parameters (sorts). The

first parameter specifies the name of the place and the second determines the

set of colors within this place. Such a specification is given as follows:

op < , > : PlaceName ColorSet -> Place .

For that, the set of color within a place need the following declaration:

sorts ColorId Color ColorSet .

subsort Color<ColorSet .

An Enhanced Rewriting Logic Based Semantics for High-Level Petri nets 169

op { } : ColorId Int -> Color .

op , : ColorSet ColorSet -> ColorSet .

Thereafter, the list of places and color names of the studied coloured Petri nets

must be given. In our example, such declaration is:

ops P1 P2 P3 P4 : -> PlaceName .

ops A B C D : -> ColorId .

The complete specification of the structural aspects of our coloured Petri nets is

given as follows:

fmod GENERIC-CPN-SIGNATURE is

protecting INT .

sorts ColorId Color ColorSet PlaceName Place Marking .

subsort Color < ColorSet .

subsort Place < Marking .

ops A B C D : -> ColorId .

ops P1 P2 P3 P4 : -> PlaceName .

op _{_} : ColorId Int -> Color .

op _ _ : ColorSet ColorSet -> ColorSet [comm] .

op <_,_> : PlaceName ColorSet -> Place .

ops null initial : -> Marking .

op _ _ : Marking Marking -> Marking [ctor assoc comm id: null] .

eq initial = < P1,A{2} B{1} > < P2,A{1} C{1} > < P3,B{0} D{0} > < P4,

A{0} B{0} > .

endfm

However, such generic specification for a coloured Petri net may be inconvenient

since it does not preclude the user from constructing erroneous tuples (composed

of place’s name and colors) that do not belong to the coloured Petri net in study.

Therefore, we propose a seconde well-formed signature for a coloured Petri net

in which the places of the Petri net have to be decomposed into sets which

share the same set of token colors. For instance, the given CPN has three color

sets so that, P1 and P4 belong to the same color set ("PlaceNameset1"), P2

belongs to the color set ("PlaceNameset2") and P3 belongs to the color set

("PlaceNameset3").

Subsequently, we define each type of place (according to the colors of its tokens)

in a separate operator in order to obtain an unambiguous presentation. The

corresponding new signature is given as follows:

fmod CPN-SIGNATURE is

protecting INT .

170 Boucherit et al.

sorts PlaceNameset1 PlaceNameset2 PlaceNameset3 .

sorts Place Marking .

subsort Place < Marking .

ops P1 P4 : -> PlaceNameset1 .

op P2 : -> PlaceNameset2 .

op P3 : -> PlaceNameset3 .

op <_,A(_) B(_)> : PlaceNameset1 Int Int -> Place .

op <_,A(_) C(_)> : PlaceNameset2 Int Int -> Place .

op <_,B(_) D(_)> : PlaceNameset3 Int Int -> Place .

ops null initial : -> Marking .

op _ _ : Marking Marking -> Marking [ctor assoc comm id: null] .

eq initial = < P1,A(2) B(1) > < P2,A(1) C(1) > < P3,B(0) D(0) > < P4,

A(0) B(0) > .

endfm

According to that, the behavioral aspects can be given as follows:

mod CPN is

inc CPN-SIGNATURE .

vars x1 x2 x3 y1 y2 y3 z t : Int .

crl [T] : < P1,A(x1) B(y1) > < P2,A(x2) C(z) > < P3,B(y2) D(t) > < P4,A(x3)

B(y3) > => < P1,A(x1 - 1) B(y1 - 1) > < P2,A(x2 - 1) C(z - 1) >

< P3,B(y2 + 2) D(t + 1) > < P4,A(x3 + 1) B(y3 + 1) > if ((x1 >= 1)

and (y1 >= 1) and (x2 >= 1) and (z >= 1)) .

endm

Let us now use the command rewrite to explore the behavior of this CPN.

The result of execution of this specification is given as follows:

rewrite [1] in COLOURED-PN : initial .

rewrites: 17 in 541555185225ms cpu (0ms real) (0 rewrites/second)

result Marking: < P1,A(1) B(0) > < P4,A(1) B(1) > < P2,A(0) C(0) > < P3,B(2)

D(1) >

6 Conclusion

In this paper, a new enhanced semantics, based on a highly structured notation
for Petri nets in rewriting logic, is introduced and compared to the existing one.
The main advantage of both semantics is that the basic paradigm of Petri net
computations (true concurrency involving several non-conflicting transitions) is
preserved. However, the proposed semantics is structurally and behaviourally
straightforward and clear, i.e., while tokens are repeated (and not counted) in

An Enhanced Rewriting Logic Based Semantics for High-Level Petri nets 171

the existing flat notation, the number of tokens in a place is counted in the
enhanced semantics. In addition, the new semantics facilitates the simulation
and analysis of both basic and high-level Petri nets and deals unambiguously
with variable arc weights, inhibitor arcs, and boundedness testing.
For the future, we intend to exploit the benefits of the proposed semantics for
the verification of models described in terms of extended high-level Petri nets as
parametric and recursive Petri nets [16, 8, 13]. We also aim to incorporate the
new semantics into existing Petri net tools as plug-ins to offer an automated
way for the conversion of high-level Petri nets to rewriting logic and therefore
facilitating their analysis.

Acknowledgement

Foremost, we would like to express our sincere gratitude to Prof. Peter Csaba
Ölveczky who provided insights and expertise that greatly helped this research.
His criticisms were quite constructive and helped to get this work in the cur-
rent form. Then, this work would not have been possible without the financial
support (PhD scholarship) No:034/PNE/ENS/Spain/13-14 received through the
Algerian ministry of higher education and scientific research.
Finally, we greatly appreciate the support received through the collaborative
work undertaken with Laura M Castro at the MADS (Models and Applications
of Distributed Systems) research group, A Coruña University, Spain.

References

1. Tilak Agerwala. Complete model for representing the coordination of asynchronous

processes. Technical report, Johns Hopkins Univ., Baltimore, Md.(USA), 1974.

2. Andrea Asperti. A logic for concurrency. Technical report, Technical report, Di-

partimento di Informatica, Universit a di Pisa, 1987.

3. Kamel Barkaoui, Hanifa Boucheneb, and Awatef Hicheur. Modelling and analysis

of time-constrained flexible workflows with time recursive ecatnets. In International

Workshop on Web Services and Formal Methods, pages 19–36. Springer, 2008.

4. T Benarbia, K Labadi, A Omari, and JP Barbot. Balancing dynamic bike-sharing

systems: A petri nets with variable arc weights based approach. In Control, De-

cision and Information Technologies (CoDIT), 2013 International Conference on,

pages 112–117. IEEE, 2013.

5. Manuel Clavel, Francisco Durán, Steven Eker, P Lincoln, N Mart́ı-Oliet, José

Meseguer, and Carolyn Talcott. Maude manual (version 2.3), 2007. URL:

http://maude. cs. uiuc. edu/maude2-manual, 2007.

6. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-

Oliet, and José Meseguer. Metalevel computation in Maude. Electronic Notes in

Theoretical Computer Science, 15:331–352, 1998.

172 Boucherit et al.

7. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet,

José Meseguer, and Carolyn Talcott. All about Maude — a high-performance logical

framework: how to specify, program and verify systems in rewriting logic. Springer-

Verlag, 2007.

8. Nicolas David. Discrete Parameters in Petri Nets.(Réseaux de Petri à Paramètres

Discrets). PhD thesis, University of Nantes, France, 2017.

9. Nicholas J Dingle, William J Knottenbelt, and Tamas Suto. Pipe2: a tool for the

performance evaluation of generalised stochastic petri nets. ACM SIGMETRICS

Performance Evaluation Review, 36(4):34–39, 2009.

10. Francisco Durán and José Meseguer. Maude’s module algebra. Science of Computer

Programming, 66(2):125–153, 2007.

11. Gerald C Gannod and Sunil Gupta. An automated tool for analyzing petri nets

using spin. In Automated Software Engineering, 2001.(ASE 2001). Proceedings.

16th Annual International Conference on, pages 404–407. IEEE, 2001.

12. Alessandro Giua and Manuel Silva. Modeling, analysis and control of discrete event

systems: a petri net perspective. IFAC-PapersOnLine, 50(1):1772–1783, 2017.

13. Serge Haddad and Denis Poitrenaud. Recursive petri nets. Acta Informatica,

44(7):463–508, 2007.

14. Xudong He, Reng Zeng, Su Liu, Zhuo Sun, and Kyungmin Bae. A term rewriting

approach to analyze high level petri nets. In Theoretical Aspects of Software En-

gineering (TASE), 2016 10th International Symposium on, pages 109–112. IEEE,

2016.

15. Kurt Jensen. Coloured Petri nets: basic concepts, analysis methods and practical

use, volume 1. Springer Science & Business Media, 2013.

16. Ahmed Kheldoun, Kamel Barkaoui, and Malika Ioualalen. Formal verification of

complex business processes based on high-level petri nets. Information Sciences,

385:39–54, 2017.

17. Narciso Mart́ı-Oliet and José Meseguer. From petri nets to linear logic. In Category

Theory and Computer Science, pages 313–340. Springer, 1989.

18. Diego C Martinez, Maria Laura Cobo, and Guillermo Ricardo Simari. A petri

net model of argumentation dynamics. In International Conference on Scalable

Uncertainty Management, pages 237–250. Springer, 2014.

19. José Meseguer. A logical theory of concurrent objects, volume 25. ACM, 1990.

20. José Meseguer. Conditional rewriting logic as a unified model of concurrency.

Theoretical computer science, 96(1):73–155, 1992.

21. José Meseguer. Membership algebra as a logical framework for equational spec-

ification. In Recent Trends in Algebraic Development Techniques, pages 18–61.

Springer, 1997.

22. José Meseguer and Ugo Montanari. Petri nets are monoids. Information and

computation, 88(2):105–155, 1990.

An Enhanced Rewriting Logic Based Semantics for High-Level Petri nets 173

23. Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Darmstadt Uni-

versity of Technology, Germany, 1962.

24. Wolfgang Reisig. Elements of distributed algorithms: modeling and analysis with

Petri nets. Springer Science & Business Media, 2013.

25. Alexander Schulz. Model checking of reconfigurable Petri nets. arXiv preprint

arXiv:1409.8404, 2014.

26. D Singh, AM Ibrahim, T Yohanna, and JN Singh. An overview of the applications

of multisets. Novi Sad Journal of Mathematics, 37(2):73–92, 2007.

27. Ścibor Sobieski and Bartosz Zieliński. Modularisation in Maude of parametrized

rbac for row level access control. In East European Conference on Advances in

Databases and Information Systems, pages 401–414. Springer, 2011.

28. Mark-Oliver Stehr, José Meseguer, and Peter Csaba Ölveczky. Rewriting logic as a

unifying framework for Petri nets. In Unifying Petri Nets, pages 250–303. Springer,

2001.

29. Glynn Winskel. Categories of models for concurrency. In International Conference

on Concurrency, pages 246–267. Springer, 1984.

30. Dianxiang Xu. A tool for automated test code generation from high-level petri

nets. Applications and Theory of Petri Nets, pages 308–317, 2011.

174 Boucherit et al.

