

192

Designing Networked High-Load Distributed Computing Web
Systems for Intensive Processing of Information Data Flows

Mykola Pasiekaa, Vasyl Sheketaa, Iryna Halushchakb, Svitlana Verbeshchukb,

and Mykhailo Yasinskyic

a National Technical University of Oil and Gas, 15 Karpatska str., Ivano-Frankivsk, 76068, Ukraine
b Vasyl Stefanyk Precarpathian National University, 57 Shevchenko str., Ivano-Frankivsk, 76000, Ukraine
c Ukraine Academy of Printing, 19 Pid Goloskom str., Lviv, 79020, Ukraine

Abstract
The grid model and algorithm of the high-load distributed fault-tolerant web system

architecture are improved. The main difference lies in the possibility of aggregation and the

sharing of a large number of heterogeneous computing resource sets to process information

and data flows distributed between different geographical areas. Compared with the

traditional method, the proposed model and algorithm allow the use of other network

resources connected to the functional network. In the traditional method, these resources are

not available within a single computing node on an independent computing platform. Further

developed innovative methods for building high-load fault-tolerant distributed cluster

software systems, which generally greatly increase the total amount of information flow in

the node communication system. Therefore, this method is suitable for distributed fault-

tolerant software systems in which the operational loss of information data flow is

unacceptable. Further developed an algorithm for automatic load control on an independent

computer platform for information data flow to achieve effective expansion (clustering) of

the software system.

Keywords 1
Software system, algorithm, architecture, web system, network.

1. Introduction

Computing node load balancing ensures an even load of hardware and software systems on

independent computing platforms. The software system that is balancing the computational load must

automatically decide on which node to perform the computation for the new information task. Thus, the

main task of balancing is the process of effectively supporting the process of moving (migrating) part or

all of the calculations from the most loaded computing nodes to the less loaded ones, loading input

factors i of i = 1, ..., r; uj are weighing output parameters, weighing output parameters j of j = 1, ..., s.

When solving the problem of maximizing efficiency standards, there is an urgent problem, that is,

there is a share in the distribution of two linear aggregate values [46].

In addition, the problem of maximizing the efficiency of web systems is called linear particle

programming. At the same time, the possibility of converting linear particle programming into linear

programming problems is very high:

𝑓0 =
∑ 𝑣𝑖𝑥𝑖

𝑟
𝑖=1

∑ 𝑢𝑗𝑦𝑗
𝑠
𝑗=1

→ 𝑚𝑖𝑛!, (1)

with
∑ 𝑣𝑖𝑥𝑖

𝑟
𝑖=1

 ∑ 𝑢𝑗𝑦𝑗
𝑠
𝑗=1

 ≥ 1 or all modules m = 1, 2, …, n ; uj 0, j = 1, 2, ..., s; vi 0,

Cybersecurity Providing in Information and Telecommunication Systems, January 28, 2021, Kyiv, Ukraine
EMAIL: pms.mykola@gmail.com (A.1); vasylsheketa@gmail.com (A.2); pasyekanm@gmail.com (B.3); iryna.galushchak@gmail.com

(B.4); leuro@list.ru (C.5)

ORCID: 0000-0002-3058-6650 (A.1); 0000-0002-1318-4895 (A.2); 0000-0002-4824-2370 (B.3); 0000-0001-9445-6348 (B.4); 0000-0002-
4824-2370 (C.5)

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

193

i = 1, 2, ..., r; yj are expression j and the output parameter of the tested computing module (node); xim is

expression i that input factor m of that computing node with i = 1, ..., r and m = 1, ..., n; yjm expression j

that input factor m of that computing node with i = 1, ..., r and m = 1, ..., n; vi – input factor weights i

with i = 1, ..., r; uj are weighing the output parameter j with j = 1, ..., s.

For further research, we use a complex fractional programming theory algorithm (a more

traditional linear programming algorithm with less resource occupancy) to modify the non-linear

problem of efficiency standard optimization. Therefore, the use of linear optimization methods can

simplify the complex problems of efficiency standard optimization into linear problems [28]. In order

to obtain the value of the efficiency standards of all computing modules (nodes), it is necessary to

solve the problem of maximizing each module involving scientific research separately. In this case,

replace the vectors xim and yim [24] with the input and output parameter configuration files of the

studied computing module, respectively. In another task of maximizing efficiency standards, they

remain the same for each computing node [18, 30, 35, 45, 50]. In this task, restrictions are imposed to

ensure that qualitative efficiency values are found in the region between zero and one (e0 [0,1]). The

basic properties of the model are formed by the efficiency limit criterion. Its objective function

proportionally attempts to increase the observed output parameters of the calculation module to the

limit of the efficiency standard. In the mathematical decoupling of a certain function, after applying

the duality theorem to it, an equivalent form or so-called hug form is formed. The dual principle of

linear programming is used to prove that for each directly optimized linear model considered, the

efficiency criterion has a corresponding dual optimized linear model, and when one model decision

includes all expressions, the other model decision also includes all expressions. formula. Therefore,

the initial optimization model will be regarded as a direct linear programming problem. Thus, using

the dual method in our scientific research, we are guaranteed to obtain minimization of the weighted

sum of input parameters in one normalized output parameter. As a result of these manipulations, we

obtain a mathematical formulation of the linear programming model using the dual method, which is

performed as follows:

min 𝑔0 = ∑ 𝑡𝑖

𝑟

𝑖=1

𝑥𝑖, (2)

with g0 is the value of the efficiency criterion of the studied computing node; xi is an expression i of

that computing node input factor with i = 1, ..., r; ti is variable weighting factors.

The linear combination determines the potential reference group, which is used to measure the

efficiency standards of the computing nodes involved in the research. Therefore, according to the

optimization task of minimizing the objective function (2), the proposed method selects such a

reference group in which the efficiency standard of the computing node involved does not seem to be

effective enough [10, 37, 40].

Therefore, the mathematical problem can be explained as for the computing node to be studied, the

minimum efficiency standard for determining the input parameter G0 is compared with the weighted

probability of the comparison unit. The weighted combination of any input parameter and output

parameter does not subtract the output parameter, any The weighted integral combination of the input

factors is G0 times larger than the input factors.

2. Parametric Network Model with Time Index to Calculate Load

The basic principles of the operation and function of the cloud computing network model on an

independent computing platform are very different from the traditional serial and parallel models. The

main feature of the cloud computing network model is the ability to aggregate and collectively use a

large information set of heterogeneous computing key data streams distributed in geographic

locations. This method has significant advantages. For example, when the developed software system

needs information resources that are not available in a computing node, it can get it to other

computing nodes connected to the cloud network. [5, 8, 9, 11, 23, 27].

194

Suppose that m computing resources are available in the network cloud environment, and there is a

task flow t distribution system, which evenly distributes information tasks j t among the available

resources. In the framework of combining this developed software system with cloud technology,

each user’s information task can be divided into certain computational actions k  j.

When setting the task, determine the processing time dj to obtain the corresponding node. Each

information task of user j and all corresponding actions k  j are in the cloud grid and at a certain

point rj. Therefore, there is a cloud network running in online mode with custom rj. A large number of

these tasks have unknown values beforehand. Once a custom task to be processed arrives on the cloud

network, plan to search for and allocate the necessary resources to run it. Assume that the final

allocation result of the calculation task S for each action k  j is to process Ck(S) within a certain

period. It’s required. Therefore, the processing speed of the user’s computing task in the cloud

network j will not be lower than the processing speed in the specific period determined by the

expression:

𝐶𝑗(𝑆) = max
𝑘∈𝑗

𝐶𝑘(𝑆), (3)

with Ck(S) is the maximum processing time of the user’s task; k is action; j is mission.

Let us define pj as the processing time of the user’s task k  j. So, the processing time of a user’s

task in a cloud network can be calculated as follows:

𝑝𝑗 = 𝐶𝑗(𝑆) − 𝑚𝑖𝑛
𝑘∈𝑗

(𝐶𝑘(𝑆) − 𝑝𝑘), (4)

with pj is user task processing time; Ck(S) is execution time; Cj(S) is maximum execution time; pk is

decision implementation time.

The received point value allows estimation of the properties of the cloud network computing

environment. To analyze the quality of cloud services provided by the network computing

environment, you can use the value of the maximum delay in the user task:

𝐿𝑚𝑎𝑥 = max
𝑗∈𝑡

(𝐶𝑗(𝑆) − 𝑑𝑗), (5)

with Lmax is a maximum delay of the user’s task; Cj(S) is maximum processing time; dj is a time of

uncompleted user tasks.

Thus, to optimize distributed cloud resources it is necessary to minimize the value of Lmax, and equal to

the previous value of the parameter you can also use the value of Tj, which will determine for us the delay

time of user tasks that are calculated:

𝑗 ∈ 𝑡 ⋀ 𝐶𝑗 > 𝑑𝑗 , (6)

with t is information computing resources are available; dj is a time of uncompleted user tasks; Cj is time

to complete one task; k is action; j is mission.

Therefore, the indicator provides information about the number of outstanding calculation requests of

users who have entered the cloud network for processing. The computing resource consumption of the

RCk cloud network is a specific subtask of computing, which is defined as the product of the

corresponding solution time multiplied by the number of resources used in the network:

𝑅𝐶𝑘 = 𝑝𝑘 × 𝑚𝑘, (7)

with RCk is total consumption of network computing resources; pk is decision implementation time;

mk is the number of resources used.

Using the total use value of cloud computing resources used, you can calculate the total cost of

available necessary information resources U:

𝑈 =
𝑅𝐶(𝑆)

𝑚 × (max
𝑗∈𝑡

𝐶𝑗(𝑠) − min
𝑗∈𝑡

(𝐶𝑗(𝑆) − 𝑝𝑗)
, (8)

with U is the amount of use of available information resources; m is resource quantity; pj is processing

time of the jth problem; RC(S) – time of total consumption; Cj(S) is the time of the jth task.

195

Thus using the formed standard that characterizes the optimal use of computing resources in a cloud

distributed network through a certain value. The following situations usually occur in the process of data

processing of information requests in a cloud distributed network: the software system crashes when

processing highly loaded user tasks [6, 7, 26, 43, 44, 47].

Based on the mathematics outlined above, we conclude that the user’s task of processing an

information request must be performed several times before it can be completed. Since users and

administrators may have different (or even conflicting) requirements for cloud-based web systems, it is

difficult to find a common metric that everyone is satisfied with. From the perspective of a distributed

software system developed by users using cloud technology, the following metrics can be distinguished

between average query response time (Average Response Time, ART) and average query latency

(Average Wait Time, AWT):

𝐴𝑅𝑇 =
1

|𝑡|
∑(𝐶𝑗(𝑆))

𝑗∈𝑡

, (9)

with Cj(S) is the time of the jth task; pj is the time of realization of the jth task; t is available resources.

𝐴𝑊𝑇 =
1

|𝑡|
∑(𝐶𝑗(𝑆) − 𝑝𝑗)

𝑗∈𝑡

, (10)

with Cj(S) is the time of execution of the jth task; t is available resources.

The ART parameter value represents the average response time to user information requests, that is, the

speed of processing user tasks. In addition, the value of the parameter AWT is very important for

developers of action algorithms in small information tasks and their query processing. Therefore, the best

and simple way to measure the efficiency of fair use of information and hardware resources is to calculate

the deviation of the expected weighted average time for query processing:

𝐴𝑊𝑇𝐷 =
1

|𝑡| √∑(𝐶𝑗(𝑆) − 𝑝 𝑗)2 − (∑
𝐶𝑗(𝑆) − 𝑝 𝑗

|𝑡|
𝑗∈𝑡

)2

𝑗∈𝑡

, (11)

with AWTD is the deviation of the average waiting time for processing the user’s information request; t is

available resources; Cj(S) is the time of execution of the jth task; pj is the time of realization of the jth task.

The AWTD must be minimized to get the best results in the cloud network. In the modern cloud

network web system, the ability to complete the processing of a given number of tasks is more important

than the acceleration of the distributed high-productivity web system obtained by using this processing

method. It should be noted that, compared with the user’s information task executed in a parallel system

of the traditional architecture, the user’s information task executed in a cloud network environment may

have a quite complex architecture. For example, the information flow of a user task has a more complex

logical structure than the corresponding task package [25]. The use of cloud grid needs to change

concepts such as errors in the web service development program system designed based on the grid

model. Once there is a situation where the user information task cannot be successfully executed and

completed, an error message will be generated.

Using a cloud mesh requires changing such notions as errors of a developed program system of web

services which is designed on a mesh model, generates error messages as soon as there comes a situation

when it is impossible to successfully execute and finish a user’s information task. For example, if suitable

resources cannot be found to perform information calculation or information calculation cannot be

completed, the developed software system using cloud technology may malfunction.

Using the concept of fault tolerance in software systems using cloud technology, we can define it as

the main possibility of increasing the time delay of software and hardware errors until the work of

processing user requests cannot be completed. An indicator of completed user request processing in a

software system that uses cloud technology “workload completion”, which is formed by the ratio of

completed user tasks to the total number of requests set by the cloud network scheduler:

𝑊𝐶 =
∑ 𝑗 ∈ 𝑡 ⋀ (𝑗 𝑐𝑜𝑚𝑝𝑙𝑖𝑡𝑒𝑑)

|𝑡|
, (12)

196

with WC is the indicator of completed user requests processing; t is available resources; j is the task.

This indicator allows defining the main limitations of the cloud network software system, the

maximization of which may be the main goal. However, from the perspective of using free

information and hardware resources, it also has some key limitations, because user tasks with a small

number of computing operations have a significant impact on the change of this value [16].

Task completion calculates the number of completed operations relative to the total number of

operations performed. These have been implemented in the cloud software system for user task

assignments.

Through this indicator, you can define the main limitations of the cloud network software system,

and maximizing it can be the main goal. However, from the perspective of using free information and

hardware resources, it also has some key limitations, because the tasks of users with fewer

computational actions have a greater impact on the change of the value.

Task completion calculates the number of completed operations relative to the total number of

operations performed. These have been implemented in the cloud software system for user task

assignment:

𝑇𝐶 =
∑ 𝑗 ∈ 𝑡 ⋀ 𝑘 ∈ 𝑗 ⋀ (𝑘 𝑐𝑜𝑚𝑝𝑙𝑖𝑡𝑒𝑑)

∑ 𝑗 ∈ 𝑡 |𝑗|
, (13)

with TC is the index of completed actions for processing user tasks; t is available resources; k is the

action; j is the task.

It is also worth considering the concept of completing unlocked operations from user tasks to handle

the completion of enabled tasks, i.e., they can only be executed when all corresponding dependencies of a

given sequence of operations will be executed by a software system using cloud technology:

𝐸𝑇𝐶 =
∑ 𝑗 ∈ 𝑡 ⋀ 𝑘 ∈ 𝑗 ⋀ (𝑘 𝑐𝑜𝑚𝑝𝑙𝑖𝑡𝑒𝑑)

∑ 𝑗 ∈ 𝑡 ⋀ 𝑘 ∈ 𝑗 ⋀ (𝑘 𝑒𝑛𝑎𝑏𝑙𝑒𝑑)
, (14)

with ETC is the integral indicator of completed unlocked actions relative to user tasks; t is available

resources; k is the action; j is the task.

Therefore, when developing a program system that is very different from traditional serial and parallel

models, we have considered the main principles of cloud network model operation. The main difference

between them is that they can gather and share a large number of heterogeneous information resources

distributed among geographically independent computing independent platforms. This architecture

method of using cloud technology to develop program systems has brought considerable advantages and

financial benefits. For example, when a program web system needs a large number of information

resources that cannot be accessed within a computing node, it can combine them Connect to another

connected node to the cloud network.

3. Models and Algorithms for Optimization of Distributed High-Performance
Software Web System Architecture

Any web system or cloud service that serves many users with a priori high load. However, high-load

distributed software web systems cannot effectively apply models, methods, and algorithms. These

models, methods, and algorithms are used as the basic methods for developing ordinary websites [4, 42].

If there is no proper way to use cloud technology to optimize the system development architecture of the

program, then a large number of users and corresponding calculations will lead to complexity in timely

maintenance [1, 17, 21, 29]. Now, all models, methods, and algorithms used to develop distributed fault-

tolerant web system architecture have been developed and used through recognized information

technology [19]. The method of sending information packets should use an algorithm to calculate the

checksum of the control protocol transmission of the packet, which allows you to use the checksum of the

header of this packet to display the checksum of the control protocol transmission of the data of the

packet [2, 12, 20, 22, 36].

197

Consider the checksum recalculation algorithm, which will use the output packet checksum and the

input packet checksum to calculate the checksum. Therefore, if the clipboard is divided into two

information parts, the checksum of the entire buffer can be expressed linearly by the checksum of its

parts. The typical length of the packet header protocol control transmission is usually several times

shorter than the base of the entire information packet. Therefore, the calculation amount of the entire

software web system resources is reduced by n times, and the redirection cost of client requests from one

node to another can be significantly reduced. In the next technical stage, user requests will be passed to

the computing node for processing. The architecture of computing nodes used to process user information

requests should be organized in a hierarchical structure. At the bottom of this hierarchy are important

computing modules used to process user requests. The failure of these modules will temporarily slow

down the overall operating speed of the web system, but will not paralyze the entire system. If the lower

computing module does not work, the cloud network web system allows the corresponding computing

module of other nodes to be used. However, in the calculation process of this organization, it is obvious

that the communication level between nodes when processing user requests should be perfect.

The organizational characteristics of the architecture of computing nodes for processing high user

requests require that these modules have a clear hierarchical structure. The essence is that each computing

module of a node must be isolated from each other as much as possible, and exchange information at the

message level of the public system while relying on the information. Therefore, the design of the software

web system should be developed according to the following principles: “The fault is a specific part of the

web service work and should be controlled at the system message exchange level.” The architecture of

the fault hierarchy is that any web system is composed of computing modules, and when the descendant

modules refuse, the next one has a series of operations. The organizational features of the computational

node architecture for processing high user requests require that these modules have a clear hierarchical

structure. The essence is that each node’s computing module must be as isolated as possible from each

other and exchange information at the level of the public system message, relying on the information.

Therefore, the design of the web system software should be developed according to the following rules:

“The fault is a specific part of the website operation and should be controlled at the system message

exchange level.” The architecture of the fault hierarchy is that each network system consists of computing

modules, and when the child modules refuse, the next one performs a series of operations (Fig. 1).

Figure 1: Model of failure hierarchy processing in software web systems

The selection of the computing module used to execute user requests is not only based on its load but

also based on information about the number of failures in other modules of the cloud node. This

198

algorithm is necessary in order not to create a packet for processing the instantaneous data flow from a

very busy node module to a less busy node module. As a result of these manipulations, a complex cloud

network for exchanging computing information arrays between corresponding modules of computing

nodes is formed. However, the main purpose of building a high-load distributed software web system is

to create such a software system without using cloud technology, which will not fail during industrial use

and will be able to work and process various types for as long as possible information. Challenges and

own mistakes [41]. After the information message flow has been redirected, the computing module will

not stop working.

Therefore, we can emphasize the strategies that can be implemented in each computing module [15].

In the first strategy, we will understand that the load on the computing module is large. In this case, the

module will execute the entire list of user tasks that enter or remain in it for processing, perform a master

restart, and generate an information message to the module higher in the hierarchy, and prepare to work

[48]. It is assumed that the cloud network module of the computing node and the main load balancer

constantly exchange information messages about readiness, and the module will receive a new data

stream for processing in each subsequent data stream iteration of load distribution on the node. The

snapshot/restore method of data replication is usually used in high-load distributed web systems.

Therefore, a hybrid system model with a centrally balanced node for load balancing and cloud network

communication between computing nodes allows you to simply add more nodes by applying the cluster

structure. The high-level communication between computing nodes brings problems to the data cloning

method because, in the event of a failure of one of the nodes, it is necessary to recalculate the overall

performance of the entire web system. Obviously, in this case, we can divide the problems related to

computing node failures into two condition groups. The first group of software and hardware technical

issues. If an error occurs in the software of the developed web system, because the redistribution of the

calculation amount occurs at the level of the calculation module, if the calculation module at the top of

the hierarchy is designed correctly, the system will automatically and quickly restore its performance and

not get the level connection error [51, 53, 54].

Then it will warn other computing nodes about the error and redirect the computing information data

flow to other modules. Therefore, in this case, there is no duplication of specific computing nodes on an

independent platform, but only the launch of a standard instance. In order to significantly reduce the risk

of losing a large number of user requests, the balanced computing node must include a buffer that will act

as a "retry" when a node is physically unavailable. Therefore, the use of replication methods can provide

the creation of typical computing nodes and at the same time restore the performance of the web system.

However, when using cloud technology to develop program systems, there is a whole class of distributed

algorithms, in which certain structures of information data streams (arrays, records) depend on the total

number of interactive processes at the same time. The processing is performed by different computing

nodes on independent platforms. An example of the application of this algorithm is a protocol for making

coordinated decisions [34]. When the topology of the distributed and highly advantageous computing

web system is modified, the structure of the data stream and its processing algorithm will also change.

Therefore, there is an urgent need to modify the behavior scheme of the simulation model used, that is,

to modify the algorithm and structure of the data flow describing the behavior of the corresponding

object.

4. The Realization of the Data Stream Processing Method to Restore the
Computing Node

In the development of a high-load distributed web system, the architect consists of multiple computing

nodes, and they are an instance of a single computing system, thus forming a “cluster.” However, the

modified data stream processing algorithm not only needs to be separated at the physical level but also

needs to be separated in the program. Traditionally, the software of the web system is divided into logical

modules according to its functional purpose [33]. By designing a software web system, architects need to

design so that the computing modules in the structure have as little logic as possible because the main

199

task of redistributing the load is to support system balance. An equally important requirement for the

software architecture of web systems is to avoid strong connections. The strong connectivity between

computing modules is that one of the modules is in contact with many other modules on the independent

platform.

In other words, if a failure occurs, a large number of modules will send a message to the service

module to notify other nodes that they need to be replaced temporarily. In order to effectively overcome

possible calculation problems, you can use the following methods to restore the functions of the

developed software web system using cloud technology: The clone_args method stores the values of the

parameters that have been sent to the failed calculation module [3, 14, 38, 39, 49].

Since in this case, the module did not respond in a timely manner, it is classified as a failure, so the

parent method of the module must obtain appropriate information about the parameters that have been

sent to the child method. However, the direct function of the clone_args method does not stop there,

especially the indirect attributes they involve are:

 Calculate the current integral processing time value of the module or the faulty module method.

 Fixed time for processing failures of computing nodes in the cloud web system.

 Calculate the start-up frequency of the module, which allows you to determine the demand for

this module. Therefore, when distributing the load between nodes, you need to allocate the

necessary software and hardware resources more efficiently.

The reporting method allows the service module to send statistical data about the information flow

of processing all child nodes at certain intervals. Moreover, its use helps to automatically predict the

degradation dynamics of the developed software web system. Therefore, the reporting method can not

only be used to notify the statistical indicators in the plan but also can be used when one or more sub-

computing modules fail.

The restart method provides the use of cloud technology for the developed web system program by

restarting the computing module in the event of a failure. The main purpose of restarting is to avoid

disruptive incoming data flow.

The callback method allows information messages about the successful or failed restart of the

compute node to be sent to the parent module. This method is passed to the calculation module as a

parameter. After starting or restarting the software web system that provides the “callback method,” it

should be checked whether the module is running stably. After analyzing the characteristics of errors

that may occur in the calculation module of the developed program web system, we will notice

several main reasons: errors in the program code, and high load in the problematic data flow and

nodes.

The feedback method uses cloud technology to provide communication between the computing

nodes of the developed program web system and is independent of each other, which is why it can be

surrounded by the microservices of many web systems, and these microservices must exchange

information flows with them. For this, you should of course notify the service computing module,

which is at the top of the corresponding hierarchy. This is why each computing module adopts a

feedback method that knows how to contact it and can redistribute the data flow from modules that

have failed or are heavier than working nodes. The revised calculation model of the recovery method

(the failed module) is shown in Fig. 2 [32].

This modified algorithm only implements a service module for processing data streams. Compared

with traditional computing modules, the number of operations provided by the service modules is much

smaller, and positive results can be obtained, which directly affects their work. In this case, the service

module acts as “a stable part of the software system in a computing point” on a node on an independent

computing platform.

Therefore, when developing a program web system, it is important to use methods to provide the

smallest loopholes in this computing module.

These calculation methods will continuously notify the results of the work for a period, or

unexpectedly notify the results of the work when leaving the work state. The service module has working

information about all the software web systems developed. The less time the information flow about the

200

work results of the developed program web system is updated, the more accurately and effectively the

necessary computing nodes can be defined to transfer its load.

Figure 2: Load redistribution algorithm when a computing node fails in a software web system

Packing, state transfer, and data streaming. In the web system of the developed program using cloud

technology, once a consensus is reached between the computing nodes that authorize and accept part of

the computing work, it is necessary to prepare a package of raw data for the new node. And only after

this, a connection can be established between the user module that failed to send the user request to

another working module in another computing node. In addition, the service module will also send a

message stating that the computing module is damaged—“temporarily unavailable to process new

requests for data streams,” and then perform the standard restart process. Due to the corresponding restart

method, this process is implemented in each computing module and is also connected to the service

module on the computing node through a feedback method. Once the software system receives the

message that the computing module has failed, clone_args will copy all the input data streams sent for

processing and a set of indirect data about the current state of the system. In this case, there is almost no

time to make management decisions, so the service module may rather try to acquire a new computing

node while copying the entire information call thread through the clone_args method and directing it to

the service module.

When analyzing the sequence of the corresponding actions, it is obvious that it is necessary to form a

list of processing calls, which are now waiting for other parent computing modules or their methods.

However, this list is a kind of queue for processing user requests processed by the new work calculation

module from the created queue. Amazon Simple Queue Service works according to the same principle-a

service that can quickly receive user data flow queues. The service node combines this data and links the

corresponding modules and their status messages for storage and processing. Once the compute node is

available for information. In order to ensure the reliability of data streaming, it is necessary to divide the

specific set of these data into appropriate fragments and add a header with a sequence number to each

fragment. The fragments of the information data stream obtained in this way form a segment. In the next

step of data processing, each segment enters a packet, and then reaches the recipient’s computing node

using the transmission information protocol. After the packet is delivered to the recipient’s computing

node, the correctness of the received information flow in this segment is checked by means of checksum

201

recalculation, and it is automatically determined that the previous information flow segment has also been

successfully received Fig. 3.

Figure 3: Packing, state transition, and data information flow model

At this stage, the recipient’s computing node sends a request for information about new data packets or

repeated transmissions of previous data packets to the sender’s node. This operation algorithm ensures

that all previous data packets in the data stream sequence have been successfully received. In the

improved model developed, the computing modules are isolated from each other and do not have

information about the overall state of the web system when establishing connections between them and

receiving messages about their status. For the interaction of computing modules, we use the

asynchronous exchange of information messages, where each corresponding module has its information

message turn. Therefore, the computing module that sent the message will wait for the next notification

about its delivery, otherwise, the receiver will ignore the message.

5. Conclusions

The system analysis performed considers the basic principles of distributed web system design and

the technology most commonly used by the architects of the program system in the design. We also

concluded that redundancy—an indispensable attribute in most web system development, redundancy

is highly loadable relative to user requests. The main criterion for web system development is

scalability. When the operation requires a large number of computing resources, its scalability will be

used, which will greatly reduce the performance of the system and require it to increase the overall

capacity. In addition, methods for estimating the reliability and fault tolerance of the developed

program web system are studied because any programming system should be objectively monitored

and predicted during work. Consider the basic aspects of the operation of distributed fail-safe

software web systems because they have management problems and the ability to recover from

failures during highly advantageous operations. By analyzing the technology used in the development

of the software web system in the research, we improved the method and comprehensively analyzed

the balance of the computing load based on this. This is the main task of designing the software

202

distributed fail-safe web system. In order to solve the problem of effective working of the developed

software system, we used the algebraic method of optimizing the calculation of load balance on the

node and its distributed network model, thereby creating a hybrid mechanism for information flow

transmission. It can be considered to provide theoretical and practical foundations for the effective

functions of the fault hierarchy mechanism. These foundations can provide effective calculation of the

overall computing load of the program modules and nodes. By analyzing the high-load distributed

fault-tolerant software web system, it can be determined that its basic criterion is the efficiency of

processing an information data flow, which is usually calculated as the partial division of the sum of

all output parameters and the sum. All input data streams. For each specific computing module or

node, determine its efficiency value. The comparison of computational node efficiency is carried out

using linear programming methods and using different basic models and their variants at the same

time. It is recommended to determine the number of computing modules or nodes involved by

constructing efficiency boundary criteria and all other conditions (its invalid criteria). The improved

function of the network model is very different from the usual serial and parallel models. The main

difference lies in the ability to gather and share important heterogeneous computing resource sets to

develop geographically distributed information flows. In many cases, the development of software

web systems brings considerable advantages and requires other resources that are not available in a

computing node, and these resources can be obtained from other nodes connected to the functional

grid. The research improves the algorithm for transferring computing load without using redundant

resources, and proposes an improved interaction model between computing modules to handle the

information flow within a single node, and proposes software developed as a whole web system. In

addition, the technology to determine the cause of the failure of the computing module and the node is

considered, and two basic problems related to the failure of the node are emphasized namely, software

and hardware problems. Modified the computer process control model used for the development of

information data flow, in which modules are isolated from each other and have no common state, but

information communication can be established between them, and notifications about their status can

be established. For the interaction of computing modules, asynchronous exchange of information

messages is used, in which each module organizes its message wheel. The module sends a reference

message, waits for confirmation of the corresponding delivery message, but does not wait for the

receiver of the message to ignore it. An important aspect of this research is that the free computing

resources of the developed program web system can be found within the scope of its functions.

6. References

[1] S. Aleti, Björnander, L. Grunske, I. Meedeniya, ArcheOpterix: An extendable tool for

architecture optimization of AADL models, in: Proceedings of the 2009 ICSE Workshop on

Model-Based Methodologies for Pervasive and Embedded Software, MOMPES, 2009, pp. 73–

77. doi:10.1109/MOMPES.2009.5069138.

[2] V. Andrunyk, A. Vasevych, L. Chyrun, N. Chernovol, N. Antonyu, A. Gozhyj, M.

Korobchynskyi: Development of information system for aggregation and ranking of news taking

into account the user needs, 2020. CEUR-WS.org, online CEUR-WS.ORG/Vol-

2604/paper74.pdf.

[3] S. Babichev, V. Lytvynenko, J. Skvor, M. Korobchynskyi, M. Voronenk, Information

technology of gene expression profiles processing for purpose of gene regulatory networks

reconstruction, in: IEEE 2nd International Conference on Data Stream Mining and Processing,

DSMP, 2018, pp. 336-–341. doi:10.1109/DSMP.2018.847845.

[4] B. Boehm, D. Rosenberg, N. Siegel, Critical Quality Factors for Rapid, Scalable, Agile

Development, in: 2019 IEEE 19th International Conference on Software Quality, Reliability and

Security Companion (QRS-C), 2019, pp. 514–515. doi: 10.1109/QRS-C.2019.00101.

[5] C. Chen, M. Shoga, B. Boehm, Exploring the Dependency Relationships between Software

Qualities, in: 2019 IEEE 19th International Conference on Software Quality, Reliability and

Security Companion (QRS-C), 2019, pp. 105–108. doi:10.1109/QRS-C.2019.00032.

203

[6] D. Ageyev, A. Mohsin, T. Radivilova, L. Kirichenko, Infocommunication Networks Design with

Self-Similar Traffic, in: 2019 IEEE 15th International Conference on the Experience of

Designing and Application of CAD Systems (CADSM), 2019, pp. 24–27.

doi:10.1109/CADSM.2019.8779314.

[7] D. Ageyev, A. Mohsin, T. Radivilova, L. Kirichenko, Infocommunication Networks Design with

Self-Similar Traffic, in: 2019 IEEE 15th International Conference on the Experience of

Designing and Application of CAD Systems (CADSM), 2019, pp. 24–27.

doi:10.1109/CADSM.2019.8779314.

[8] D. Ageyev, O. Bondarenko, T. Radivilova, W. Alfroukh, Classification of existing virtualization

methods used in telecommunication networks, in: 2018 IEEE 9th International Conference on

Dependable Systems, Services and Technologies (DESSERT), 2018, pp. 83–86.

doi:10.1109/DESSERT.2018.8409104.

[9] I. Dronyuk, I. Moiseienko, J. Gregus, Analysis of Creative Industries Activities in Europеan

Union Countries, Procedia Computer Science 160 (2019) 479–484. (2019).

doi:10.1016/j.procs.2019.11.061.

[10] E. Awad, M. W. Caminada, G. Pigozzi, M. Podlaszewski, I. Rahwan, Pareto optimality and

strategy-proofness in group argument evaluation, Journal of Logic and Computation 27 (2017)

2581–2609.

[11] P. Galkin, R. Umiarov, O. Grigorieva, D. Ageyev, Approaches for Safety-Critical Embedded

Systems and Telecommunication Systems Design for Avionics Based on FPGA, in: 2019 IEEE

International Scientific-Practical Conference Problems of Infocommunications, Science and

Technology (PIC S&T), 2019, pp. 391–396 (2019). doi:10.1109/PICST47496.2019.9061421.

[12] A. Hassan, Y. Jamalludin, Analysis of success factors of technology transfer process of the

information and communication technology, in: 2016 International Conference on Advances in

Electrical, Electronic and Systems Engineering (ICAEES), 2016, pp. 382–387.

doi:10.1109/ICAEES.2016.7888074.

[13] M. Kabir, M. Rashed, Multi-level client server network and its performance analysis, LAP

Lambert Academic Publishing, Saarbrücken, 2012.

[14] M. L. Abbott, M. T. Fisher, The art of scalability: scalable web architecture, processes, and

organizations for the modern enterprise, 2nd ed., Addison-Wesley Professional, Boston, 2015.

[15] M. Pasyeka, V. Sheketa, N. Pasieka, S. Chupakhina, I. Dronyuk, System Analysis of Caching

Requests on Network Computing Nodes, in: 2019 3rd International Conference on Advanced

Information and Communications Technologies (AICT). 2019, pp. 216–222.

doi:10.1109/AIACT.2019.8847909.

[16] M. O. Medykovskyy, M. S. Pasyeka, N. M. Pasyeka, O. B. Turchyn, Scientific research of life

cycle perfomance of information technology, in: 2017 12th International Scientific and Technical

Conference on Computer Sciences and Information Technologies (CSIT), 2017, pp. 425–428

(2017). doi:10.1109/STC-CSIT.2017.8098821.

[17] M. Nazarkevych, A. Marchuk, L. Vysochan, Y. Voznyi, H. Nazarkevych, A. Kuza: Ateb-Gabor

Filtering Simulation for Biometric Protection Systems, in: Conference on Computer Science and

Information Technologies, 2020. CEUR-WS.org, online CEUR-WS.ORG/Vol-2746/paper2.pdf

[18] O. Mishchuk, R. Tkachenko, I. Izonin, Missing Data Imputation through SGTM Neural-Like

Structure for Environmental Monitoring Tasks, in: Advances in Intelligent Systems and

Computing, 2020, pp. 142–151. doi:10.1007/978-3-030-16621-2_13.

[19] M. A. J. Idrissi, H. Ramchoun, Youssef Ghanou and Mohamed Ettaouil, Genetic algorithm for

neural network architecture optimization, in: 3 International Conference on Logistics Operations

Management (GOL), 2016, pp. 1–4.

[20] H. Mykhailyshyn, N. Pasyeka, V. Sheketa, M. Pasyeka, O. Kondur, M. Varvaruk, Designing

Network Computing Systems for Intensive Processing of Information Flows of Data, in: T.

Radivilova, D. Ageyev, N. Kryvinska, (Eds.), Data-Centric Business and Applications: ICT

Systems-Theory, Radio-Electronics, Information Technologies and Cybersecurity , volume 5,

Springer International Publishing, Cham, 2021, pp. 391–422. doi:10.1007/978-3-030-43070-

2_18.

[21] N. Pasieka, V. Sheketa, Y. Romanyshyn, M. Pasieka, U. Domska and A. Struk, Models, Methods

and Algorithms of Web System Architecture Optimization, in: IEEE International Scientific-

204

Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T),

Kyiv, Ukraine, 2019, pp. 147–153. doi:10.1109/PICST47496.2019.9061539.

[22] N. Pasyeka, H. Mykhailyshyn and M. Pasyeka, Development algorithmic model for optimization

of distributed fault-tolerant web-systems, in: IEEE International Scientific-Practical Conference

Problems of Infocommunications, Science and Technology (PIC S&T’2018), 9-12 October,

Kharkiv, 2018, pp. 663–669.

[23] M. Nazarkevych, M. Logoyda, O. Troyan, Y. Vozniy, Z. Shpak, The Ateb-Gabor Filter for

Fingerprinting, in: International Conference on Computer Science and Information Technology,

Springer, Cham, 2019, pp. 247–255.

[24] M. Nazarkevych, M. Logoyda, S. Dmytruk, Y. Voznyi, O. Smotr: Identification of biometric

images using latent elements, 2019. CEUR-WS.org, online CEUR-WS.ORG/Vol-

2488/paper8.pdf

[25] M. Nazarkevych, N. Lotoshynska, I. Klyujnyk, Y. Voznyi, S. Forostyna, I. Maslanych,

Complexity Evaluation of the Ateb-Gabor Filtration Algorithm in Biometric Security Systems,

in: 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON),

2019, pp. 961–964.

[26] M. Nazarkevych, N. Lotoshynska, V. Brytkovskyi, S. Dmytruk, V. Dordiak, I. Pikh, Biometric

identification system with ateb-gabor filtering, in: 11th International Scientific and Practical

Conference on Electronics and Information Technologies (ELIT), 2019, pp. 15–18.

doi:10.1109/ELIT.2019.8892282.

[27] O. Riznyk, Yu. Kynash, O. Povshuk and V. Kovalyk, Recovery schemes for distributed

computing based on bib-schemes, in: First International Conference on Data Stream Mining &

Processing (DSMP), 2016, pp.134–137.

[28] P. Ravi, V. K. Sundar, A. Chattopadhyay, S. Bhasin, A. Easwaran, Authentication Protocol for

Secure Automotive Systems: Benchmarking Post-Quantum Cryptography, in: IEEE International

Symposium on Circuits and Systems (ISCAS), Sevilla, 2020, pp. 1–5. doi:

10.1109/ISCAS45731.2020.9180847.

[29] N. Pasieka, V. Sheketa, Y. Romanyshyn, M. Pasieka, U. Domska, A. Struk, Models, methods

and algorithms of web system architecture optimization, in: IEEE International Scientific-

Practical Conference: Problems of Infocommunications Science and Technology, PIC S&T,

2019, 147–152. doi:10.1109/PICST47496.2019.9061539.

[30] M. Pasyeka, V. Sheketa, N. Pasieka, S. Chupakhina, I. Dronyuk, System analysis of caching

requests on network computing nodes, in: 3rd International Conference on Advanced

Information and Communications Technologies, AICT, 2019, pp. 216–222.

doi:10.1109/AIACT.2019.8847909.

[31] M. Pasyeka, T. Sviridova, I. Kozak, Mathematical model of adaptive knowledge testing, in: 5th

International Conference on Perspective Technologies and Methods in MEMS Design,

MEMSTECH, 2009, pp. 96–97.

[32] M. Pasyeka, V. Sheketa, N. Pasieka, S. Chupakhina, I. Dronyuk, System analysis of caching

requests on network computing nodes, in: 3rd International Conference on Advanced

Information and Communications Technologies, AICT, 2019, pp. 216–222.

doi:10.1109/AIACT.2019.8847909.

[33] Q. Linling, W. Qingfeng, Research on Automatic Test of WEB System Based on Loadrunner,

in: 13th International Conference on Computer Science & Education, Sri Lanka, 2018, pp. 1–4.

doi:10.1109/ICCSE.2018.8468852.

[34] R. Alléaume, I. P. Degiovanni, A. Mink, T. E. Chapuran, N. Lutkenhaus, M. Peev, C. J.

Chunnilall, V. Martin, M. Lucamarini, M. Ward, A. Shields, Worldwide standardization activity

for quantum key distribution, in: 2014 IEEE Globecom Workshops (GC Wkshps), 2014, pp.

656–661. doi:10.1109/GLOCOMW.2014.7063507.

[35] R. Paul, J. R. Drake, H. Liang, Global Virtual Team Performance: The Effect of Coordination

Effectiveness, Trust, and Team Cohesion, IEEE Transactions on Professional Communication 59

(2016) 186–202. doi:10.1109/TPC.2016.2583319.

[36] R. Privman, S. R. Hiltz, Y. Wang, In-Group (Us) versus Out-Group (Them) Dynamics and

Effectiveness in Partially Distributed Teams, IEEE Transactions on Professional Communication

56 (2013) 33–49. doi:10.1109/TPC.2012.2237253.

205

[37] O. Riznyk, O. Povshuk, Y. Kynash, M. Nazarkevich, I. Yurchak, Synthesis of non-equidistant

location of sensors in sensor network, in: 14th International Conference on Perspective

Technologies and Methods in MEMS Design, MEMSTECH, 2018, pp. 204–208.

doi:10.1109/MEMSTECH.2018.8365734.

[38] L. Sikora, N. Lysa, B. Fedyna, B. Durnyak, R. Martsyshyn, Y. Miyushkovych, Technologies of

Development Laser Based System for Measuring the Concentration of Contaminants for

Ecological Monitoring, in: 2018 IEEE 13th International Scientific and Technical Conference on

Computer Sciences and Information Technologies (CSIT), 2018, pp. 93–96. doi:10.1109/STC-

CSIT.2018.8526602.

[39] L. Sikora, R. Martsyshyn, Y. Miyushkovych, N. Lysa, B. Yakymchuk, Problems of data

perception by operators of energy-active objects under stress, in: The Experience of Designing

and Application of CAD Systems in Microelectronics, 2015, pp. 475–477.

doi:10.1109/CADSM.2015.7230909.

[40] T. Aslam, T. Rana, M. Batool, A. Naheed, A. Andaleeb, Quality Based Software Architectural

Decision Making, in: 2019 International Conference on Communication Technologies

(ComTech), 2019, pp. 114–119. doi:10.1109/COMTECH.2019.8737836.

[41] R. Tkachenko, I. Izonin, N. Kryvinska, I. Dronyuk, K. Zub, An Approach towards Increasing

Prediction Accuracy for the Recovery of Missing IoT Data based on the GRNN-SGTM

Ensemble, Sensors 20 (2020). doi:10.3390/s20092625.

[42] R. Tkachenko, I. Izonin, P. Vitynskyi, N. Lotoshynska, O. Pavlyuk, Development of the non-

iterative supervised learning predictor based on the ito decomposition and sgtm neural-like

structure for managing medical insurance costs, Data 3 (2018). doi:10.3390/data3040046.

[43] U. Banerjee, A. Pathak, A. P. Chandrakasan, An Energy-Efficient Configurable Lattice

Cryptography Processor for the Quantum-Secure Internet of Things, in: IEEE International

Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 46–48.

doi:10.1109/ISSCC.2019.8662528.

[44] V. B. Dang, F. Farahmand, M. Andrzejczak, K. Gaj, Implementing and Benchmarking Three

Lattice-Based Post-Quantum Cryptography Algorithms Using Software/Hardware Codesign, in:

International Conference on Field-Programmable Technology (ICFPT), Tianjin, China, 2019, pp.

206–214. doi: 10.1109/ICFPT47387.2019.00032.

[45] V. Drăgoi, T. Richmond, D. Bucerzan and A. Legay, Survey on cryptanalysis of code-based

cryptography: From theoretical to physical attacks, in: 7th International Conference on

Computers Communications and Control (ICCCC), Oradea, 2018, pp. 215–223.

doi:10.1109/ICCCC.2018.8390461.

[46] W. Liu, J. Yang, Y. Song, X. Yu and S. Zhao, Research on Software Quality Evaluation Method

Based on Process Evaluation and Test Results, in: 6-th International Conference on Dependable

Systems and Their Applications (DSA), Harbin, China, 2020, pp. 480–483. doi:

10.1109/DSA.2019.00077.

[47] Y. Romanyshyn, V. Sheketa, L. Poteriailo, V. Pikh, N. Pasieka, Y. Kalambet, Social-

communication web technologies in the higher education as means of knowledge transfer, in:

IEEE 2019 14th International Scientific and Technical Conference on Computer Sciences and

Information Technologies (CSIT), Lviv, Ukraine, 2019, pp. 35–39.

[48] Y. Gao-Wei, H. Zhanju, A Novel Atmosphere Clouds Model Optimization Algorithm, in:

International Conference on Computing, Measurement, Control and Sensor Network, 2012

pp. 217–220.

[49] Q. Linling, W. Qingfeng, Research on Automatic Test of WEB System Based on Loadrunner, in:

13th International Conference on Computer Science & Education, Sri Lanka, 2018, pp. 1–4,

doi:10.1109/ICCSE.2018.8468852.

[50] M. Zharikova, V. Sherstjuk, Academic integrity support system for educational institution, in:

IEEE 1st Ukraine Conference on Electrical and Computer Engineering, UKRCON, 2017, pp.

1212–1215. doi:10.1109/UKRCON.2017.8100445.

[51] M. Zharikova, V. Sherstjuk, N. Baranovskiy, The plausible wildfire model in geoinformation

decision support system for wildfire response, in: Paper presented at the International

Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology

Management, SGEM, 2015, pp. 575–584.

