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Abstract

Persistent homology is a tool from topological
data analysis that can be used to define func-
tions that extract topological features from im-
ages. These derivatives of persistent homology
are invariant under continuous symmetries in
the image space (for example translation or ro-
tation). We provide theoretical argument for
using such functions in conjunction with con-
volutional filters to improve perception algo-
rithms. We discuss using these functions as a
method for adding topological inductive priors
on the convolutional network. We propose a
coupled UNet architecture for learning sematic
segmentation in the presence of topological pri-
ors involving restrictions on the persistent betti
values of the segments. We run experiments on
perception data for autonomous driving and are
able to report qualitative improvements.

1 Introduction

Autonomous driving presents a variety of perception
problems. Traditionally deep learning methods involv-
ing convolutional neural networks have been employed
with great success to address these problems. In spite of
its tremendous success deep learning methods are known
to be extremely brittle. The source of the brittleness is
the dependence of the resulting algorithm on the train-
ing data. As a result the trained models are sensitive to
distributional shifts in the test data. We apply methods
from topology to address this problem in the case of se-
mantic segmentation. The key insight is to use topologi-
cal loss functions during training. Loss functions derived
from persistent homology can be used to put topologi-
cal constraints on the output of the network. Classi-
cal machine learning leverages local geometry, as can be
seen from the Euclidean loss functions. Topological Data
Analysis (TDA) produces invariants of the global geom-
etry of the input. The constraints introduced through
topological loss can be utilized as topological prior as-
sumptions on the model or to reduce distance in topo-
logical feature space to the training images. Persistent

homology has two important properties of invariance un-
der continuous symmetries and Lipschitz stability. The
topological features we consider are therefore very well
suited to the robust vision problem.

1.1 Main contributions

In this paper we address the lack of robustness of current
convolutional neural networks when applied to test data
obtained from a distribution different from the training
data distribution. As a concrete example we consider
the task of semantic segmentation of street scenes in ad-
verse weather conditions with a neural network trained
on images in good weather. We start with a baseline
convolutional network, the UNet ( [Ronneberger et al.,
2015]), and propose a coupled UNet architecture that
allows training with topological priors and losses. We
provide empirical evidence that the topological coupling
improves performance of the baseline UNet on both the
regular driving test data and adverse weather shifted test
data.

1.2 Related Work

Topological signals have been previously used in deep
learning, in particular applied to auto-encoders ( [Wang
et al., 2020]) and generative adversarial networks ( [Moor
et al., 2020]). Topological persistence has also been used
in parallel to deep learning based image classifiers ( [Dey
et al., 2017]). In [Hu et al., 2019], topology preserving
loss function has incorporated into deep neural networks
for image segmentation of medical images.

The novelty of our method is twofold. Firstly, we in-
troduce the coupled architecture which is offers flexibility
in terms of how the new topological features can affect
the learning process of the convolutional network. Sec-
ondly, our method can make use of the topological losses
to introduce both topological priors and posteriors dur-
ing learning. To our knowledge this is the first time
topological features have been applied to perception re-
lated learning tasks in driving scenarios.
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2 Brief Overview of Topological Data
Analysis

In this section we give a brief review of the fundamental
ideas from Topological data analysis, and in particular
the persistent homology algorithm. For references see
( [Carlsson, 2009], [Chazal and Michel, 2017], [Carlsson
and Zomordian, 2005]) Topological data analysis (TDA)
emerged in an attempt to import invariants defined in
classical algebraic topology, e.g. homology, to the dis-
crete world of datasets. Homology is a machine which
when fed a topological space (often modelled as a sim-
plicial complex) measures various topologically invari-
ant properties of the space like connectedness or pres-
ence of higher dimensional loops, in terms of the rank
of the algebraic object it generates. The broad prob-
lem TDA attempts to address is this: it it possible to
recover the topology of the underlying space which the
data has been sampled from? This requires generalizing
the homology algorithm from spaces to datasets. How-
ever naively applying homology to a dataset (which is a
finite metric space) is uninteresting, as the dataset car-
ries no connectivity information. Persistent homology
views the dataset at different scales evolving through
time and models it as a nested topological space, on
which ordinary homology is applied. The resulting ob-
ject, called a persistence diagram, contains topological
information at various scales, the more salient ones are
the ones which persist more. The bottleneck distance be-
tween persistence diagrams makes possible to do analysis
over the space of such diagrams. Real valued loss func-
tion defined on the persistence diagrams allows us to run
optimization over the space of the input data.

2.1 Persistent Homology overview

Persistence diagrams

Persistent homology (PH) is an algorithm to encode the
evolution of homology groups of nested topological space
across the scales. The nested topological space is mod-
elled as a filtered simplicial complex. The PH algorithm
extends the algorithm for computing ordinary simpli-
cial homology of a simplicial complex to that of a fil-
tered simplicial complex. The homology in dimension k
of a simplicial complex X is an abelian group Hk(X).
The rank of Hk(X) is also known as the k-th Betti
number βk and represents the number of k-dimensional
holes in X. The PH in dimension k of a filtered sim-
plicial complex X = {φ = X0 ⊂ X1 ⊂ ... ⊂ Xi ⊂}
is a sequential diagram of abelian groups PHk(X) =
Hk(X0) → Hk(X1) → . . . Hk(Xn) → . . .. The persis-
tence diagram PDk is a way to encode the birth and
death of every homology cycle that appears in the dia-
gram. The longer a homology cycle survives the more
persistent it is. The full information can be represented
as a multi-set of pairs (b, d) where b and b are the birth
and death filtration indices of a homology class. We de-
note PDk(X) = {(bi, di)}i∈Ik . We order the indexing of
points by decreasing lifetimes i.e. i < j if di−bi ≥ dj−bj .
Let’s denote the space of persistence diagrams by PD.

Let PDk be the subspace of k-dimensional persistence
diagrams. The space PDk has a a metric defined by the
bottleneck distance. For D1, D2 ∈ PDk,

B(D1, D2) = inf
m

max
(p,q)∈m

‖p− q‖∞ (1)

where m is the set of all possible pairwise matchings of
the points in D1 and D2

Figure 1: A Persistence Diagram representation ob-
tained by plotting homology cycles by their birth-death
values on the co-ordinate plane. The lifetime of a cycle
is given by the vertical distance from the diagonal.

Functions on the space of persistence diagrams
The space of persistence diagrams is however not
amenable to statistical analysis or even calculus, as they
don’t even form a vector space. There has been some al-
ternative formulations of persistence diagrams, like per-
sistence landscapes ([Bubenik, 2015]), to introduce ad-
ditive structures on them. In order to get around this
problem, we make use of a real-valued cost function on
the space of persistence diagrams ([Gabrielsson et al.,
2020]) E(p, q, i0; dim) : PDdim → R

E(p, q, i0; dim)(D) =
∑

(bi,di)∈D

|di − bi|p
(
di + bi

2

)q
(2)

The parameter p and q define a polynomial function on
the points (bi, di) of a diagram D in PDdim. The output
is the sum of lifetimes of all points in the diagram D after
skipping the first i0 points. The map E(p, q, i0, dim) is
continuous given the topology induced by the bottleneck
distance on PDdim.

In this paper we also consider the following special
cases of the functional E ,

S(dim) := E(1, 0, 0; dim) (3)

PS(dim, skip) := E(1, 0, skip; dim) (4)

and,
T (dim, k) = [|di − bi| : 0 ≤ i ≤ k] (5)

They stand for the functions SumBarcodeLengths,
PartialSumBarcodeLengths and TopKBarcodeLengths
defined in ([Gabrielsson and Nelson, 2019]).



Figure 2: Topological features map pipeline: persistent homology is applied to the natural level-set filtration on image
tensors. Composed with differentiable functionals on the space of persistence diagrams, this produces topology feature
maps from space of image tensors to tensors. Differentiability allows for back-propagation to optimize either in image
space of the weight space of a neural network.

The function S(dim) sums up the lifetimes of all
the homology cycles in dimension dim. The function
PS(dim, skip) sums up the lifetimes of all homology cy-
cles in dimension dim skipping the first skip ones. The
function T (dim, k) returns a vector of length k whose
components are the lifetimes of the first k homology cy-
cles in dimension dim.

Differentiation

Given a filtered simplicial complex, the authors of
([Gabrielsson et al., 2020]) introduce a method for com-
puting the gradient of a functional of a persistence di-
agram E(p, q, i0; dim). This is done by observing that
every birth-death pair can be mapped to the cell that
respectively created and destroyed the homology class,
defining an inverse map from the persistent diagram to
pair of simplices.

3 Topological features from images

3.1 Sublevel set filtration

Given a real valued continuous function on a topolog-
ical space f : M → R, we define the sublevel set
filtration on M by increasing the parameter α, with
Mα = f−1(−∞, α]. Let us denote the k-th persistent ho-
mology of the level-set filtration associated where (M,f)
by PDk(f).

Consider a simplicial complex K with vertex set V and
a function f : V → R. The function f can be extended
to all simplices of K by f([v0, . . . , vk]) = max{f(vi) :
i = 1, . . . , k} for any simplex σ = [v1, . . . , vk] ∈ K and

the family of sub-complexes Kr = {σ ∈ K : f(σ) ≤ r}
defines a filtration called the sublevel filtration of f .

3.2 From Images to persistence diagrams

An image can be seen as a real valued function f : I →
[−1, 1] on the space I ' [0, 1]2. The graph of this func-
tion is a surface embedded in I×[−1, 1]. The level sets of
this graph at various heights Fr = f−1(−1, r] produces a
filtration Fr on I. The persistent homology of this filtra-
tion is a way of summarizing of the evolving topologies of
the level sets. We need to formulate this in the discrete
language of tensors and simplicial complexes.

A gray-scale image can be represented as 2-d tensor.
For an image X of dimension n×m the tensor is a func-
tion X : [1..n] × [1..m] → R Let V = [1..n] × [1..m]
be the vertex set of a 2-dimensional simplicial complex
homeomorphic to I. Call this complex V and the lifted
function X̃ : V → R. The sublevel filtration of X is the
filtered simplicial complex Xr = {σ ∈ V : X(σ) ≤ r}.
Let I denote the space image tensors. In our case I is a
subspace of Rn×m.

I → filtered simplicial complexes

X 7→ {Xr}r∈I (6)

The dim-dimensional persistent homology applied to
the filtered simplicial complex {Xr}r∈R produces a per-
sistent diagram PDdim(X) ∈ PDdim.

I → PDdim



X 7→ PDdim({Xi}) (7)

3.3 Topological feature maps
Given any functional tensor valued functional F on PD,
we can compose to form topological feature maps as fol-
lows.

F̃ : I → tensors

X 7→ F(PDdim({Xi}i∈I)) (8)

The result is a topological feature map called F̃ . In this
paper our working examples of topological feature maps

are S̃(dim), P̃S(dim, skip) and T̃ (dim, k). For example

the map Ẽ(1, 0, 1; 0) is the sum of lifetimes of all homol-
ogy 0-cycles skipping the first one.

3.4 Invariance and stability properties of
topological features

Invariance
Simplicial homology is a homotopy invariant. Given a
homotopy equivalence f : X → Y of simplicial com-
plexes, the induces map of homology f∗ : Hn(X) →
Hn(Y ) is an isomorphism. The notion of homotopy
equivalence of filtered simplicial complexes is given by
a commutative diagram of simplicial homotopy equiva-
lences.

X0
⊂ //

f0'
��

X1
⊂ //

f1'
��

X2
⊂ //

f2'
��

· · ·

Y0
⊂ // Y1

⊂ // Y2
⊂ // · · ·

(9)

Let us define two images to be topologically equiv-
alent if there is a homotopy equivalence between the
corresponding sublevel set filtrations. This is the case
for example if X(a, b) = Y (φ(a, b)) for some Euclidean
transformation φ on I2. This includes translational and
rotational symmetries of the image. In general a topo-
logical symmetry between images is not necessarily of
this form however.

Stability
Persistent homology satisfies a Lipschitz stability prop-
erty in the following sense. Let f, g : X → R be two
real-valued functions defined on a topological space M
that are q-tame. Then for any dimension k,

B(PDk(f), PDk(g)) ≤ ‖f − g‖∞ = sup
x∈M
|f(x)− g(x)|

(10)
Filtration of finite simplicial complexes are always tame.
As a consequence, given any two images tensors X,Y :
I → [−1, 1], the associated persistence diagrams in any
dimension k satisfies the Lipschitz stability property

B(PDk(X), PDk(Y )) ≤ ‖X − Y ‖∞ (11)

where ||X−Y ||∞ can be interpreted as the L∞ distance
between the unrolled tensors obtained from the tensors
X and Y .

This Lipschitz stability property means persistent ho-
mology is robust to perturbations in the image space.

3.5 Back-propagation through topological
feature maps

The space of persistence diagrams forms a continuous
space, unlike the classical betti numbers. The map
PDk : I → PD is a continuous map. Therefore con-
tinuous morphisms in the image space, i.e. continuously
transforming one image into another image will result in
a continuous morphism of one persistence diagram into
another. Composition with an continuous function into
some additive and continuous space F : PD → A could
result in a differentiable topology feature map. The gra-
dient of this map could used to continuously transform
an image to optimise the topological feature map.

The maps F̃ are differentiable and the derivative has
be computed by ([Gabrielsson et al., 2020]) using an in-
verse map from points in the persistence diagram to pairs
of simplices in the filtered simplicial complex responsible
for the birth and death of the homology cycle. This also
depends on a total ordering of all the simplices, and is
not always possible due to simultaneous appearance of
simplices. There are approaches to replace the total or-

der with a strict order. Hence the gradient ∂F̃
∂σ is depends

on a strict ordering of the σ’s.
With this differentiable mechanism in place we can

optimize in the the space of images I to maximize of
minimize any desired topological feature map. In the
examples in Figure 3 the input image X has been contin-
uously morphed to find the closest image X which min-

imizes Ẽ(1, 0, 10; 0) and Ẽ(1, 0, 10; 1) (in top figure) and

maximizes
∑

(T̃ (dim = (0, 1), k = 20)) and
∑

(T̃ (dim =
(0, 1), k = 20)) (in bottom figure).

In notation,

X = argminX∈I Ẽ(1, 0, skip; dim)(X) (12)

X = argmaxX∈I

∥∥∥T̃ (dim, k)(X)
∥∥∥
1

(13)

where dim = {0, 1}, skip = 10 and k = 20.
The effect of the first operation is a topological smooth-

ing by moving the points in persistence diagram PD0,
except for the first 10, closer to the diagonal. This results
in killing the homology cycles that are not too significant
in terms of lifetimes. The effect of the second operation
is a topological sharpening by pushing the top k points
in the persistence diagrams further away from the diag-
onal. This results in increasing the lifetimes of the the
top k homology cycles.

In the following section we apply this to a neural net-
work optimizer. Given an neural network Nθ applied to
an image tensor, the aim is to optimize the pair Nθ to
maximize or minimize the topological feature maps. For
example,

θ = argminθEX Ẽ(p, q, i0; dim)(Nθ(X)) (14)

4 Combining topology feature maps
with Convolutional networks

The optimization task in Figure 3 can be alternative
expressed as a optimizing a neural network. Consider



Figure 3: Top: Visualizing PartialSumBarcodeLengths using gradient-descent; Bottom: visualizing
TopKBarcodeLengths using gradient-ascent

Figure 4: Topological Coupled-UNet architecture



an UNet architecture ([Ronneberger et al., 2015]) with
fully convolutional ReLU encoder Eθ and decoder Dψ.
Further suppose the encoder and decoder has layers

Eθ = E1
θn ◦ . . . ◦ E

n
θ1

and
Dθ = D1

ψn
◦ . . . ◦Dn

ψ1
.

The UNet architecture uses skip augmentations

Ek → Dk (1 ≤ k ≤ n)

The topological feature map can be augmented serially
at the end of the decoder network. The training process
aims to solve the following optimization problem.

θ, ψ = argminθ,ψEX Ẽ(1, 0, skip; dim)(Dψ ◦ Eθ(X))
(15)

θ, ψ = argmaxθ,ψEX T̃ (dim, k)(Dψ ◦ Eθ(X)) (16)

4.1 Coupled UNet architecture

In this section we define the coupled UNet architecture.
We apply this to semantic segmentation. Semantic seg-
ments have very distinct topological properties. We wish
to combine the UNet in the previous section trained to
optimize certain topological features characteristic of se-
mantic segments with a standard UNet used for semantic
segments. The two UNets are combined in parallel with
shared weights in the deeper dimensions.

Let us continue with the same notation for a UNet rep-
resented by fully-convolutional ReLU encoder-decoder
pair (Eθ, Dψ). Let U1 = (Eθ1 , Dψ1) and U2 =
(Eθ2 , Dψ2) be two structurally identical UNets. The
weights are shared in the middle. See Figure 4.

θ1k = θ2k (1 ≤ k ≤ K), K < n (17)

ψ1
k = ψ2

k (1 ≤ k ≤ K), K < n (18)

The training goal:

θ1, ψ1, θ2, ψ2 = argminθ1,ψ1,θ2,ψ2(L1 + L2 + L3 + L4)
(19)

where,

L1 = EXCrossEntropy(Dψ1 ◦ Eθ1(X), X) (20)

L2 = EX
∥∥∥(T̃ (dim, k)(Dφ1 ◦ Eθ1(X))− T̃ (dim, k)(X))

∥∥∥
2

(21)

L3 = EX Ẽ(1, 0, skip; dim)(Dψ2 ◦ Eθ2(X)) (22)

L4 = −EX
∥∥∥T̃ (dim, k)(Dψ2 ◦ Eθ2(X))

∥∥∥
2

(23)

The variables K (number of layers of the coupled
UNet with shared weights), skip, t and dim are hyper-
parameters.

5 Experiments

5.1 Model specifications

Our baseline is the UNet model defined in [Ronneberger
et al., 2015]. Our model has the same architectural
pattern used in this paper, with changes made to the
input/output image dimensions and number of output
channels (depending of number of segmentation classes).
We shall denote this model as UNET

The coupled UNet consists of two copies of the UNET
with shared weights in the middle layers. The second
copy of the UNET has a single output channel. The
number of layers in the idle with shared weights is a
hyperparameter. Define CUNET to the coupled UNet
where all but the final layers have shared weights. Define
CUNET-wc (weakly coupled) to be the coupled UNet in
which 7 layers (about 70%) in the middle of the UNETs
have shared weights.

The network architectures are implemented in Py-
Torch. The persistent homology functional differentiable
computational block is implemented using the Topology
Layer PyTorch library ([Gabrielsson and Nelson, 2019]).
We trained our network on Nvidia Tesla P100 GPU, op-
erating system Ubuntu 18.04.02 LTS.

5.2 Datasets and Evaluation metrics

The BDD100k (Berkeley Deep Drive) dataset ( [Yu et
al., 2020]) consists of video and image data of urban
street scenes from diverse locations in the United States.
The database covers different weather conditions, includ-
ing sunny, overcast, and rainy, as well as different times
of the day. For training our models we using the training
dataset of 7000 RGB images and test our results on the
validation set of 1000 images. The resolution chosen for
training is 256*256.

The Cityscapes dataset ( [Cordts et al., 2016]) con-
sists of images of urban street scenes from 50 dif-
ferent cities in Germany, captured in daytime and
good/medium weather conditions. The annotations con-
sist of dense semantic segmentation features with 30 class
labels. We have trained our models on the training
set consisting of 2975 images from all cities combined.
The tests are carried out on the validation set consist-
ing of 500 images. The resolution chosen for training is
256*256.

The ACDC (Adverse Conditions Dataset with Cor-
respondences) dataset ( [Sakaridis et al., 2021]) consists
of urban street scenes, highways and rural areas from
Switzerland. The main focus is on adversarial visual con-
ditions. The dataset consists of image-level correspon-
dences between adverse-condition and normal -condition
recordings via matching perspective GPS data. There
are 4006 adverse-condition images with fine pixel-level
annotations split into 100 foggy, 1006 nighttime, 1000
rainy and 1000 snowy images. The classes labels are
identical to those of the Cityscapes dataset. We test
our Cityscapes trained models on the ACDC dataset
to demonstrate the robustness of the Coupled UNet on



adversarial weather images compared with the baseline
models.

We use the metrics Pixel-level Accuracy (Accuracy)
and Intersection-over-Union (IOU) to get quantitative
comparisons of our models. The IOUs are computed by
taking the mean of the IOUs over all classes.

5.3 Qualitative results

Figure 5: Semantic segmentation using topological Cou-
pled UNet on BDD100 dataset. Topological loss of the
CUNET forces simply connected segments.

The figure 5 shows output semantic segmentation
of UNET and CUNET trained on BDD100k training
dataset and evaluated on BDD100k validation dataset.
The figure 6 shows output semantic segmentation of
UNET, CUNET and CUNET-wc trained on Cityscapes
training data and evaluated on Cityscapes validation
data.

Both examples show marked improvement in segmen-
tation quality in the CUNets compared to the baseline
UNETs. The precise nature of this improvement is the
preservation of the topological properties of the class seg-
ments. Examples of topological properties of segments
are connected components and number of 1-dimensional
loops. The topological loss during the training process of
the CUNET helps to learn these topological features on
top of the usual convolutional features. It is also worth
noting that segmentation quality in the weakly coupled
CUNET is marginally better than the strongly coupled
CUNET

5.4 Quantitative results

In this section we present the quantitative results of our
experiments. The scores are based on pixel-wise accu-
racy and Intersection-over-Union. Table 1 show com-
parison of scores between UNET and CUNET on the

Figure 6: Semantic segmentation using strongly and
weakly Coupled UNet on the Cityscapes dataset.

Dataset Method Accuracy IOU
BDD100k UNET 0.9843 0.6731

CUNET 0.9865 0.7034
Cityscapes UNET 0.9823 0.7839

CUNET 0.9909 0.8387

Table 1: Quantitative results for the baseline UNET and
the Topological Coupled UNET models on BDD100k
and Cityscapes datasets

BDD100K and Cityscapes datasets. Our model out-
performs the baseline in both cases.

In table 2 we produce results comparing performance
of the CUNET with the UNET on the ACDC dataset.
Here both models were trained on the Cityscapes (clean
weather) training data and evaluated on the ACDC (ad-
verse weather) validation data. Our model CUNET is
consistently better than the baseline UNET except for
the nighttime scenes. These results demonstrate the ca-
pacity of the topological coupled network to perform bet-
ter than the baseline when distribution shift via adverse
weather is introduced during inference. This is due to
the fact the global topological features learned during
training are more robust to distribution shifts than con-
volutional features alone.

In table 3 we produce the results comparing the
performance of the CUNET with a weakly-coupled



Dataset Method Accuracy IOU
Cityscapes UNET 0.9878 0.7456

CUNET 0.9934 0.7920
ACDC(fog) UNET 0.9361 0.6740

CUNET 0.9575 0.7387
ACDC(rain) UNET 0.9377 0.6822

CUNET 0.9609 0.7403
ACDC(snow) UNET 0.9364 0.6632

CUNET 0.9571 0.7321
ACDC(night) UNET 0.9418 0.7210

CUNET 0.9259 0.7188

Table 2: Quantitative results for the baseline UNET and
the Topological Coupled UNET models on ACDC adver-
sarial weather conditions dataset

Dataset Method Accuracy IOU
Cityscapes CUNET-wc 0.9935 0.8031

CUNET 0.9934 0.7920
ACDC(fog) CUNET-wc 0.9598 0.7333

CUNET 0.9575 0.7387
ACDC(rain) CUNET-wc 0.9508 0.7496

CUNET 0.9609 0.7403
ACDC(snow) CUNET-wc 0.9384 0.7263

CUNET 0.9571 0.7321
ACDC(night) CUNET-wc 0.9261 0.7192

CUNET 0.9259 0.7188

Table 3: Comparison of performance of weakly and
strongly coupled UNETs on Cityscapes and ACDC
dataset

CUNET-wc. Both models are trained on the Cityscapes.
The results show improvement in the weakly-coupled ar-
chitecture when evaluated on the Cityscapes validation
dataset. The results are however mixed and inconclusive
when adverse weather distribution shift is introduced.

6 Summary and Conclusions

Persistent homology captures global topological informa-
tion. Their definitions are based on algebraic-topological
invariants called homology adapted to point-cloud data.
RGB image tensors can be represented as scalar func-
tions on the domain and the natural filtration can be
used to define persistent homology. This is captured
by persistent homology functionals, and not detected
by standard convolutional filters. These topological fea-
tures are furthermore invariant under continuous trans-
formations. Lipschitz stability property satisfied by per-
sistent homology also means it is robust under pertur-
bations in the image space.

Semantic segments of images are have very well de-
fined topological features and serve as a good test case
for experimenting with these new features. Our experi-
ments show that learning topological features on top of a
convolutional features improves performance of current
semantic segmentation models on urban road scenes. We
also empirically show that the robustness of the topo-

logical features help the new model perform better when
distribution shift is introduced during inference via ad-
verse weather conditions.

References
[Bubenik, 2015] Peter Bubenik. Statistical topological

data analysis using persistence landscapes. Journal of
Machine Learning Research, 16(3):77–102, 2015.

[Carlsson and Zomordian, 2005] Gunnar Carlsson and
Afra Zomordian. Computing persistent homology.
Discrete and Computational Topology, 33:249–274,
2005.

[Carlsson, 2009] Gunnar Carlsson. Topology and data.
Bulletin of the American Mathematical Society,
46:255–308, April 2009.

[Chazal and Michel, 2017] Frédéric Chazal and
Bertrand Michel. An introduction to topological
data analysis: fundamental and practical aspects for
data scientists. Journal de la Société Française de
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