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Abstract 

There is ample literature on the semantic modeling of biomedical 
data in general, but less has been published on realism-based, 
semantic instantiation of electronic health records (EHR). 
Reasons include difficult design choices and issues of data 
governance. A collaborative approach can address design and 
technology utilization issues, but is especially constrained by 
limited access to the data at hand: protected health information. 
Effective collaboration can be facilitated with public, EHR-like 
data sets, which would ideally include a large variety of datatypes 
mirroring actual EHRs and enough records to drive a 
performance assessment. An investment into reading public EHR-
like data from a popular common data model (CDM) is preferable 
over reading each public data set’s native format. 
In addition to identifying suitable public EHR-like data sets and 
CDMs, this paper addresses instantiation via relational-to-RDF 
mapping. The completed instantiation is available for download, 
and a competency question demonstrates fidelity across all 
discussed formats. 
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Introduction 

This paper describes the reification and semantic instantiation of 
selected columns from public data sets that are largely 
representative of a prototypical electronic health record system. 
Because the original data come from public sources, the output (a 
downloadable RDF data set) is available for scrutiny by anyone 
who has an interest in disciplines like healthcare informatics, 
linked data, or ontological realism (1). 
There is evidence that, while even experienced users of 
sophisticated upper ontologies like the Basic Formal Ontology 
(BFO) (2) may have some difficulty in tasks such as properly 
classifying individuals when working in isolation (3), those same 
ontologists are likely to reach a consensus as a group after 
reviewing one another’s positions. Participation in the weekly 
web meeting (4) held by the Ontology for Biomedical 
Investigations (OBI) community confirms the value of this kind 
of collaborative approach. Even semi-anonymous resources like 
Stack Overflow can be a source of useful collaboration, given the 
submission of a well written question, including sample data.  
Fundamentally, the collaborative approach acknowledges that no 
one individual or group is likely to be an authority on the content 

and structure of an EHR, semantic web technologies in general, 
and specifically, the Web Ontology Language (OWL), the BFO, 
and mid-level ontologies from the Open Biomedical and 
Biological Ontologies Foundry (OBO).  
There is no reason to believe that these difficulties or the need for 
collaboration are unique to a semantic approach. Large-scale 
initiatives to harmonize, integrate, or transfer health care data 
with relational technologies, including CDMs to be discussed 
later, have benefited from precisely the large, diverse input that is 
recommended for similar semantic initiatives. 
Despite a 50-year history, resulting in a plethora of commercial 
product and support offerings, the relational database world still 
struggles to cope with complex, heterogeneous data. Therefore, 
we find this to be an ideal time for innovative application of 
semantic web approaches to health care data. Specifically, we 
advocate working collaboratively with synthetic healthcare data 
stored as RDF triples, and using terms from OWL ontologies that 
follow the ontological realism method. This can be thought of a 
chain of progressive and cumulative commitments: 

x The use of any graph format will support assertions 
about (and visualization of) chained or branching 
relations like temporal precedence, or the inputs and 
output of processes, without requiring self-joins that are 
characteristic of relational database solutions. 

x Use of the W3C’s RDF standard supports a linked data 
approach, where statements about patients can use terms 
that are defined in some external, public data set. We 
believe that the flexibility of property graphs is valuable 
in a standalone data integration effort, but that the 
subject-predicate-object structure imposed by RDF is 
more supportive of broader data interoperability, sharing 
and linking. Likewise, the use of the SPARQL query 
language and software libraries like RDF4J serves a 
protection against vendor lock-in.(5)  

x We limit ourselves to using class and property/predicate 
terms from an ontology, which could theoretically use 
the RDFS, SKOS or OWL schemas. Among other 
things, this is an initial step in making the database self-
documenting, or free from dependency on an external 
data dictionary. RDFS and OWL both define subclass 
and subproperty relations that can be used for reasoning, 
and OWL provides support for richer axioms (which 
may or may not be supported by default reasoning levels 
in RDF triplestores). 
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x At the highest level of rigor, we limit our upper 
ontologies to those that adhere to the principles of the 
OBO foundry and therefore ontological realism 

The term “ontological realism” is used here to specifically mean 
using the BFO as an upper ontology, and more generally 
following the methodology advocated by Smith and Ceusters in 
2010 (1) as best as possible. At a minimum, this means 
instantiating universal and generalizable classes of things, and 
resisting the temptation to structure knowledge as topical 
“concepts”. This is a top-down approach that emphasizes 
computability and consistency between ontology artifacts. 
While similar, the terms reification and semantic instantiation are 
used here to describe two different processes, both of which can 
be performed in an automated fashion, after some initial 
configuration by one or more people with domain knowledge and 
ontological training: 

1. Seeing values like “M”, “3/11/1969” and “123456” in 
one row from a data table; inspecting contextual 
information like the table and column names and a data 
dictionary; then coming to the following conclusions:  

a. “M” itself means ‘male gender identity datum’ 
b. While “3/11/1969” itself doesn’t mean 

anything, it is associated with a datum about 
someone’s birth. Likewise, “123456” is 
associated with some thing that can denote the 
person. 

2. Writing this knowledge, in the form of RDF triples, into 
a semantic triplestore database. In part, an 
approximation of this would look like 

a. :X a ‘male gender identity datum’ . 
b. :Y a ‘Homo sapiens’ . 
c. :X ‘is about’ :Y . 

At this point in time, there is limited precedence for realism-based 
semantic instantiations of EHRs. This paper primarily builds upon 
ideas developed in the PennTURBO project (6,7). Beyond that, 
one especially relevant paper describes realism-based 
instantiation of electronic dental records (8), although the patient 
data has not been made public. Bona, Nolan and Brochhausen 
have generated realism based RDF triples from the non-image-
related clinical data present in the Cancer Imaging Archive (9). 
Elkin and colleagues have applied natural language approaches to 
electronic health records, resulting in property- and RDF graphs 
that use terms from vocabularies such as SNOMED (10,11). 
Ceusters and colleagues have demonstrated the applicability of 
their referent tracking approach to electronic health records (12), 
and they have built a system that inserts referent tracking 
statements into an RDF triplestore (13). Research at the 
University of Murcia in Spain has resulted in several papers (14) 
describing a Semantic Web Integration Tool that can consume 
data from XML files and relational databases and then apply 
reasoning via the OWL API (15). At a minimum, they have 
applied an archetype-based colorectal cancer classifier to a 500 
patient subset from a 20,000 patient database (16). While 
intriguing, it appears that their work doesn’t share many of the 
objectives of this report: their terms were drawn broadly from the 
NCBO BioPortal, without emphasizing realism; the inputs into 
their classifier were instances of ‘histopathology report’, not 
instances of ‘patient’ or ‘Homo sapiens’; there was little 
discussion of loading statements into an RDF triplestore. 

In addition to qualitatively describing the experience of working 
with various public, relational, EHR-like data sets, this paper uses 
a competency question (CQ1) to ensure that the same result is 
obtained after any data transformation. The question is: how 
many white male patients, born between 1960 and 1980, have an 
average systolic blood pressure between 110 and 130? 

DE-SynPUF data set 

The United States Centers for Medicare & Medicaid Services 
(CMS) provides a data set entitled “Data Entrepreneurs’ Synthetic 
Public Use File (DE-SynPUF)” (17). Background information 
provided by the CMS includes the following: 
“The DE-SynPUF was created with the goal of providing a 
realistic set of claims data in the public domain while providing 
the very highest degree of protection to the Medicare 
beneficiaries’ protected health information.” 
The purposes of the DE-SynPUF are to: 

1. allow data entrepreneurs to develop and create software 
and applications that may eventually be applied to 
actual CMS claims data; 

2. train researchers on the use and complexity of 
conducting analyses with CMS claims data prior to 
initiating the process to obtain access to actual CMS 
data; and, 

3. support safe data mining innovations that may reveal 
unanticipated knowledge gains while preserving 
beneficiary privacy. 

DE-SynPUF consists of five types of data, for the years 2008, 
2009 and 2010: 

1. Beneficiary Summary  
2. Inpatient Claims 
3. Outpatient Claims 
4. Carrier Claims 
5. Prescription Drug Events 

The DE-SynPUF page provides links to documentation, such as 
the data dictionary. It is noted that the synthetic data generation 
process may impose some limits on the usefulness of DE-SynPUF 
for inferential research. 

MIMIC-III data set 

The Medical Information Mart for Intensive Care III (MIMIC-III) 
data set (18) is described as “a large, freely-available database 
comprising de-identified health-related data associated with over 
forty thousand patients who stayed in critical care units of the 
Beth Israel Deaconess Medical Center between 2001 and 2012.” 
Among other information, MIMIC-III contains 

x patient demographics 
x vital sign measurements (~1 data point per hour) 
x laboratory test results 
x procedures 
x medications 
x diagnosis codes 

While the MIMIC-III website describes the data set as “freely-
available”, access is in fact limited and requires the completion of 
an application and proving completion of human subjects 
research training. This is not surprising, given that MIMIC-III 
consists of de-identified data (19) from actual patients of the Beth 



Israel Deaconess Medical Center. Most significantly, MIMIC-III 
licenses are issued on a per-individual basics, and derived data 
must be shared via the limited-access PhysioNet website. 

Synthea data set 

From the Synthea website: 
“SyntheaTM is an open-source, synthetic patient generator that 
models the medical history of synthetic patients. Our mission is 
to provide high-quality, synthetic, realistic but not real, patient 
data and associated health records…. The resulting data is free 
from cost, privacy, and security restrictions, enabling research 
with Health IT data that is otherwise legally or practically 
unavailable.” (20) 
A 1000 patient, pre-built Synthea data set is available for 
download in multiple formats, including CSV, from the Synthea 
homepage.  
In addition to the pre-built files, users can build their own Synthea 
data sets by downloading Apache-licensed code from the Synthea 
GitHub repository (21). 

Methods 

Loading public EHR-like data sets into a Relational 
Database 

DE-SynPUF  
The DE-SynPUF data set is split into 20 collections of 
independent CSV files. All five types of data from all three years 
were downloaded for this paper, but only from sample 1 of 20, 
resulting in a data set with slightly more than 100,000 unique 
patient identifiers. PostgreSQL schemas for the beneficiary, 
inpatient claim and drug event CSV files were constructed with 
the csvsql application from the csvkit (22) package, and then the 
CSV files were imported into a PostgreSQL database. 
MIMIC-III 
The complete process of downloading the MIMIC-III data set and 
populating it into a PostgreSQL 11 database on an Ubuntu 18 
server was executed without complications using a Makefile 
provided by the MIT Laboratory for Computational Physiology 
(23). 
Synthea 
For this project, a Synthea data set was created by first setting the 
‘exporter.csv.export’ parameter in 

x  ./src/main/resources/synthea.properties 
to true and then compiling the source code. Then, the data were 
synthesized with the following command: 

x ./run_synthea -s 42 -p 1000 Pennsylvania Philadelphia 
Which calls for 1000 patients, representative of people from 
Philadelphia. An initial seed was set to 42, so that the generation 
process could be replicated by collaborators. The resulting CSV 
files were loaded into a PostgreSQL database in tandem with a 
format conversion that is described below. 

Conversion to OMOP common data model 

The three previously mentioned EHR-like data sets each have 
distinct structures, in terms of how different kinds of data are 
segmented into separate CSV files, how the columns are named, 
etc. For all three to be directly instantiated into a triplestore, three 
different sets of SPARQL statements would need to be developed. 

Instead, we converted all three data sets into a single CDM. This 
commitment to a CDM allows the use of a single set of SPARQL 
statements, with minor modifications, to implement all three 
instantiations. 
The Observational Medical Outcomes Partnership schema 
(OMOP) was chosen based on literature evaluations (24) and 
utility within the PennMedicine organization. Since the CDM 
functions as a staging area between tabular data sets and the 
semantic graph, limitations of OMOP from the perspective of 
ontological realism (25) and concerns about accurate counting 
(26) were tolerated. 
OMOP conversion tools exist for all three of the public data sets 
under consideration and were used to load or migrate the data sets 
into new PostgreSQL schemas in the OMOP format. At the time 
this paper was written, OMOP schema version 6.0 was under 
development, but the conversion tools all used a recent 5.x 
schema.  
Full utilization of OMOP includes obtaining vocabularies from 
their Athena system in order to understand the meaning of its 
concept codes, like “8507” for “MALE”. While a semantic 
instantiation will still need to map “8507” to a term like ‘male 
gender identity datum’ (OMRSE_00000141), the use of a CDM 
eliminates the need to map three different codes from three 
different data sets. 
One contributor to database population difficulties described 
below could be minor mismatches between the schema created by 
the Extract/Transform/Load (ETL) scripts and the most recent 
OMOP vocabulary downloads. 
 

Instantiation via Relational-to-RDF Mapping 

Realism-based statements about the Synthea data, from the 
previously described OMOP schema, were loaded into a Ontotext 
GraphDB triplestore with a relational-to-RDF (R2R) mapping 
approach. Because all three EHR-like datasets evaluated in this 
paper had been loaded into OMOP schemas, three different, 
source-specific variable recodings were not required. 
The PennTURBO team uses Ontotext GraphDB as its primary 
triplestore because it has multiple text indexing solutions, a 
sophisticated web-based SPARQL development environment, 
and a visual data exploration tool. Unfortunately, its Ontorefine 
tool can only instantiate data from files, not database connections.  
Because we couldn’t find any single R2R tool that met all of our 
needs, the ability to instantiate triples from the contents of an 
OMOP database was added to PennTURBO's existing 
“Carnival/Drivetrain” data integration and harmonization 
software suite. Carnival and Drivetrain have not been completely 
released into the public domain yet. 
In order to demonstrate the general applicability of our approach, 
we have also performed an instantiation with Stardog’s Virtual 
Graph feature. Following the example of Carnival/Drivetrain, the 
Synthea data in the OMOP PostgreSQL database were 
instantiated as shallow “data models with shortcuts”, using terms 
from the TURBO Ontology whose scope is limited to “data 
space”, like the class ‘person data model’ (TURBO_0010161) 
and the predicate ‘shortcut person data model to DOB (textual)’ 
(TURBO_0010085). Expansion of the shallow triples into 
statements using OBO foundry terms, including the recoding of 
categorical variables, was performed by writing federated 
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SPARQL queries from GraphDB, against the Stardog Virtual 
Graph.  
Insertion of statements about the precedence of a given person’s 
healthcare encounters did not require the typical comparison of 
encounter dates, as OMOP populates a 
“preceding_visit_occurrence_id” column in the 
“visit_occurrence” table as part of the Synthea ETL. 

Results 

DE-SynPUF 

DE-SynPUF’s “Beneficiary Summary” and “Prescription Drug 
Events” files were found to have some useful overlap with the 
patient demographics and medication-order tables in the 
University of Pennsylvania’s clinical data warehouse. 
“Beneficiary Summary” also contains some less relevant (or at 
least off-topic) summary phenotype and claims/ utilization data. 
“Inpatient Claims”, “Outpatient Claims”, and “Carrier Claims” 
all contain provider identifiers, dates, diagnosis codes, and 
procedure codes. All of the claims files, especially “Carrier 
Claims” contain numerous columns for the financial aspects of 
health insurance claims, which were not examined for this report. 
Each of the claims tables use multiple columns per table for 
diagnosis and procedure codes, since the tables were normalized 
to one row per claim. This is not especially appealing for input 
into a semantic instantiation, in which diagnoses and codes are 
first class citizens, just like claims. “Prescription Drug Events” 

refers to drugs by NDC codes, which are less desirable than 
RxNorm codes, due to their higher granularity, or number of 
codes per product/route/dose. DE-SynPUF provides values about 
the patients’ dates of birth, genders and races, but no clinical 
findings or measurements like height, weight or blood pressure. 
See Table 1. 
 

MIMIC-III 

Compared to the DE-SynPUF data set, MIMIC-III uses similar 
vocabularies and contains essentially all of the same clinical 
datatypes, with the addition of clinical observations and 
measures, and free-text clinical notes. On the other hand, MIMIC-
III includes a much smaller number of patients: 1,152. Finally, 
while the MIMIC-III data access policy isn’t unreasonable for an 
individual investigator, it does pose a limitation for a multi-
investigator, collaborative effort. 
 

Synthea 

Data generated with Synthea contain all of the clinical datatypes 
present in the DE-SynPUF and MIMIC-III data sets, except for 
the free text notes that are available in MIMIC-III alone. Synthea 
primarily refers to drugs with RxNorm codes, which is more 
directly compatible with existing PennTURBO work than the 
NDCs used in DE-SynPUF and MIMIC-III, yet it refers to 
disorders with SNOMED codes, which is a minor incompatibility 
with PennTURBO.  

 

Table 1– Suitability of EHR-like data for collaborative work on semantic healthcare graphs 

Data 
Source Unrestricted Access? ICD-X Diagnoses? RxNorm  

Medications? 

Demographic &  
Quantitative Clinical Data? 

 

Free 
Text 

Notes? 

DE-
SynPUF 

Public domain ICD-9, with multiple 
columns per “claim” 
row. 

NDC Patient demographics are pre-
sent, but not any clinical meas-
urements. 

No 

MIMIC Approval requires data-only 
human subjects training and a 
research proposal. MIMIC is 
only licensed to individuals 
and derived work can only be 
distributed through the 
PhysioNet website. 

ICD-9 NDC Demographics + numerous clin-
ical measurements and findings. 

Yes 

Synthea Freely available downloads; 
or generate with Apache-li-
censed scripts 

SNOMED RxNorm Numerous demographic and 
clinical values. LOINC terms 
are used for labs, etc. “His-
panic” is considered a race, and 
ethnicities look more like na-
tionalities (Italian, Portuguese, 
etc.) 

No 

      

      



The association of SNOMED codes with disorders is also a 
conflation of concepts, which can be remedied with a realism 
approach. According to the Ontology for General Medical 
Science, a disorder is a ‘A material entity which is clinically 
abnormal and part of an extended organism. Disorders are the 
physical basis of disease.’ In contrast, a SNOMED or ICD code 
is an information entity, not a material entity, although it may 
have an aboutness relationship with the patient, or some material 
anatomical entity. 
Since Synthea offers scripted generation, records can be created 
for any number of patients. The previously discussed 1000-patient 
Synthea dataset “from Philadelphia” was selected over DE-
SynPUF and MIMIC-III for the rest of this report 
 
CQ1.S, for the Synthea data in their native format: 
select count(*) from ( 
 select 
  distinct p.id 
 from 
  native.patients p 
 join native.observations o on 
  o.patient = p.id 
 where 
  race = 'white' 
  and gender = 'M' 
  and birthdate  
   between '1960-01-01'  

and '1980-01-01' 
  and o.code = '8480-6' 
 group by 
  p.id 
 having 
  avg(cast(o.value as decimal(4, 1)))  
   between 110 and 130) as included 
 
Result: 45 people 
 

OMOP CDM 

The DE-SynPUF data didn’t require an ETL per se, as it can be 
downloaded as CSV files (27) that are ready to be directly 
imported into a relational database using OMOP schema. The 
Observational Health Data Sciences and Informatics 
collaborative (OHDSI), which created the OMOP schema, also 
provides scripts (28) for doing a complete load of DE-SynPUF, 
as downloaded in its native CMS format, into the OMOP schema. 
When running the MIMIC-III OMOP ETL (29), it appeared that 
a NOT NULL constraint was violated by at least one value in the 
vocabulary_reference column from the vocabulary table, which 
contains metadata about the vocabularies. Therefore, that NOT 
NULL constrain was removed. 
OHDSI hosts a GitHub repository containing code for loading 
Synthea data from CSV files into a PostgreSQL database that uses 
the OMOP schema. A useful side effect of this process is loading 
the same Synthea data, in its own native format, into another 

PostgreSQL schema. Multiple solutions are provided for this task, 
in support of multiple operating systems. The Synthea OMOP 
ETL code is evolving over time, and minor bugs were observed 
in the wrapper scripts each time the GitHub software repository 
was fetched. In any case, the repository consistently contained all 
of the SQL commands necessary to build the tables, load the data 
and build reasonable indices. 
It appeared that the ETL correctly migrated most of the Synthea 
observations table into the OMOP measurement table, but not the 
units or values columns. (see https://github.com/OHDSI/ETL-
Synthea/issues/19) Sufficient keys were shared between the two 
tables for the “unit_source_value” and “value_source_value” 
columns in the measurement  table to be repopulated after the fact. 
Population of the “unit_concept_id” column was largely 
automated by looking up the freshly-loaded unit source values in 
a map table created as part of the ETL process. Finally, OMOP’s 
“value_as_number” column was copied from 
“value_source_value” for each row in which a unit concept had 
successfully been mapped. 
Migrations were generally performed as single-threaded 
operations on a 64 GB Amazon Web Services server, running 
PostgreSQL 11 and Ubuntu 18. The MIMIC-III and Synthea 
ETLs each took over one hour. The RAM allocation was 
decreased to 16 GB after the ETLs and indexing were completed. 
 
CQ1.O, for the Synthea data in an OMOP schema: 
select count(*) from 
 ( 
 select 
  p.person_id, 
  avg(cast(m.value_source_value as  

decimal(4, 1))) 
 from 
  cdm_synthea10.person p 
 join cdm_synthea10.measurement m on 
  p.person_id = m.person_id 
 where 
  race_concept_id = 8527 
  and gender_concept_id = 8507 
  and birth_datetime between '1960-01-01'  

and '1980-01-01' 
  and m.measurement_source_value = '8480-6' 
 group by 
  p.person_id 
 having 
  avg(cast(m.value_source_value as  

decimal(4, 1))) between 110  
and 130) as included 

 
Result: 45 people 
 

Instantiation 

After using Carnival to read from the 1000-patient Synthea 
OMOP schema into a property graph, Drivetrain can perform 
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realism-based instantiation, RDFS+ reasoning, and import of 
additional ontologies and linked data sets in roughly ten minutes. 
Instantiating a topical subset of the data, like patient 
demographics alone, can be completed with the Stardog Virtual 
Graph + GraphDB federation approach in roughly the same 
amount of time, but the subsequent steps have not been automated 
outside of Drivetrain and are therefore more time consuming. 
The PennTURBO ontology (30) is loaded into its own named 
graph, as are the Monarch Disease Ontology, the Drug Ontology 
and the Chemicals of Biological Interest ontology. Several RDF 
linked data sets are also imported, in order to link clinical codes 
to labels and other relationships (while remaining wary of their 
concept orientation): RxNorm, Vaccines Administered (CVX) 
(31) and SNOMED. The RxNorm file is conveniently available 
for download from the NCBO BioPortal. Generating the 
SNOMED and CVX files requires a conversion from the UMLS 
.nlm format to the .RRF format with MetaMorphoSys, loading 
that into a MySQL database, and then writing that to RDF with 
scripts from NCBO. (32,33) 
  
CQ1.R, for the Synthea data in realism-based graph: 
PREFIX : <http://transformunify.org/ontologies/> 
PREFIX efo: <http://www.ebi.ac.uk/efo/> 
PREFIX obo: <http://purl.obolibrary.org/obo/> 
PREFIX pmbb: <http://www.itmat.upenn.edu/biobank/> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
select (count(distinct ?patient) as ?count) 
where  
{ 
    { 
        select ?patient (avg(xsd:float(?sbpv)) as ?avgsbpv)  
        where { 
            graph pmbb:expanded { 
                ?mgidInst a obo:OMRSE_00000141  ; 
                          obo:IAO_0000136 ?patient . 
                ?wridInst a obo:OMRSE_00000184  ; 
                          obo:IAO_0000136 ?patient . 
                ?dob a efo:EFO_0004950 ; 
                     obo:IAO_0000136 ?sns ; 
                     obo:IAO_0000004 ?dobValue . 
                ?patient a obo:NCBITaxon_9606 ; 
                         :TURBO_0000303 ?sns ; 
                         obo:RO_0000056 ?encounter ; 
                         obo:RO_0000087 ?patientRole . 
                ?patientRole a obo:OBI_0000093 ; 
                             obo:BFO_0000054 ?encounter . 
                ?encounter a obo:OGMS_0000097 . 
                ?bpassay a obo:VSO_0000006 ; 
                         obo:BFO_0000050 ?encounter ; 
                         obo:OBI_0000299 ?sbpdatum1 . 
                ?sbpdatum1 a obo:HTN_00000001 ; 

                           obo:OBI_0001938 ?svs ; 
                           obo:IAO_0000221 ?bpq . 
                ?bpq a obo:VSO_0000004 ; 
                     obo:RO_0000052 ?patient . 
                ?svs a :TURBO_0010149 ; 
                     obo:IAO_0000039 obo:UO_0000272 ; 
                     obo:OBI_0002135 ?sbpv . 
                filter(?dobValue > "1960-01-01"^^xsd:date &&  
                    ?dobValue < "1980-01-01"^^xsd:date) 
            } 
        }  
        group by ?patient 
    } 
    filter(?avgsbpv > 110 && ?avgsbpv < 130) 
} 
Result: 45 people 
 
At least a partial understanding of the resulting RDF triples can 
be inferred from the previous SPARQL query. Additionally, 
Figure 1 provides a visualization of some of the data items and 
aboutness relationships, and Figure 2 illustrates denotation and 
mentioning patterns. All of the RDF triples generated for this 
paper are available as a compressed n-quads RDF file, which is 
further described in the discussion section. 
A handful of design patterns are proposed in this instantiation and 
have already been the subject of some collaborative evaluation. 
We invite further feedback from those who have read this paper 
and/or loaded a dump of our work into their own triplestore.  
Highlighted Patterns: 

x What should we aspire towards in terms of succinct, 
consistent, and semantically clear aboutness patterns? 
We are currently asserting that racial and gender identity 
datums are about the patient, but date of birth is about 
the ‘start of neonate stage’ that the patient participates 
in. Some clinical measurements, like blood pressure, are 
asserted to be about a quality inhering in the patient, and 
supported with the instantiation of a specific assay class 
and a value specification with units. What then would a 
‘body mass index’ datum be about? 

x Perhaps we are being overconfident in translating values 
of “M” from the person.gender_source_value column as 
instances of class ‘male gender identity datum’, 
OMRSE_00000141. The ontology of medically relevant 
social entities defines gender identity datums as being 
the output of gender identification processes. If the "M" 
value is based on genotype data or a health care 
professional’s examination of external genitalia, is the 
resulting datum really about gender identity? To support 
this inquiry, male and female biological sex datum 
classes have been added to the TURBO ontology, along 
with defined classes for the union of male gender 
identity datums and male biological sex datums (along 
with the analogous case for females). 



 

Figure 1–Aboutness Relationships, including ‘Is Quality Measuremnt Of’, Relevant to Competency Question CQ1.R 

 

  

Figure 2–Denotation and Punned Mentioning Relationships 

 
 

x PennTURBO’s Drivetrain application has the capability 
of making data-driven inferences, even in the case of 
missing or contradictory data. The conclusion drawing 
process and its evidence are instantiated explicitly in the 
graph, and collaborators can specify what rules they 
want to apply. For example, the presence of three male 

gender identity (or biological sex?) datums and one 
female datum might lead to the inference that a female 
biological sex quality inheres in the patient. Can 
inferences about the population in which a patient is a 
member be drawn from racial identity datums? Is this an 
ontological question or a societal question? 



x How can dates of birth be expressed succinctly and in 
adherence to the ontological realism methodology? 
Synthea/OMOP “birth_datetime” values have been 
modeled as instances of ‘date of birth’ (EFO_0004950), 
which is placed into the TURBO ontology as a subclass 
of ‘time measurement datum’ (IAO_0000416). The 
‘date of birth’ instances take xsd:date literals and are 
about ‘start of neonate stage’ (UBERON_0035946) 
process boundary instances. A ‘born on’ property 
(TURBO_0000303) is used to link the patient to the 
process boundary, and has the following characteristics: 
domain 'Homo sapiens'; range 'start of neonate stage'; 
definition “'participates in' o inverse (starts)’”. 
Supplemental class definitions and property chains are 
being added to the TURBO ontology and the PCORowl 
ontology  

x How should we use information content entities for 
denoting, given that identifying values from a database 
might be rigorously maintained by some authority or 
could just be auto-generated primary keys? We have 
illustrated these cases with a ‘centrally registered 
identifier’ (CRID) for denoting the patient, and a 
‘database primary key’ from the TURBO ontology for 
the encounter. (This mimics the actual situation we face 
with our EHR.). Also, the Information Artifact Ontology 
(IAO) defines a CRID as having some part that denotes 
some 'centrally registered identifier registry’, but IAO 
does not include any class that is defined as denoting 
registries. Based on the fact that the domain of ‘denotes’ 
is ‘information content entity’, we have added ‘identifier 
source’, ‘identifier source denoter’ and ‘registry denoter’ 
classes, as subclasses of the slightly more specific ‘data 
item’ class, into the TURBO ontology. Additionally, 
what datatype predicate should bind the lexical 
representation of an identifier to the symbol part of a 
CRID or primary key? Because IAO does not appear to 
have a suitable predicate, a ‘has representation’ 
predicate has been added to the TURBO ontology and 
will shortly be added to OBI. 

x How can we provide context for clinical codes without 
violating ontological realism principles or suggesting 
that the graph contains knowledge that was recklessly 
interpreted from the codes? Medication codes and 
“condition” codes are present in the Synthea/OMOP 
data set. We say that these codes, manifest as URIs for 
classes, are mentioned by diagnoses and prescriptions, 
which are in turn the outputs of ‘health care encoun-
ters’. Since the object of these (instance-level) ‘men-
tions’ statements are defined in their source ontologies 
as classes, this is a case of OWL2 punning. When com-
bined with additional public ontologies and clinical 
lined data sets (see Instantiation, above), it becomes 
possible to indirectly answer real collaborator requests 
like “count the patients with diabetes who were taking 
statin drugs.” However, the graph doesn't truly know 
what disease dispositions inhere in the patients, or 
which drugs were actually ingested (etc.), only the 
codes that were assigned or recorded. 

Discussion 

Besides this current work, we are not aware of any other realism-
based instantiation of a data set that is representative of an EHR 
and also available for all to see. The previously mentioned 
instantiation of an EDR comes closest, but is not available for 
public review as it contains PHI. 
The data set that was ultimately instantiated in this paper 
represents 1000 synthetic patients. While the PennTURBO team 
has good experience instantiating tens of thousands of patients, 
more work is required to determine how this method will scale to 
hundreds of thousands or millions of patients. It’s possible that 
enterprise versions of the triplestore applications may be required, 
along with hardware and operating system optimization.  
There are some differences between the data that are available in 
Synthea, that can fit in an OMOP schema, and that we are already 
routinely instantiating into PennTURBO (independent of the 
work described in this paper.) Synthetic genomic data is not 
available and has no table in the OMOP schema, but PennTURBO 
does make statements about predicted loss of function calls when 
available for Penn Medicine patients. As part of that, we 
instantiate the specimens that were collected from patients as part 
of health care encounter, and which went on to serve as the input 
into a chain of sequencing and bioinformatics processes. There is 
an OMOP specimens table, but synthesis of specimen data with 
Synthea might require writing a plugin. Synthea and OMOP 
support data about health care procedures, and we have future 
plans to instantiate it, as well as the procedure data in our EHR. 
The PennTURBO team routinely runs its instantiations through 
RDFS+ reasoning, but neither PennTURBO nor this 
Synthea/OMOP work has been run through higher levels of 
reasoning, like OWL-Horst. 

Conclusions 

We believe that graph models of health care data will enable faster 
question answering and cohort building, compared to what can be 
done in existing relational EHRs or clinical data warehouses. 
Because we wish to develop this approach collaboratively, in a 
way that fosters interoperability and peer review, we have 
constructed an RDF graph model of synthetic health care data, 
synthea_graph_exportable.nq and have shared it at 
http://doi.org/10.5281/zenodo.2641233 
One of our requirements for this project was identifying a source 
of sharable healthcare data whose contents are as similar as 
possible to the clinical data warehouse that provides the majority 
of our information. DE-SynPUF and MIMIC-III were considered, 
but Synthea was chosen as having both the most relevant data and 
a suitable redistribution policy. Specifically, Synthea allows the 
generation of any number of observations and includes numerical 
and qualitative clinical findings. MIMIC-III would be a good 
choice in a setting where the value of free text clinical notes 
outweighed the inconvenience of the more restrictive license. 
The three data sources were staged in the OMOP common data 
model in order to minimize the effort required to become familiar 
with each source’s structure, and also because we anticipate using 
the OMOP model for both ingesting data sources complementary 
to our clinical warehouse, and as a format for sharing portions of 
the clinical warehouse with other medical research institutions. 
Scripts for transforming each of the three “sharable” data sources 
into an OMOP model are available at OHDSI’s GitHub software 



repository. While these scripts dramatically decrease the effort 
required to perform the transformations, users should be prepared 
to do a small amount of debugging. 
We have briefly demonstrated the ability to migrate the Synthea 
data from an OMOP-formatted PostgreSQL relational database 
with two methods: our internal “Carnival/Drivetrain” software 
suite, and the Virtual Graph feature from the Stardog triplestore, 
in federation with the GraphDB triplestore (which also serves as 
the final destination.) 
A competency question, representative of a cohort-building 
query, was applied to Synthea data in its native format, the same 
data in an OMOP schema, and corresponding RDF triples. The 
same answer was obtained in all three cases. 
We encourage readers to download our Synthea triples from the 
address above and load them into any RDF triplestore. The 
TURBO ontology is included, but not the supporting RxNorm, 
CVX and SNOMED clinical knowledgebases. An RDF 
representation of RxNorm can be obtained from the NCBO 
BioPortal, but obtaining RDF models of CVX and SNOMED 
requires performing a multi-step conversion from the Unified 
Medical Language System.(32,33) 
We are especially interested in hearing feedback about our ‘is 
about’ relations, the way we ‘mention’ diagnosis and medication 
codes via OWL2 punning, and the way we denote entities with 
either centrally registered identifiers or database primary keys, 
depending on our confidence that the identifier is truly centrally 
registered. Several of these issues are already the subjects of 
active GitHub issues such as https://github.com/obi-
ontology/obi/issues/985. 
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