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Abstract  
We describe new nonparametric tests for detection change points of the time series, which 
are the points dividing the time series into segments of random values obeying different 
distributions. The proposed tests are based on the Dempster–Hill theory and generalizations 
of the Bernoulli scheme. To recognize the change points, simplified versions of the 
Klyushin–Petunin homogeneity test are proposed. The significance level of these tests does 
not exceed 0.05, and the accuracy is comparable to the original version. The tests have high 
sensitivity and specificity of recognizing the heterogeneity of two random samples with 
different means and the same variances or equal means but different variances. The described 
tests can be useful in a wide variety of areas from healthcare (for example, when analyzing 
time series generated by pulse oximeters) to IoT devices in industry and in everyday life.  
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1. Introduction 

The modern epoch is characterized by the intensive development of information networks and IoT 
technologies. There are more and more information sources that generate large amounts of sequential 
data that form time series which need to be processed in a short time. The problem has been 
exacerbated by the COVID-19 outbreak, which has raised questions related to the processing of 
signals from medical devices, tracking tools, etc. For example, a change in the distribution of random 
variables representing the level of oxygen in the blood of a patient with COVID-19 may require an 
immediate response from clinicians, which means that the change point in the time series generated 
by the pulse oximeter must be found in real time. 

A time series is considered homogeneous if all its segments consist of random values that obey the 
same distribution. A change point is a point before and after which the values of the time series obey 
different distributions. Consequently, the problem of detecting the change point can be reduced to 
testing of samples homogeneity in adjacent segments of time series. 

Change point detection methods are divided into online and offline. Online methods analyze 
fragments of a time series in real time. Offline methods analyze a complete time series from the first 
to the last point. A fairly detailed review of methods for finding change points in time series is given 
in [1]. Despite the fact that we restrict ourselves to one-dimensional time series, it may be easily 
generalized on multivariate case (see a survey in [2]). 

Since the problem of finding a change point can be reduced to the problem of samples 
homogeneity, it should be mentioned that such tests are divided into parametric and nonparametric 
tests. The former tests are based on the assumption that the time series data obey a specific (e.g., 
Gaussian distribution) or parameterized distribution [3–8]. The last tests do not depend on 
assumptions about the shape of the distribution, using only the most general properties, for example, 
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continuity [9–19]. Online methods for finding change points in time series are considered in [20–24]. 
These methods analyze individual fragments of a time series, and not the entire series from beginning 
to end in opposite to offline methods. This allows us not to accumulate data in large storages. The 
purpose of the article is to outline new nonparametric online methods for recognizing change points in 
a time series. The originality of the proposed methods lies in the simplification of the Klyushin–
Petunin criterion [25] without loss of accuracy. 

2. Simplified versions of Klyushin–Petunin test for homogeneity 

Consider the problem of testing homogeneity of two samples which is equivalent to the problem of 
change point detection. Usually, to solve this problem the Kolmogorov–Smirnov test and the Mann–
Whitney–Wilcoxon test are used. Recently, we proposed to use the Klyushin–Petunin test [25] and 
demonstrated its high performance [26]. 

Suppose that  samples ( )1 2, ,..., nx x x x=  and ( )1 2, ,..., my y y y=  are drawn from the distributions 1F  
and 2F , respectively. The null hypothesis states that x  and y  obey the same distribution, i.e. 1 2.F F=  
The alternative hypothesis states that 1 2.F F≠  

Standard non-parametric two-sample homogeneity tests (Kolmogorov–Smirnov, Mann–Whitney–
Wilcoxon, etc.) produce only one-sided confidence limits with the given significance level. This 
means that if the test statistics exceeds a given threshold the samples are considered as homogeneous, 
otherwise the answer is uncertain. Therefore, it is desirable to construct tests with two-sided 
confidence limits for a test statistics. Such tests is the Klyushin–Petunin homogeneity test [25] based 
on the Matveychuk–Petunin model [27–29]. It allow constructing a two-sided confidence interval 
with a given the significance level for both the true and false null hypothesis and estimating the 
probability of types I and II errors. 

2.1. The Dempster–Hill theory and p‐statistics 

Let ( )1 2 1, ,..., nx x x x F= ∈ , ( )1 2 2, ,..., ny y y y F= ∈ , and ( ) ( ) ( )(0) ( 1)1 2, , ,..., , nnx x x x x += −∞ = +∞  be 

corresponding variance series. The null hypothesis 0H  states that 1 2F F= . If the null hypothesis is 
true, then due to the Dempster–Hill assumption [30] we have 
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Corollary 1. Selecting random natural numbers i  and j  such that i j<  N  times, for a 
sufficiently large N we have 
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Corollary 2. Selecting random natural numbers N  times  (N < n)  from (1) we have 
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If 1 2F F≠ , then ( ),k n
ijp  significantly deviates from .
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 Therefore, we must estimate a difference 

between observed relative frequency ( ),k n
ijh  of the event ( ) ( )( ),k i jy x x∈ . To do this, we use a 

confidence limits ( ) ( )( )1 2,ij ijp p  for the binomial proportion ( ),k n
ijp  with given significance level .β  Let 

xyL   be the number of the intervals ( ) ( )( )1 2,ij ijp p  containing ,ijp  
( )
2

1
xy

xy

L
h

n n
=

−
 be the proportion of the 



intervals ( ) ( )( )1 2,ij ijp p  containing ( ), ,k n
ijp  

( )
2

1
yx

yx

L
h

m m
=

−
 is the proportion of the intervals ( ) ( )( )1 2,ij ijp p  

containing ( ),k m
ijp  in the scheme where the samples x   and y  are switched. Then, p-statistics [25] is 

( ) ( )1.
2 xy yxx y h hρ = + .         (2) 

It is the probability that the samples x  and y  are homogeneous, i.e. they are drawn from the same 
distribution. 

2.2. The Klyushin–Petunin test and its simplifications  

The original version of the Klyushin–Petunin test use ( )1
2

n n
N

−
=   confidence intervals 

( ) ( )( )1 2,ij ijp p . Let L  be the number of intervals ( ) ( )( )1 2,ij ijp p  containing ( ),k n
ijp   and (2) is the relative 

frequency of the random event ( ) ( )( ){ }1 2,ij ij ijp p p∈  with the probability 1−β . Construct the confidence 

interval nI  for the probability of the event ( ) ( )( ){ }1 2,ij ij ijp p p∈  with the given significance level (for 

definiteness, in this paper we use the Wilson confidence interval [31]). The decision rules may be 
formulated in the following way:  

1) Original version. If the confidence interval nI  covers 0.95 then the null hypothesis is 
accepted, otherwise it is rejected.  

2) First simplified version. Generate N  random natural numbers i   and j  such that ,j i>  

where 30.N ≥  Compute  ( ),x yρ  using only intervals ( ) ( )( ),i jx x  with above mentioned i   

and j , and the confidence interval nI . If nI  covers 0.95 then the null hypothesis is accepted, 
otherwise it is rejected. 

3) Second simplified version. Compute  ( ),x yρ  using only intervals ( ) ( )( )1 , jx x  and the 

confidence interval nI . If nI  covers 0.95 then the null hypothesis is accepted, otherwise it is 
rejected. 

3. Numerical experiments  

As far as, there are many formulas for confidence intervals for binomial proportions  [31], we must 
justify the choice. To compare p-statistics based on different confidence intervals we used samples of 
100 and 300 numbers and parameterized distributions. The step for parameters was set to 0.1. To 
avoid bias of pseudorandom number generators, we have conducted 10 experiments, and results were 
averaged. We have considered eight methods:  

I. Clopper–Pearson interval. 
II. Bayes’s interval.  
III. Wilson interval with corrections for continuity. 
IV. Wilson interval without corrections for continuity. 
V. Normal approximation with corrections for continuity. 
VI. Normal approximation without corrections for continuity. 
VII. Arcsine transformations with corrections. 
VIII. Arcsine transformations without corrections. 

In order to compare the statistics, samples from the following general categories were considered: 
1) same variance and different means; 2) same mean and different variances; 3) both different means 
and variances. Samples from a parametric family of hypothetical distribution with a sample from the 
general population with a reference distribution were compared (Fig. 1–6). 



      
Figure 1: N(0, α), size = 100  

 

 
Figure 2: N(0, α), size = 300  

 

 
Figure 3: N(α, 1), size = 100 

 

 
Figure 4: N(α, 1), size = 300 

 



 
Figure 5: αU(0, 1)+ (1–α)U(1/2, 3/2), size = 100 

 

  
Figure 6: αU(0, 1)+ (1–α)U(1/2, 3/2), size = 300 

 
Analyzing the Figures 1-6, we see that the choice of the confidence intervals ijI  does not effect to 

the final result: homogeneity measures are equivalent. Therefore, the family of homogeneity measures 
based on Dempster–Hills theory has high performance both for small and large samples, and the p-
statistics may be considered as independent of the selection of the type of the confidence interval. 

In [26] we have shown that in the context of change point detection the sensitivity and specificity 
of the Klyushin–Petunin test are higher than the sensitivity and specificity of the classical tests 
(Kolmogorov–Smirnov and Mann–Whitney–Wilcoxon). Now, we consider the simplified versions of 
the Klyushin–Petunin test and restricted ourselves with randomly selected 100 intervals ( ) ( )( ),i jx x  

following to the recommendations given in [32]. We generated samples containing 40 random 
numbers obeying distributions which have the same mean and the different variances, the different 
means and the same variance, and different means and different variances, and averaged results on 10 
runs. 

Here  N(µ, σ) is the Gaussian distribution with the mean µ and the standard deviation σ, U(a, b) is 
the uniform distribution on an interval (a, b), LN(µ, σ) is the lognormal distribution with the mean µ 
and the standard deviation σ, Exp(λ) is the exponential distribution with the parameter λ, Γ(α, β) is 
the gamma distribution with parameters α and β (Fig. 7–9). Consider a time series 1 2, ,..., ,...nx x x  . A 
change-point in the time series is a point mx  such that a sample ( )1 2, ,..., mx x x  is drawn from a 
distribution 1F  and a sample ( )1 2, ,...,m m nx x x+ +  is drawn from a distribution 2 1.F F≠  Let the sample 

( )1 2, ,..., nx x x  be fixing. Consider the sliding window ( )1, ,...,i i i nx x x+ + ,  where 1,..., .i n=  As i 
increases the sliding window “contaminated by the elements of the sample ( )1 2 2, ,...,n n nx x x+ + .  
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a) Gaussian distributions with different means 
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b) Lognormal distributions with different means 

 
Figure 10: P‐statistics for a) Gaussian and b) lognormal distributions 
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a) Uniform distributions 
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b) Gamma distributions 

 
Figure 11: P‐statistics for a) uniform and b) gamma distributions 
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a) Gaussian distributions 
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b) Lognormal distributions 

 
Figure 12: Simplified P‐statistics (first version) for a) Gaussian and b) lognormal distributions 
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b) Gamma distributions 

 
Figure 13: Simplified P‐statistics (first version) for a) uniform and b) gamma distributions 
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a) Gaussian distributions 
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b) Lognormal distributions 

 
Figure 14: Simplified P‐statistics (second version) for a) Gaussian and b) lognormal distributions  
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b) Gamma distributions 

 
Figure 15: Simplified P‐statistics (second version) for a) uniform and b) gamma distribution functions 

 



The p-statistics attains the minimum at a change point and increases when the sliding window 
moves further (see Figures 10–15). The sensitivity of versions of the Klyushin–Petunin test is shown 
in Table 1. The earlier a test detects the “contamination, the more sensitive it is.  
Table 1 
Sensitivity of versions of the Klyushin–Petunin test (order number of the detected change point) 

Distribution  Original version  First version (N=100)  Second version 
(N=40) 

N(0,1)–N(3,1)  12  14  8 
N(0,1)–N(2,1)  14  17  15 
N(0,1)–N(1,1)  22  29  28 
N(0,1)–N(0,4)  15  12  14 
N(0,1)–N(0,3)  26  17  14 
N(0,1)–N(0,2)  27  32  18 
LN(0,1)–LN(3,1)  12  12  9 
LN(0,1)–LN(2,1)  23  12  10 
LN(0,1)–LN(1,1)  28  21  28 
LN(0,1)–LN(0,4)  14  13  9 
LN(0,1)–LN(0,3)  18  17  9 
LN(0,1)–LN(0,2)  25  21  28 
U(0,1)–U(2,3)  12  11  6 
U(0,1)–U(1,2)  12  11  6 
U(0,1)–U(0.5,1.5)  16  16  12 
Exp(1)–Exp(4)  17  14  14 
Exp(1)–Exp(3)  18  18  29 
Exp(1)–Exp(2)  22  37  32 
Γ(1,2)–Γ (4,1)  17  10  18 
Γ(1,2)– Γ (4,2)  15  18  10 
Γ(1,2)– Γ (2,2)  22  19  30 

If one test detects a change-point earlier that other do, it is considered as more sensitive. This fact 
does not affect the accuracy of the change point detection because despite of the detection of the 
contamination the p-statistics monotonically decreases to a change point at the left end of the sliding 
window. After this point, the p-statistics becomes monotonically increasing.  

All the results are consistent. For example, when the first segment ( )1 2 40, ,...,x x x  has the 
distribution N (0,1) and the second segment ( )1 2 80, ,...,x x x  has the distribution N(3,1), the first sample 
is considered contaminated when  m > 16 according to the original Klyushin–Petunin original test (see 
Table 1). When the change point is equal to 40 then the corresponding test is considered as failed. As 
expected, that the Klyushin–Petunin test in general is more robust and sensitive than its simplified 
versions. 

The Table 1 shows that the Klyushin–Petunin  test is sensitive both for distributions with different 
means and the same standard deviation (for example, N(0,1) vs N(1,4),  and similar variants) and for 
distributions with the same means and the different standard deviations (for example, N(0,1) vs 
N(0,4), and similar variants). It also demonstrates the high performance for distributions with 
different means and standard deviations (exponential and gamma distributions). The less distributions 
differ from each other, the earlier change points are detected. 

Table 1 demonstrates that the original Klyushin–Petunin test is most robust. The first and second 
simplified versions of the p-statistics are not monotonic. Due to the high sensitivity and robustness the 
original Klyushin–Petunin test may be considered as an effective method for testing samples 
heterogeneity and change-point detecting. The fact that first and second simplified versions are 
unstable is quite understandable, since they are based on the incomplete information (former) or 
random choice of intervals (latter). Therefore, despite on the complicated computations, the original  
version of the Klyushin–Petunin test is a preferred choice. 
 



4. Conclusion 

The accuracy, sensitivity and specificity of the simplified versions of the Klyushin–Petunin test are 
comparable with the original version of this test. However, the original version, despite of its 
computational complication, is more robust. All the versions of the Klyushin–Petunin test do not 
depend on assumptions about parameters of distributions and equally sensitive to difference between 
means and standard deviations of distributions. Their significance levels are less that 0.05. They do 
not require large storage for saving data. All the versions of the Klyushin–Petunin test are more 
effective than the Kolmogorov–Smirnov and Mann–Whitney–Wilcoxon tests for small samples (size 
less than 40).   
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