
Towards Classifying HTML-embedded Product Data Based On 
Machine Learning Approach 
 

Oleksandr Matveiev, Anastasiia Zubenko, Dmitry Yevtushenko and Olga Cherednichenko 

 

National Technical University “Kharkiv Polytechnic Institute”, Kirpicheva st. 2, Kharkiv, 61002, Ukraine  

 

Abstract  
In this paper we explored machine learning approaches using descriptions and titles to classify 

footwear by brand. The provided data were taken from many different online stores. In 

particular, we have created a pipeline that automatically classifies product brands based on the 

provided data. The dataset is provided in JSON format and contains more than 40,000 rows. 

The categorization component was implemented using K-Nearest Neighbour (K-NN) and 

Support Vector Machine (SVM) algorithms.  

The results of the pipeline construction were evaluated basing on the classification report, 

especially the Precision weighted average value was considered during the calculation, which 

reached 79.0% for SVM and 72.0% for K-NN.  

 

Keywords  1 
Product classification, SVM, K-Nearest Neighbour, TF-IDF, machine learning, vectorization, 

item matching  

1. Introduction 

Today, there is an enormous number of e-shops that allow consumers to buy goods online. As a 

result, the number of products sold through e-shops grew rapidly. A recent study estimated that total e-

commerce retail sales were $791.70 billion in 2020, up 32.4% from the previous year's $598.02 billion. 

This is the highest annual growth of digital technologies for any year for which data are available this 

information reported by the Ministry of Trade in 2019 [1]. One of the reasons for this growth was the 

result of COVID-19, which further increased e-commerce revenue in 2020 by 105.47 billion dollars 

[1]. For example, web giants such as Amazon reached $100.83 billion in the fourth quarter of 2020, up 

a whopping 47.5% from $ 68.34 billion a year earlier. This is 2.5 times higher than the level of income 

on the Internet by 19.5% during the fourth quarter of 2019.   

This global trend of e-commerce is forcing all businesses to go online, resulting in an increasing 

number of e-commerce stores. Each e-commerce store has different streams to publish an added item 

on the platform. Some markets, such as Amazon, eBay, etc., allow users to become sellers and add 

products themselves. This functionality permits retailers to increase the number of products they sell. 

However, the process of adding new products and assigning a category can lead to consistency issues. 

An error in the classification of the product in the first place can lead to some problems with finding 

the exact product. Therefore, the correct categorization of products is critical for all e-commerce 

platforms, as it speeds up the search for the definite product and provides better interaction with users, 

highlighting the correct categories.  

To solve these problems with the assignment of goods to the wrong category, an automatic tool that 

can classify any product by name in the product taxonomy is needed. At the same time, this process 

                                                      
MoMLeT+DS 2021: 3rd International Workshop on Modern Machine Learning Technologies and Data Science, June 5, 2021, Lviv-Shatsk, 

Ukraine 

EMAIL: matwei1970@gmail.com(O. Matveiev); zubenkoanastasia94@gail.com (A. Zubenko); yevtushenkods@gmail.com 
(D. Yevtushenko); olha.cherednichenko@gmail.com (O. Cherednichenko) 

ORCID: 0000-0001-5907-3771 (O. Matveiev); 0000-00001-9178-0847 (A. Zubenko); 0000-0001-6250-4616 (D. Yevtushenko); 0000-0002-

9391-5220 (O. Cherednichenko) 

 
©️  2021 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 



will facilitate human work and further improve the consistency of product categorization on e-

commerce websites. 

In this paper, we apply some approaches to product categorization for the provided data collection. 

The data provided were taken from many different online stores. The total amount of data provided in 

the JSON file is over 40,000 lines. This number of records will allow us to teach the model to predict 

the category of goods for future products.  

2. Related work 

This section provides an overview of existing research on product classification based on product 

specifications that have been studied with different approaches and methods in recent years.   

Due to not all websites use a hierarchy of product classification and some of them use but it can be 

completely different, a unified product classification from different websites is needed in order to 

provide the user with useful features like browsing and searching.  

Although there are several approaches to product data classification [2] introduced a modified Naive 

Bayesian model for classifying goods, using the usual Bayesian naive instead of a text classifier. 

Although the accuracy is somewhat high, the main disadvantage of this approach is how to choose the 

right weight, as it is based on data observation and manual assignment of scales based on selected 

functions. Failure to select the appropriate weight will significantly change the results. Lin and Shankar 

[3] investigated using effective pre-treatment methods and multi-class features to improve classification 

accuracy. The paper [4] discussed the classification process in terms of what a classification was, and 

they represented a model of SCM semantic classification. In [5] used fuzzy modelling of sets to identify 

categories, but this model lacked a comparison of classification accuracy for evaluation.  

Recently, the categorization of goods using product descriptions by Chen and Warren has aroused 

great interest [6]. Despite these efforts, there are not many studies aimed at classifying goods by name 

and description. 

3. The product classification pipeline 

At an elevated level, the goal for our system is to build a multi-class classifier, which can accurately 

predict the product category of a new unlabeled product title. The high-level steps are presented in 

Figure 1. 

 

 
Figure 1: Stages for this classification process 

 

As shown in Figure 1, we performed the following steps to build a classification model:  

1. Exploratory data analysis 

2. Feature Selection based on the Exploratory data analysis (EDA). 

3. Pre-processing 

4. Data transformation 



a. Removes topic-neutral words such as articles (a, an, the), prepositions (in, of, at), conjunctions 

(and, or, nor), etc. from the documents. 

b. Word stemming 

5. Classification models: Multi-Class SVM, K nearest neighbours (K-NN) for the selected 

features. These two models were selected to compare the discriminative (SVM) and nonparametric 

models (K-NN). 

6. Analysis of the results   

The full process is described below. 

3.1. Classifiers Overview  

The classifier is built basing on the learning from the provided dataset and can be used to classify 

unknown products by brand in future. We choose two algorithms (K-NN and SVM) to implement. We 

provide a brief description of each algorithm in this Section. 

3.1.1. SVM Based Categorization 

SVM is introduced as an algorithm for text classification by Joachims [14]. Let 𝐷𝑛 =

 {( 𝑑1
⃗⃗⃗⃗ , 𝑐1), … ( 𝑑𝑛

⃗⃗ ⃗⃗  , 𝑐𝑛)}  be a set of  𝑛  instances for training, where 𝑑1 ⃗⃗⃗⃗  ⃗  ∈ 𝑅𝑁, and category 𝑐𝑖 ∈

 {−1,+1}. SVM learns linear decision rules 𝑓(𝑑 )  =  𝑠𝑖𝑔𝑛{�⃗⃗�  𝑑  +  𝛿} , described by a weight vector 

𝑤 and  𝑎 threshold 𝛿. If 𝐷𝑛 is linearly separable, SVM finds the hyperplane with maximum Euclidean 

distance to the closest training instances. If 𝐷𝑛 is non-separable, the amount of training errors is 

measured using slack variables 𝜉𝑖. Computing the hyperplane is equivalent to solving the following 

optimization problem [16]. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑉(�⃗⃗� , 𝛿, 𝜉 )  =  
1

2
�⃗⃗� ∗ �⃗⃗� + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1     (1) 

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∀𝑛=1
𝑛 : 𝑐𝑖[�⃗⃗�  ∗ 𝑤 ⃗⃗⃗⃗ + 𝛿]  ≥  1 − 𝜉𝑖    (2) 

∀𝑖=1
𝑛 : 𝜉𝑖 > 0       (3) 

 

The factor 𝐶 in (1) is a parameter used for trading off training error vs. model complexity. The 

constraints (2) require that all training instances be classified correctly up to some slack 𝜉𝑖. 

3.1.2. K-NN Algorithm 

The K-Nearest Neighbour (K-NN) is one of the popular algorithms [15, 16]. The algorithm is based 

on finding the most similar objects from sample groups about the mutual Euclidean distance [7, 8].   

The algorithm assumes that it is possible to classify documents in the Euclidean space as points [17]. 

The distance between two points can be calculated as following: 

 

𝑑(𝑝, 𝑞)  =  𝑑(𝑞, 𝑝)  =  √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2     (4) 

 

3.2. Exploratory Data Analysis 
3.2.1. Convert a file from JSON format to CSV 

First of all, it is necessary to convert the input format to CSV. This format is more common in Python 

and gives us more opportunities to work with data.   



To do this, we installed an additional library of pandas. We did this with the following command: 

pip install pandas.  

This library contains the read_json () method, which allows you to upload a file to the program and 

continue working with it. The read_json () method can take several parameters but we used only one: 

path_or_buf. This parameter is responsible for the path to our JSON file. This library contains the 

read_json() method, which allows you to upload a file to the program and continue working with it. 

Once we download the file data to the program's memory, we can start working on it. The data 

downloaded to the program's memory can be written to a CSV file, using the following method - 

to_csv(). In this method, we passed the path where we wanted to place our CSV file as a parameter.  

The code needed to convert a file from JSON to CSV can be found in the convert.py script. Run the 

file with the following command: python convert.py. 

3.2.2. Input analysis 

After we have converted the input file, we can start its analysis. The input file contains 41,664 

records and 17 columns: 

 

 
Figure 2: All columns in the input file  

 

Consider the source data contained in the tables. The data is presented in Figures 3 and 4. 

 
Figure 3: All source data in columns A-I 

 



 
Figure 4: All source data in columns J-H 

 

We focused on each of the provided columns separately. This is important because a more detailed 

analysis allowed us to understand exactly how to configure the script for automatic data processing.  

The amount of zero data in the tables was analysed, the result is presented in Figure 5.  

 

 
Figure 5: Sums of zero data in the initial columns 

 

Analysing Figure 5, we concluded that the data contains many zero values, but this function 

calculates the sum of zero values. Therefore, if there are no records in the column, the sum of the zero 

values will not be found correctly. The proof of this issue is presented in Figures 3 and 4 where we can 

see the empty columns. Thus, before deleting the null rows the additional manual examination for the 

columns is required. The result of our additional analysis is presented in Figure 6 

3.3. Feature Selection based on the Exploratory Data Analysis 

Based on the data analysis stage, we identified columns that were used for further modelling.  Thus, 

for the machine learning model, we used: title, description, and brand. The example of the columns and 

the data they contain is presented in Figure 7. 



 
Figure 6: Additional analysis of columns in the input file and analysis of the need for columns for 
further use 
 

 
Figure 7: Columns to be used for further analysis 
 

Based on the provided example in Figure 6, we concluded that the existing data cannot be used for 

appropriate product categorization, because of the:  

 a large number of empty values; 

 data duplication. 

Therefore, before approaching the categorization of data, we decided to proceed with further 

cleaning. So, we developed the component which cleans input data automatically.   

 

3.4. Pre-Processing. Automatic Cleaning for the Input Data 

Since our solution in future will work with the new data itself, we developed a script that cleans the 

data automatically. 

First of all, we removed cells that contain empty values. Otherwise, the algorithm cannot process 

the data correctly. To do this, we used the dropna() method that comes with the pandas() package. This 

method automatically deleted empty cells. 



Next, duplicates are removed with the drop_duplicates() method. For this method to process the 

current file (and not return a new one), set the inplace = TRUE parameter. Since the input data will be 

obtained from several resources, we need to process them further. 

The HTML tags were removed, as there was a risk that they might be in our sample. It was done 

using the methods BeautifulSoup() and get_test() from the bs4 library. 

Then the special characters which could be in these data were removed. The library re and the sub() 

method were imported. As the first parameter, we passed the following pattern: [^ a-zA-Z \ d]. 

The next step was to transform all the text data into lowercase and broke it down into words. To do 

this we used two lower() and split() methods. 

After that, the "stop words" can be applied, for that the stopwords() function was used. This function 

takes one argument: the language we work with. As this argument, we transferred the value "English 

feature". This set parameter analyzes the language in each cell and removes all non-English rows. 

To start automatic cleaning of input data, you should run python clear.py script that contains all the 

steps described above. After executing the submitted script, our document contains 3 columns and 

10,200 unique cleaned lines. An example of the processed data is shown in Figure 8. 

 

 
Figure 8: Example of processed data 

 

Thus, after processing 41,664 lines, 10,200 lines were left, which is 24,48% of the initial dataset. 

 

3.5. Data Transformation. Text Vectorization 

Machine learning algorithms usual operate on a numeric feature space. To perform the algorithm on 

the text, we transformed our text data into vector representations. It is called feature extraction or 

vectorization [9].   

In this paper, we evaluated performance of two methods HashingVectorizer, CountVectorize which 

are used for converting the collection of text data to a matrix of token counts and TfidfVectorizer 

method for converting a collection of raw data to a matrix of TF-IDF features.  

HashingVectorizer and CountVectorizer are meant to do the same thing, which is to convert a 

collection of text documents to a matrix of token occurrences. [10]. Term frequency-inverse document 

frequency (TF-IDF) is a feature vectorization method used to reflect the importance of a term to a 

document in the corpus [11]. TFIDF can be calculated as: 

 

𝑎𝑖𝑗 =  𝑡𝑓𝑖𝑗𝑖𝑑𝑓𝑖 = 𝑡𝑓𝑖𝑗 × 𝑙𝑜𝑔2 (
𝑁

𝑑𝑓𝑖
)     (5) 

 



where 𝑎𝑖𝑗 is the weight of term 𝑖 in document 𝑗, 𝑁 is the number of documents in the collection, 𝑡𝑓𝑖𝑗 is 

the term frequency of term 𝑖 in document 𝑗 and 𝑑𝑓𝑖 is the document frequency of term 𝑖 in the collection.  

To obtain better results with documents of different length, we used a modified equation [14]: 

 

𝑎𝑖𝑗 =  𝑡𝑓𝑖𝑗𝑖𝑑𝑓𝑖 =
𝑓𝑖𝑗

√∑ (𝑓𝑖𝑑𝑓(𝑎𝑠𝑗))
2𝑁

𝑠=1

 × 𝑙𝑜𝑔2 (
𝑁

𝑡𝑑𝑖
)   (6) 

 

Each row is converted into appropriate representation and applied to training, validation, and 

classification phases.   

The vectorization also allows us to calculate the number of unique categories which we are going to 

classify, as a result, we performed with 323 different classes.   

3.6. Modelling Classification Algorithms 

Both algorithms will process with the features selected in Section 3.3.   

For selected, cleaned features we applied the vectorization CountVectorizer function which was 

done during applying the StratifiedKFold method which splits the dataset into the 3.6 test groups. The 

selected vectorization function allows us to evaluate the performance of the built model and compare 

the results we got with applying K-NN. After we applied the vectorization function, the next step was 

determining the optimal value of the C parameter. The evaluation for selected C parameters is presented 

in Section 3.7.1. 

As we selected features, we vectorized the data. For the K-NN model, we evaluated the performance 

by applying each vectorizing functions described in Section 3.5. The evaluation is done in Section 3.7.2.   

In the next step, we determined the K value. To determine the vectors distance between the data for 

K-NN, we used both Cosine similarity and Euclidean space. 

3.7. Models Evaluation 

The method of stratified cross-validation kfold (Stratified kfold cross validation) was used to assess 

the quality of the model at the initial stage. Choosing between regular cross-checking kfold and 

stratified cross-checking. The kfold check selected a stratified kfold cross check. Because we have 

unbalanced data, stratified kfold cross-checking is useful for our experiment. It was decided not to use 

regular kfold cross-checking because we do not have enough data and this method often preserves the 

ratio of classes, and this can lead to partitioning in such a way that some networks will contain examples 

of training from only one class.  

Stratified cross-checking is suitable for assessing the quality of a classifier without the use of test 

data. Testing occurs from parts of the training sample that are not known to the classifier. This 

assessment approach helps determine if the system is capable of relearning. In our experiment, we used 

a stratified cross-check with k bends (k = 6) for 10,200 products and 323 categories. Therefore, the 

evaluation was done for the 1703 products. 

The evaluation was performed in several test phases:   

 quality classification; 

 speed text classification; 

 classifications recall according to categories of product.   

Classification results, reported in this section, were based on the evaluation which was done 

according to F1–measure, precision, recall, and accuracy metrics [19]. To evaluate the overall 

performance of the algorithms on given datasets we focused on the F1 macro average. F1 macro average 

calculates the score separated by class but not using weights for the aggregation. The F1 weighted 

average calculates the score for each class independently but when it adds them together uses a weight 

that depends on the number of true labels of each class. Therefore, F1 weighted average favoring the 

majority class which we do not want.   



3.7.1. SVM Model Evaluation  

We applied different values for the C parameter to ensure that the experimental results faithfully 

reflect the performance of the algorithms.  

 

 
Figure 9: SVM result 
 

From the experimental result of the SVM, the C parameter equals 0,125 is optimal based on the 

execution time of 310.8 sec which is 5.5 min and the macro average for F1-score is 72%.    

Also, for measuring the performance we calculated the number of goods with correct and incorrect 

classification based on that the percentage of correct and misclassified categories was found. So, the 

algorithm creates a separate file for initial and classified values, and automatically compares values. 

Then this function calculates the sum of correct and incorrect predicted values and percentage 

accordingly.   

The output of this function is presented in Figure 8. The comparison is presented in Figure 10.  As 

we selected features, we vectorized the data. For the K-NN model, we evaluated the performance by 

applying each vectorizing functions described in Section 3.5. The evaluation is done in Section 3.7.2.   

In the next step, we determined the K value. K value of the K-NN algorithm is a factor that indicates 

a required amount of data from the collection which is closest to the selected row. To determine the 

vectors distance between the data for K-NN, we used both Cosine similarity and Euclidean space. 

 

 
Figure 10: SVM incorrect classification calculation  

3.7.2. K-NN Model Evaluation 

Various scaling methods were used to evaluate the efficiency of the model, such as the similarity of 

cosines and Euclidean space. The final analysis of the model efficiency is analyzed based on the chosen 

method. Figures 11-13 represent some results of our experimets. 

 



 
Figure 11: K-NN model with tf-idf scale method 

 

 
Figure 12: K-NN model with HashingVectorizer scale method 

 

 
Figure 13: K-NN model with CountVectorizer scale method 

 

Based on the K-NN models evaluation results, the best result for classification by a brand we got 

while using the vectorization method TfidfVectorizer and cosine similarity metric, where the macro 

average for F1 is 70%.  The number of goods with correct and incorrect classification and the percentage 

of correct and misclassified categories were calculated as the same for SVM presented in Figure 10.    

Also, we can see that the execution time which is 9,04 sec for the best result depends on the selected 

scale method, metrics and the number of features used for the elevation.   

Therefore, we can conclude that if the number of input features is increased, the execution time 

could become critical, and another faster model can be used.   

4. Conclusion 

In this paper, we present an investigation of two widely used approaches for text categorization K-

NN and the SVM algorithms.   

The main goal of the research was to evaluate the performance of two popular K-NN and SVM 

algorithms, compare execution time for both of them and to develop an MVP pipeline that can 

automatically classify the shoes category based on the brand.   

The combination of the K-NN algorithm and different vectorization methods showed good results 

as well as SVM and CountVectorizer. However, despite the good performance results of the SVM 

algorithm, it has the highest execution time, which can be significant for big marketplaces.    

Therefore, the gained results which are reported in this paper are satisfactory, however, they are not 

the best that can be achieved. Moreover, additional investigation is needed to improve the performance 

of applied algorithms.  

To further study and improve the model, the following steps are suggested: 

- Get more data to test models; 

- Implement of the algorithm for automatic search of optimal arameters; 



- Prepare the developed module for integration with e-commerce stores. 

5. References 

[1] Quarterly retail e-commerce sales in the last quarter of 2020. US Digital Commerce Bureau News 

(2020) https://www.digitalcommerce360.com/article/quarterly-online-sales/   

[2] Kim, Young-Gon Modified naïve bayes classifier for e-catalog classification, Seoul 151-742. 

[3] I. Lin, S. Shankar Applying Machine Learning to Product Categorization Stanford University. 

CS229.  

[4] Kim Dongkyu, Sang-Goo Lee, Jonghoon Chun, Juhnyoung LeeA semantic classification model 

for e-catalogs.: Proceedings - IEEE International Conference on E-Commerce Technology, CEC 

2004, p 85-92, (2004).  

[5] Wan, Hongxin; Peng, Yun A technique of e-commerce goods classification and evaluation based 

on fuzzy set. Proceedings, International Conference on Internet Technology and Applications, 

ITAP (2010). 

[6] Jianfu Chen, David Warren. Cost-sensitive learning for large-scale hierarchical classification. In 

Proceedings of the 22Nd ACM International Conference on Conference on Information & 

Knowledge Management, CIKM, pages 1351–1360 (2013). 

[7] S.Tan, Neighbor-weighted K-nearest neighbour for unbalanced text corpus, Expert Systems with 

Applications 28 (2005) 667–671. 

[8] M.Lan, C.L.Tan, J.Su, Y.Lu, Supervised and Traditional Term Weighting Methods for Automatic 

Text Categorization, IEEE Transactions on Pattern Analysis and Machine Intelligence, VOL. 31, 

NO. 4, (2009). 

[9] Text Vectorization and Transformation Pipelines. Chapter 4.  

https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/ch04.html  

[10] HashingVectorizer, CountVectorizer https://kavita-ganesan.com/hashingvectorizer-vs-

countvectorizer/  

[11] H. Uguz, A two-stage feature selection method for text categorization by using information gain, 

principal component analysis and genetic algorithm, Knowledge-Based Systems 24 (2011) 1024–

1032.  

[12] J. T.-Y. Kwok, Automatic Text Categorization Using Support Vector Machine, Proceedings of 

International Conference on Neural Information Processing, (1998) 347-351. 

[13] Joachims, T. Text Categorization with Support Vector Machines: Learning with Many Relevant   

Features, In   Proceedings of   10th   European   Conference on   Machine   Learning, Chemnitz, 

Germany, pages 137-142 (1998). 

[14] Joachims, T.  A Statistical Learning Model of Text Classification for Support Vector Machines.  

In Proceedings of SIGIR-01, 24th ACM International Conference on Research and Development 

in Information Retrieval, pages 128-136 (2001). 

[15]  Wang, X. Li, An improved KNN algorithm for text classification, (2010). 

[16] G. Guo, H.Wang, D.Bell, Y. Bi, K. Greer, KNN Model-Based Approach in Classification, (2003) 

986 – 996. 

[17] Ming-Yang Su, Using clustering to improve the KNN-based classifiers for online anomaly network 

traffic identification, Journal of Network and Computer Applications 34 (2011) 722–730.  

[18] K. Mikawa, T. Ishidat, M.Goto, A Proposal of Extended Cosine Measure for Distance Metric 

Learning in Text Classification, 2011.  

[19] Sebastiani, F. Machine Learning in Automated Text Categorization. ACM Computing Surveys, 

Vol.34, No.1, March 2002, pages 1-47 (2002). 


