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Abstract

Ambiguity is pervasive at multiple levels of linguis-
tic analysis effectively making unambiguous com-
munication impossible. As a consequence, natural
language processing systems without true natural
language understanding can be easily ”fooled” by
ambiguity, but crucially, AI also may use ambiguity
to fool its users. Ambiguity impedes communica-
tion among humans, and thus also has the potential
to be a source of failure in AI systems.
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1 Introduction
The human language faculty allows any given speaker to
”make infinite use of finite means” [Chomsky, 2006]. This is
to say that the set of all possible sentences is infinite while
the set of words which make them up is finite. However,
ambiguity – the existence of more than one interpretation of
an expression, is rampant in natural language [Wasow et al.,
2005]. It is not clear why ambiguity exists at all in natural
language. Given that it impedes communication, one might
assume languages would evolve to avoid it, yet this is not ob-
served [Wasow et al., 2005]. One explanation is that mapping
a word to multiple meanings saves memory. Another account
asserts that ambiguity is a consequence of a human bias to-
ward shorter morphemes [Wasow et al., 2005]. Yet another
account construes ambiguity as a product of optimization to-
wards efficiency (principle of least-effort) over the course of
language evolution. On this view, ambiguity is the price paid
for a least effort language [Solé and Seoane, 2015]. In this
paper, we won’t seek to explain the root cause of ambiguity,
but rather to show how it can pose a problem for AI systems.
First we’ll identify types of ambiguity which occur at the lev-
els of phonology, syntax, and semantics, noting how mod-
ern natural language processing (NLP) systems disambiguate
ambiguous input. Finally, we’ll consider how more advanced
AI could exploit ambiguity and how bad actors might utilize
such systems to their ends.
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2 Phonology
Computational phonology is a core component of speech-
based NLP systems. The ultimate goal of automatic speech
recognition is to take an acoustic waveform as input and de-
code it into a string of words as text [Jurafsky, 2000]. The
field which for several years was dominated by the Gaus-
sian Mixture Model - Hidden Markov Model (GMM-HMM)
framework has now made significant advancements using
deep neural network (DNN) architectures to enable technolo-
gies like Siri, Alexa, and Google Assistant [Yu and Deng,
2016]. In particular recurrent neural networks which cap-
ture the “dynamic temporal behavior” of sequence data that
DNN-HMM architectures do not capture, have proven very
effective [Yu and Deng, 2016]. Despite these advances, au-
tomatic speech recognition (ASR) still performs poorly with
far field microphones, noisy conditions, accented speech, and
multitalker speech [Yu and Deng, 2016]. To see why ambi-
guity poses such a problem for these models, we’ll consider
a architecture which uses some statistical technique to rec-
ognize speech units along with some language model over
some dictionary to find the highest probability sequence of
speech units [Jurafsky, 2000]. It is clear that because such a
model is probabilistic, it lacks true natural language under-
standing – this means the model can fail when faced with a
speech waveform that might be unlikely or low probability.
It may favor the more likely incorrect output over the less
likely yet correct target output. Because humans possess lin-
guistic creativity – the ability to produce never before seen
utterances which a model might consider highly improbable,
current ASR systems have an inherent deficit. One way to
remedy this is to filter out hypotheses that don’t make sense
with, “[a] speech recognition system augmented with Com-
monsense Knowledge [that] can spot its own nonsensical er-
rors, and proactively correct them” [Lieberman et al., 2005;
Liu et al., 2016]. Nevertheless, brittle ASR systems, “may
misinterpret commands due to coarticulation, segmentation,
homophones, or double meanings in the human language”
[Yampolskiy, 2016].

2.1 Homophones
Homophones – sets of words which sound the same but have
different meanings, are a classic case of phonological ambi-
guity. The following data present utterances which could be
misinterpreted by an ASR system but which are easily disam-



biguated by humans provided some context [Forsberg, 2003].

(1) a. the tail of the dog
b. the tale of the dog

(2) a. the sail of the boat
b. the sale of the boat

The pairs in (1) and (2) are phonologically and syntactically
identical, yet convey distinct meanings. With sufficient con-
text, an ASR with a good enough language model would eas-
ily disambiguate tail/tale shown below:

(3) a. the tail of the dog was wagging
b. the tale of the dog was told
c. the tail/tale of the dog was long

However, sufficient context is not always provided as shown
in c). Thus, carefully chosen homophones could be used to
intentionally fool an ASR system.

2.2 Continuous Speech
Continuous speech is very different from written lan-
guage. Spoken language introduces word boundary ambigu-
ity, speaker variability, and a different vocabulary. It is com-
mon for the spoken register of a language to be different from
the more formal written register [Forsberg, 2003]. All these
factors contribute to the difficulty of ASR and introduce the
possibility of ambiguity when decoding.

(4) a. How to wreck a nice beach you sing calm in-
cense.

b. How to recognize speech using common sense.

(5) a. I want to experience youth in Asia.
b. I want to experience euthanasia.

These constructed yet plausible examples show that it may
be possible to generate adversarial examples to fool an ASR
system. Once again, one would expect an effective language
model to be successful at disambiguating these examples, but,
as we will note below, there is evidence that fooling an ASR
system is even more easily achieved by simply perturbing the
input waveform.

2.3 Fooling Automatic Speech Recognition
Systems

We’ve shown that it ought to be possible to fool ASR systems
using phonological ambiguities which are common in natu-
ral language. This involves carefully crafting utterances with
homophones or with word boundary ambiguity. However, it
is possible to exploit such systems without leveraging natural
language ambiguity. It has been shown that adversarial ex-
amples can be created by applying perturbations to an input
waveform such that the waveform is nearly indistinguishable
from the unperturbed input. Even more worrying is fact that
this perturbed input can generate any desired output phrase
[Carlini and Wagner, 2018]. The researchers have also shown
that hidden voice commands, unintelligible inputs used to at-
tack ASR systems, can be used to cause denial of service,

information leakage, and “as a stepping stone to further at-
tacks” [Carlini et al., 2016]. Though these exploits don’t nec-
essarily target natural language ambiguity they serve to show
that current ASR systems are vulnerable to a range of attacks.

3 Syntax
Syntax determines how words are organized into phrases
and sentences [Carnie, 2012]. Historically, syntax has been
processed with computational models including context-free
grammars, lexicalized grammars, feature structures, parsing
algorithms, and HMM part-of-speech taggers. Parsing a sen-
tence into constituency or dependency tree structure is use-
ful for downstream NLP tasks. The same is true for part-of-
speech tagging [Jurafsky, 2000]. Deep learning using ANNs
has achieved state of the art performance on syntax-related
tasks, though ANNs still do not match human level perfor-
mance on phenomena like filler-gap dependencies [Linzen
and Baroni, 2020]. Here, we’ll examine several characteri-
zations of ambiguity at the level of syntax.

3.1 Structural Ambiguity
Structural ambiguity occurs when more than one underly-
ing structure exists for a single sentence with the structures
having different meanings. The term structure is used here
because sentences with this type of ambiguity are usually
disambiguated by distinguishing between two different con-
stituency trees.

Global Ambiguity
Global ambiguity is ambiguity that persists after a sentence
has been fully parsed. In this case a sentence in and of itself
contains more than one structural interpretation. Consider the
following data:

(6) a. Eliminate [NP the target] [PP with a bomb.]
b. Eliminate [NP the target [PP with a bomb.]]

Here, the NP (noun phrase) has two interpretations; one
where the PP (prepositional phrase) is contained within the
NP and the other where it is not. The former refers to an in-
dividual carrying a bomb, while the latter refers to the action
of bombing someone.

Local Ambiguity
Local ambiguity, unlike global ambiguity, is resolved upon
complete parsing of a sentence. The canonical case of local
ambiguity is the garden path sentence. Consider the follow-
ing data [Ferreira and Henderson, 1991]:

(7) a. Because Bill drinks wine ...
b. Because Bill drinks wine beer is never kept in the

house.
c. Because Bill drinks wine is never kept in the

house.

As seen in (7a), Because Bill drinks wine is ambiguous:
wine could take on a direct object semantic role as in (7b) or
it could take on a subject semantic role as in (7c). Assum-
ing that a human parser employs the principle of late closure,
preferring to attach new material into the phrase or clause



currently open rather than create new clauses or constituents,
(7b) is easier to parse for a human than (7c). In general for
humans, garden-path recovery is thought to involve reanalysis
of the sentence by reassigning the thematic roles of a misana-
lyzed phrase [Ferreira and Henderson, 1991]. Regardless, the
ambiguity and added parsing difficulty of garden-path sen-
tences could be a source of failure in NLP and AI systems.

3.2 Formal Language Ambiguity
A context-free grammar is a grammar whose rules all follow
the form A→ Ψ where A is a non-terminal symbol and Ψ is
any string, even the empty string, from the union of the termi-
nal and non-terminal alphabets [Partee et al., 2012]. Consider
the following context-free grammar:

S → (A B) | (C D)

A→ U C → U

B → V D → V

U → a V → b

Even in this simple context-free grammar, the string ab can
either be generated using the rule S → A B or the rule
S → C D. Thus, there exists more than one parse tree
structure for the same surface string representation and this
constitutes one characterization of syntactic ambiguity. One
notable technique for disambiguating context-free grammars
is the PCFG (probabilistic context-free grammar) which as-
signs probabilities to rules in a CFG (different weights for
the two S rules above, for example) [Jurafsky, 2000]. As in
the discussion on phonology, probabilistic language models
may serve to make NLP systems more “natural” (more simi-
lar to human language) yet this may not give models the capa-
bility to reason about more complex ambiguities. The same
applies for neural network based language models such as
GPT-2 [Radford et al., 2019] and BERT [Devlin et al., 2018]
which can be thought of as massive context-free grammars
with extremely well fine-tuned probabilistic weights.

3.3 Security of Language Models
In addition to the advances made in downstream NLP
tasks by means of language model pretraining and fine-
tuning, recently, neural network language models have been
shown to perform well as knowledge bases [Petroni et al.,
2019]. Specifically, BERT (Bidirectional Encoder Represen-
tations from Transformers) has been shown to contain re-
lational knowledge competitive with traditional knowledge
base methods and to perform well on open-domain question
answering [Petroni et al., 2019]. If neural network language
models become widely adopted as knowledge bases, this ne-
cessitates the question, Is the private information encoded in
a language model secure? Though it does not relate to ambi-
guity, there is work showing that privacy can be preserved in
such models using encryption [Ryffel et al., 2018].

4 Semantics
Semantics, the meaning of words and sentences, is of consid-
erable interest in NLP. However, much of the perceived se-
mantic knowledge encoded in current NLP systems is instead

derived from the use of syntactic heuristics which quickly
break down when confronted with more complex examples
[McCoy et al., 2019]. This is a major problem for narrow AI.
For advanced AI, the ability to toy with the very meaning of
language would have wide ranging consequences from sow-
ing disinformation to generating ambiguous legal documents
or tweets.

4.1 Scope Ambiguity
Here, the scope of a syntactic constituent is ambiguous. The
following data further elucidates scopal ambiguity [Wasow et
al., 2005]:

(8) No student solved exactly two problems.

In (8) either, “there was no student who solved exactly two
problems”, or “there were exactly two problems that no stu-
dent solved” [Wasow et al., 2005]. Either interpretation is
valid depending on the location of constituents in the under-
lying sentence structure which determines their scope (this is
sometimes referred to as LF, logical form). For this reason,
scope ambiguity lies at the syntax-semantics interface [An-
derson, 2004].

4.2 Lexical Ambiguity
This type of ambiguity deals with the meanings of words.
When a word has more than one distinct meaning it is said to
have lexical ambiguity. We’ll highlight examples of lexical
ambiguity and examine current NLP approaches to address-
ing it.

Contranyms
In the case of contranyms, a word has two different meanings
which are antonyms [Jackson, 2018]:

(9) hold up
a. to support
b. to hinder

(10) dust
a. add fine particles
b. remove fine particles

(11) left
a. departed
b. remaining

Word Sense Disambiguation
The most salient case of lexical ambiguity is known as pol-
ysemy in which one word has more than one distinct mean-
ing. The work bank can refer to a bank account, to a river
bank, or as a verb, to moving on an incline. There is a long
history of computational techniques for word sense disam-
biguation from dictionary based methods to semantic simi-
larity metrics [Yarowsky, 1995; Banerjee and Pedersen, 2002;
Navigli, 2009; Resnik, 1999].

4.3 Winograd Schema
A winograd schema is a pair of sentences that differ in only
two words and contain a referential ambiguity that is resolved
in “opposite directions” in the two sentences. The Winograd



Schema Challenge presents such a pair as an alternative to
the Turing Test since a successful agent must have some level
of natural language understanding to solve the challenge and
cannot depend on statistical patterns [Levesque et al., 2012].
Though the Winograd Schema is technically a referential am-
biguity, its difficulty is rooted in machines’ lack of common-
sense knowledge so we’ve placed it in the semantics section.

(12) The trophy doesn’t fit in the brown suitcase because
it’s too (big/small). What is too (big/small)?
a. the trophy
b. the suitcase

(13) Joan made sure to thank Susan for all the help she
had (given/received). Who had (given/received) the
help?
a. Joan
b. Susan

In (12) there are two sentences that can be generated based
on the choice of big or small which have two different an-
swers. Answering correctly requires natural language under-
standing and reasoning. The dataset WINOGRANDE showed
that although models performed well (90% accuracy) on ex-
isting Winograd datasets, this was likely due to algorith-
mic bias. Producing adversarial Winograd Schema exam-
ples by means of a debiasing algorithm allowed the authors to
achieve state of the art performance on these existing Wino-
grad benchmarks showing their technique to be a powerful
example of transfer learning [Sakaguchi et al., 2019].

5 Criticism of Deep Learning Approaches
The approaches for dealing with natural language and thus
in turn ambiguity discussed above are largely engineering
approaches. These include things like, deep learning, fine-
tuning of language models, building more robust models that
generalize better, and improving state of the art performance
using adversarial examples [Jia and Liang, 2017; Subrama-
nian et al., 2017; Wu et al., 2018; Wallace et al., 2019;
Gong et al., 2018]. Although these engineering approaches
have achieved state of the art performance in many areas,
there is a sense that they lack true natural language under-
standing as alluded to in several of the above types of ambi-
guity. [Marcus, 2020] describes deep learning based models
as, “data hungry, shallow, brittle, and limited in their ability
to generalize” advocating instead for symbolic approaches in-
corporating insights from cognitive science. Character based
translation models break down under the introduction of noise
(letter swap errors) proving such NMT (neural machine trans-
lation) models to be extremely brittle [Belinkov and Bisk,
2017]. [Bender and Koller, 2020] argues that current ap-
proaches cannot learn form from meaning and thus will not
achieve natural language understanding (NLU). It has been
noted even that algorithmic approaches to anaphor resolution
may never achieve complete success since, in principle the
interpretation of a well-formed sentence like, Who wants the
first one? is free in the absence of sufficient context and ap-
plication of constraints (i.e one could refer to anything) [Hen-
driks and De Hoop, 2001]. Advocates of deep learning ap-

proaches nonetheless can taut that it is their models which
have achieved such success on natural language tasks and
benchmarks. The debate between deep learning approaches
and symbolic approaches is not yet resolved. An interesting
area is neural-symbolic computation which seeks to marry
neural network models with symbolic approaches [Smolen-
sky et al., 2016; Garcez et al., 2015].

6 Inevitability of Ambiguity
Pragmatics, the area of linguistics which focuses on the
co-operative assumptions of communication, arguably bears
its own ambiguities such as irony and sarcasm [Wilson,
2006]. There are existing computational approaches for deal-
ing with various other discourse ambiguities [Macagno and
Bigi, 2018; Ammicht et al., 2001]. On the basis of discourse
analysis [Blum-Kulka and Weizman, 1988] argue that “com-
munication is inherently ambiguous”. Intuitively, we endorse
this view since wholly unambiguous communication seems
to be impossible using an inherently ambiguous natural lan-
guage. On the basis of the above examples, it is clear that
there are some ambiguities that even humans cannot easily
disambiguate. These effects are only multiplied when one
considers the ambiguity in pragmatics which might cause one
to “question the validity of co-operative assumptions” such as
the Gricean maxims [Blum-Kulka and Weizman, 1988]. Here
we’ll seek to discuss this claim with more mathematical rigor.

We’ll represent a discourse with a finite-state discrete time
Markov Chain with two states (Figure 1). The chain is in state
0 when ambiguity is introduced into a discourse and in state
1 when there is no natural language ambiguity. This two state
chain is a positive recurrent irreducible Markov Chain [Ross
et al., 1996]. Each new utterance in a discourse is represented
by a transition in the chain. This chain is a good model since a
conversation can stay in the unambiguous state with positive
probability. The conversation can move from a unambiguous
state to an ambiguous state with positive probability – this is
when ambiguity is introduced into the discourse. The con-
versation can remain ambiguous (with positive probability)
by what [Blum-Kulka and Weizman, 1988] cite as indetermi-
nate ambiguity in which “the speaker does not commit him-
self to an intended meaning” and the indeterminacy is “left
unattended to by both participants”. The ambiguity can also
be resolved (with positive probability) through clarification.
All entries in the transitive matrix are positive probabilities.
Thus, for any finite discourse there is positive probability that
there is no ambiguity. This is achieved by simply taking the
transition from state 1 to state 1 at every point in the conver-
sation.

However, if we consider an infinite number of transitions
which may be a good model for a work of fiction, a long
speech, or an extended conversation over hours or days, in
the limit, the chain will enter state 0 (the ambiguity state)
with probability 1 and return to the state in a finite number of
transitions on average [Ross et al., 1996]. This follows from
the fact that the chain is irreducible and positive recurrent.
If we then consider the totality of human natural language
generation as an infinite sequence of transitions through the
chain, it is clear that ambiguity is inevitable as long as we en-
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Figure 1: State 0 denotes ambiguous discourse while state 1 denotes unambiguous discourse. P is the 2 state transition matrix [Ross et al.,
1996]

.

dorse the premise that there is positive probability of generat-
ing ambiguous language at any step in the sequence. In order
to achieve unambiguous communication one would have to
ensure that at any step in this infinite sequence there is zero
probability of generating an ambiguity – we claim that this is
computationally intractable if one is using an inherently am-
biguous natural language.

This result, the impossibility of unambiguous communi-
cation, is in accordance with two existing impossibility re-
sults in AI safety. The first, unpredictability of AI, states
that, “ it is impossible to precisely and consistently predict
what specific actions a smarter-than-human intelligent sys-
tem will take to achieve its objectives” [Yampolskiy, 2019b].
The second result, incomprehensibility of AI, shows that “ad-
vanced AIs would not be able to accurately explain some of
their decisions and for the decisions they could explain people
would not understand some of those explanations” [Yampol-
skiy, 2019a]. This is true for opaque, black box NLP sys-
tems discussed in Section 7.1. [Doran et al., 2017]. However,
we’ll show in Section 7.2 that the impossibility of unambigu-
ous communication also contributes to unexplainability and
unpredictability for advanced AI .

7 Ambiguity as a Source of Failure
Pioneer in the field of machine translation, Yehoshua Bar-
Hillel claimed “FAHQT [fully automatic high quality transla-
tion] is out of the question for the foreseeable future because
of the existence of a large number of sentences the determi-
nation of whose meaning, unambiguous for a human reader,
is beyond the reach of machines” citing machines’ lack of
commonsense knowledge [Bar-hillel, 1964]. While more ad-
vanced NLP systems may achieve higher accuracy on am-
biguous language tasks, the main thrust of his argument still
stands, even today. On top of that, there are examples of am-
biguity given above that, without sufficient context, even hu-
mans cannot correctly interpret. Thus, it is clear that these
weaknesses inherent in natural language could be exploited to
fool an NLP system. Additionally, the reverse could be pos-
sible – AI could exploit natural language ambiguity to fool its
human users.

7.1 AI Fooled by Ambiguity
AI without true natural language understanding can easily be
tricked by many of the above examples. Homophones and

continuous speech could be used to give a command with un-
desired effects. A benign waveform command could be per-
turbed to cause system failure, and open the door to further
hacks and exploits. An input command like, Eliminate the
target with the bomb. could have unintended consequences
depending on the interpretation of its structural ambiguity
which could be particularly dangerous in military and AI
weaponry scenarios. Clearly, serious thought should be put
into designing systems that intelligently deal with ambiguous
input. Just as Google auto-completes search results, an AI
might be designed to answer and react to a query as quickly
as possible – this could result in failure on garden path sen-
tences. The AI might be tricked into the wrong interpretation
by using a late closure parsing technique.

Although machine translation is largely dominated by se-
quence to sequence methods, a dictionary based translation
system could fail due to cross-linguistic ambiguity. In a
case reminiscent of the movie Arrival, there is a character
in Chinese which can mean instrument or weapon in En-
glish.2 A mistake in translation could be dangerous in this
case. There are plenty of other cases of lexical ambiguity
that could present a dangerous situation, particularly in a mil-
itary context. The word execute is a contranym – it can refer
to the execution (start) of a program (“execute the firmware
update”), or the execution (end) of a person (“execute the ad-
versary”)3. These failure modes are a result of the opaque,
black box nature of contemporary narrow AI systems without
natural language understanding. The ambiguity induced fail-
ure modes discussed here are examples of by mistake, post-
deployment AI hazards according to Yampolskiy’s taxonomy
[Yampolskiy, 2016].

7.2 AI Exploiting Ambiguity
Ambiguity has been identified as a source of miscommunica-
tion in air traffic control [Mcmillan, 1998]. Ambiguity is such
a problem even for humans that some have attempted to build
controlled natural languages by restricting language use to a
wholly unambiguous subset of an existing natural language

2According to Google Translate.
3A reviewer notes that the event predicate execute is not strictly

synonymous with a start event predicate and thus this example does
not constitute a true contranym. However, since performing some
action entails starting to perform the action, the example still makes
sense and is thus useful for explanatory purposes



Narrow AI/NLP System

-tricked using adversarial examples
-built from end-to-end systems
-uses probabilistic or statistical methods
with lack of NLU
-brittle; may not generalize to other
dialects/accents
-fails when presented with ambiguities below

natural language understanding

automatic ambiguity detection

Human-Level AI

-generates news headlines with
ambiguity

-writes ambiguous tweets

-deploys attacks on narrow
AI systems (generating
adversarial speech waveforms)

-writes legal documents, software
code, contracts, with ambiguity

-used by bad actors to exploit
ambiguity

Figure 2: A narrow AI system is vulnerable to attack and may fail on ambiguous input. A more advanced system is then able to exploit
ambiguous language to generate misleading headlines or tweets.

[Fuchs et al., 2008]. Such a language could be used to enable
precise and unambiguous specification of rules and guidelines
for organizations and software specifications. There are ex-
isting attempts to detect ambiguity in requirements specifica-
tions for software [Kiyavitskaya et al., 2008]. An AI capable
of exploiting ambiguity could reek havoc in these areas.

In monetary theory, the observation that, “Any observed
statistical regularity will tend to collapse once pressure is
placed upon it for control purposes” has been termed Good-
hart’s Law [Goodhart, 1983]. The observation has been re-
stated as: “When a measure becomes a target, it ceases to be
a good measure” [Hoskin, 1996]. Without making any claims
about the monetary theories underlying these observations,
we present a generalization of Goodhart’s Law for AI sys-
tems: A tool for recognizing ambiguity in natural language,
once applied to a sufficiently intelligent AI will cease to be
effective and could be exploited. This is to say that any at-
tempt to recognize ambiguity as in [Sproat and Santen, 1998;
Chantree et al., 2006] could be used by that AI to create a
dataset which upon self-training will allow the AI to generate
ambiguous language. This would allow the AI to write le-
gal documents, software, news headlines, and tweets riddled
with ambiguity.4 This could have far reaching implications,
including the potential for widespread disinformation cam-
paigns and the disruption of systems discussed in the previ-
ous paragraph. Based on an existing categorization of Good-
hart’s Law variants by [Manheim and Garrabrant, 2018], the
dynamic illustrated here may well be considered an “adver-
sarial misalignment Goodhart [variant]” in which “The agent
applies selection pressure knowing the regulator will apply
different selection pressure on the basis of the metric”. In
this case, a bad actor, or the AI itself (subject to a utility
function perhaps) may use ambiguity detection not to notify
users of the ambiguity, but to generate ambiguities, spark-

4Interestingly, an advanced AI would also be capable of attack-
ing narrow AI systems with some of the exploits on the left hand
side of the Figure 2 such as the hidden voice command exploit.

ing public confusion and disinformation. Here, the metric
(ambiguity detection module) is used to “distort and corrupt
the social processes it is intended to monitor” [Manheim and
Garrabrant, 2018]. The unpredictability of such a system is
a major risk. According to Yampolskiy’s Taxonomy of Path-
ways to Dangerous AI, the use of such a system by a bad
actor is an on purpose, post-deployment AI hazard [Yampol-
skiy, 2016].

7.3 Safety Risk
Natural language ambiguity appears to introduce risk into
three types of systems. First, there are the uninterpretable
NLP systems that largely dominate today’s state-of-the-art
NLP leaderboards. These models may be trained end-to-end
on a specific narrow task like speech recognition. Due to the
brittleness of these models, the inevitable errors they make
on ambiguous input as a result of their normal operation con-
stitute a safety risk in critical systems. In a poorly designed
voice activated self-driving car you might give the command,
”Drive me up to Oxridge” which could be erroneously rec-
ognized as ”Drive me off a bridge.” Of course this example
is only a safety risk if the natural language command is able
to override the car’s control system which is programmed to
drive only on drive-able space.

Secondly, there are interpretable NLP systems which
nonetheless lack human-level AI capability and which in turn
can pose an AI safety risk. Even if a system is able to iden-
tify an interpretation of an ambiguity as more plausible (ei-
ther statistically or using rule-based knowledge) there is no
guarantee that in a given situation the maximum likelihood
solution is the correct one. For example, communication is
increasingly being augmented with AI generated smart re-
ply suggestions. It could be the case that two business part-
ners routinely agree on contracts such that the AI’s training
data is strongly biased towards replying yes to new contracts
between them. Eventually though, there will be a contract
which one partner doesn’t agree on – but if the business is us-



ing an AI bot or AI negotiator, it will accept this bad contract
due to its training data.

Finally there is the risk for human-level AI which can man-
ufacture ambiguous legal reports, contracts, or software re-
quirements to achieve unforseen objectives.

7.4 Potential Solutions
For uninterpretable AI systems, there simply is no good way
to deploy these systems for critical applications without a
way to quantify safety risk. Taking self-driving cars as an
example, it is certainly possible to measure safety by track-
ing human driver disengagements of the AI control system.
The system can be deemed safe when these engagements are
statistically unlikely. For AI systems where performance is
not so easily quantified, there can be no safety guarantees.
Even then, a statistically safe system could still fail due to
low probability events not captured in the system’s training
data. It is not as obvious how statistical safety could be estab-
lished for an NLP system.

For interpretable systems, human-in-the-loop and human-
AI teaming may solve ambiguity related AI risk provided that
an AI system can quantify its uncertainty about a prediction
or detect ambiguous input to the system. Then in the case of
ambiguity, the system can simply offload its decision making
to the human.

One useful tool for natural language ambiguity might be
come from the idea of prefix codes which convert an alphabet
into a unique set of binary ”codes” which can be concatenated
to form messages. These messages are ”uniquely decoded”
such that there is no ambiguity [Le Boudec et al., 2015]. This
type of unambiguous communication might be usefully ex-
tended into NLP systems in order to achieve unambiguous
decoding, though it would require a more complex coding
scheme.

8 Conclusion
We’ve detailed a non-exhaustive set of cases of ambiguity
in natural language at the levels of phonology, syntax, se-
mantics, and pragmatics along with contemporary NLP and
AI approaches to handling them. These areas taken together
give of good sense of the breadth of natural language ambigu-
ity. Furthermore, we claim that ambiguous communication is
inevitable when using an inherently ambiguous communica-
tion system. Despite the success of techniques including neu-
ral networks, deep learning, adversarial examples, and bet-
ter language models (these are not mutually exclusive), many
worry that end-to-end systems only learn “surface” represen-
tations and don’t have true natural language understanding.
We noted several areas where natural language ambiguity
might lead to a failure mode in AI systems with deleterious
effects. The security risk is twofold – one set of concerns
exists for narrow AI systems while a different set exists for
human-level AI. Finally, we formulated a generalized Good-
hart’s Law to express the idea that techniques allowing AI to
identify, recognize, and detect ambiguity, might be reversible
in that they could be exploited to generate ambiguous lan-
guage and “fool” their human users.
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