
Building a Shared Ontology Use Patterns Repository

Jonathan P. Bona*1, Joseph Utecht1, Sarah Bost1, Corey J. Hayes1,2,3, Mathias Brochhausen1

1Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
2Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, USA

3Center for Mental Healthcare and Outcomes Research, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
jpbona@uams.edu, jutecht@uams.edu, sjbost@uams.edu, cjhayes@uams.edu, mbrochhausen@uams.edu

Abstract

This paper proposes and reports on the creation of a
biomedical ontology use patterns repository. This work aims
to facilitate the curation, sharing, discovery, and use, of
information about how OBO and other biomedical
ontologies are used by informatics researchers and other
ontology users to transform biomedical instance data into
realist semantic representations. By encouraging sharing of
information about how ontologies are actually used with
instance data this resource will reduce the total effort by
ontology users to design and implement representations for
use with their data. We believe this will ultimately result in
more widespread use of higher-quality representations, and
in improved semantic interoperability of data. Our
repository proof of concept implementation is available as a
web application built and organized using semantic web
technologies.

Keywords:
Ontology reuse, semantic interoperability, biomedical data

Introduction

In our biomedical knowledge representation work we often
need to transform instance data that originates as entries in
tabular files or other representations into semantically
enhanced knowledge graphs by instantiating ontology
classes as RDF individuals, along with assertions about the
relations between these individuals, in a triple store
database. This transformation greatly enhances the
usefulness of the underlying information by making its
meaning explicit, and by making it available for querying
and reasoning. The benefits of this approach are well-known
in the biomedical ontologies community: by using
axiomatically-rich realist ontologies that share a common
upper level based on a shared theory of reality, we can
generate consistent representations for data that are trivially
interoperable, and include machine-accessible semantics
that allow semantic web reasoners and related tools to infer
new information based on the represented instances.

This approach is useful both as the basis for semantic
representations used for newly collected/generated data that
can be instantiated automatically by ontology-based
software systems, including our efforts in Comparative
Assessment Framework for Environments (CAFE) of
Trauma Care (1), and in the Data Coordinating and
Operations Center (DCOC) for the IDEAS States Pediatric
Clinical Trials Network. It is useful as well for enhancing
and integrating pre-existing data, or other data whose
ongoing generation beyond the control of ontologists, for
instance in our work on the Platform for Imaging in
Precision Medicine (PRISM) initiative (2) and related
ongoing projects.

In collaborations of multidisciplinary teams, especially with
collaborators who are not accustomed to using ontology-
driven knowledge representation strategies, we sometimes
encounter the initial expectation that in order to build
semantic representations for instance data, it is necessary
only to select the single ontology term that best matches the
meaning for each column in a spreadsheet of clinical data,
for instance. In fact, such one-to-one mappings are rarely
possible or desirable given the complexity of the world
(which these data are supposed to be about) and the
corresponding complexity of realist ontologies that have
been carefully designed to represent the relevant portions of
this reality.

For example, a positive hpv diagnosis might appear as a
plus sign, or as the value ‘true’ or similar, in a column
labeled ‘hpv status’ or similar in a table of clinical and other
non-image data uploaded with a collection of head and neck
cancer images in a cancer image archive (2). Our approach
to representing the information that this particular patient
has been diagnosed with HPV involves generating and
asserting instances of classes from several different OBO
Foundry Ontologies, and the relations among those
instances, applying an instantiation pattern for each record,
for instance the pattern shown in Fig 1. This pattern
represents the human being (who is infected with HPV), the

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

instance of HPV disease that inheres in that person, as well
as the diagnosis itself and the planned processes that
produced it. Note that this example does not deal with
mistaken or retracted diagnoses, though the representation
used in this could be used as part of a referent tracking (3)
approach to handling such complications.

There are many possible workflows for designing such
representation patterns and applying them to instance data.
In our work, we usually begin by sketching such patterns
visually using a drawing program (or even a whiteboard or
piece of paper), with software tools such as Protégé and
Ontobee on hand to support discovering and exploring
ontology terms. Once a representation pattern has been
sketched out, it is manually translated into a format usable
by an executable computer program that can interpret the
target instance data and instantiate RDF that matches the
representation pattern. This program is then run with the
data as input, generating the semantically-enhanced
representations suitable for use in a triple store.

Except in the small percentage of cases where this graphical
depiction of the pattern is then used as an example figure in
a publication, it is usually not shared outside the project, or
even necessarily put in a shared space accessible to all

project collaborators. Similarly, the program that realizes
the RDF instantiation process is also not usually published
or shared in a discoverable way, and in the best case
scenario ends up in a code repository with some
documentation that the project participants know how to
access, but that is not easily discovered or used in other
efforts where it is relevant.

One obvious issue with this practice is the duplication of
effort that results when two users of OBO ontologies
unwittingly work to independently represent the same, or
very similar, phenomena. Even within a single group
working on multiple projects, we have found it useful to
have a space to share these ontology instantiation patterns.
These reusable patterns consist of instances linked using
rdf:type to the ontology classes that they instantiate, and
with relations among them necessary to represent the
phenomena that the patterns are about.

To the extent that there is one clear and correct way of
representing instance data about a phenomenon, the
biomedical ontologies community will benefit from an open
repository of representational patterns for instance data that
supports their publication, discussion, and reuse.

In other cases there may even be multiple possible patterns
that can seem equally correct, especially where domain
ontologies inadvertently overlap, or where the ontology
terms used do not have definitions that completely constrain
how they should be used. This will often be the case, as
domain ontology developers cannot be expected to predict
exactly what their ontologies will be used to represent.

One example we have encountered in our work concerns
how to represent just a few of the entities involved in
prescribing a drug to a patient. We have identified several
possible representations that all seem to be permissible and
reasonable uses of the terms involved to represent this
phenomenon. These possible patterns are shown here in Fig
2. The first (a) has the patient (an instance of ‘Homo
sapiens’ bearing the ‘patient role’) as a direct participant in
the drug prescribing process. The second (b) has as its
participant some instance of ‘patient role,’ with a path to the

Fig. 1. Representing an instance of HPV and its diagnosis

Fig. 2. Several possible patterns to represent an instance of prescribing a drug to a patient.

actual patient through their ‘bearer of’ relation to that role.
While some ontology developers may assume that the
participation relation only holds between occurrents and
their independent continuants, this constraint is not specified
in the definition of the ‘has participant’ object property. The
third (c) links the drug prescribing process to the individual
‘patient role’ via the ‘realizes’ relation, which is arguably a
more suitable and more informative relation to connect
occurrents and dependent continuants that are realizable
entities, and again links to the actual person involved
through their bearing that particular role. A fourth option (d)
connects the process to the role and person (patient) only
indirectly through the output of the process (a ‘drug
prescription’) being about the person. While this is a correct
use of ‘is about’ (4), note that ‘is about’ is a fairly general
relation to use here, as a prescription is certainly about
several different things, including the patient who has
received the prescription. Note also that (d) can be
combined with the various approaches reflected in (a)-(c),
resulting in even more potential representation patterns that
an ontology user might decide to implement.

Related Work

The general approach of this work is related to, but still
quite distinct from, the basic idea of ontology design
patterns (ODPs) that has been put forward by Gangemi and
Presutti (3). While the aim of this paper is to provide a
pattern-based solution to the potential of different
instantiation-based representations using the same
ontologies in managing RDF data, the goal of ODPs is to
support ontology design by providing design patterns to
guide the representation of a domain in a mainly class- and
object-driven manner. Recently, ODPs have become a new
focus of interest in research regarding automatization of
ODP creation to facilitate sharing and integration of existing
ontologies (5,6).

A good example of this is Gangemi and Presutti’s agent-role
pattern that aims to create a standard way to represent an
agent and link it to a role (5), e.g. “John Doe” and “student
role.” An example of this pattern can be found here:
http://www.ontologydesignpatterns.org/cp/owl/agentrole.ow
l. This patterns consists of 4 classes (in addition to
owl:Thing) {Concept, Object, Role, Agent} and 4 object
properties {classifies, is classified by, is role of, has role}.
Notably, the pattern does not provide an instance-oriented
view. While this makes perfect sense for supporting
ontology development, patterns that provide insight for
using ontologies to manage RDF data will necessarily
include instantiations. The development of ODPs have led
to the implementation of a semantic web portal for sharing
and discussing ontology design patterns (7).

Our own CAFE project (1), which includes the aim to
represent the organizational structures of trauma centers and
trauma systems in RDF, has an internal collection of RDF
instantiation patterns. These roughly 150 representations
were created to model the organizations described by
answers to survey questions. For example, a "yes" answer to

the question "Does your institution have a trauma program
manager?" would result in an instantiation of the triples in
Fig 3., which shows that a human who is a member of the
user’s organization is the bearer of a trauma program
manager role. The CAFE project has many general
instantiation patterns ranging from the simple example
above to more complex representations. However, these
patterns exist only in the project’s internal database with no
easy way to reuse or share them.

Methods

To address this need we have implemented an ontology
usage patterns repository as a web application built using a
standard Python web framework combined with semantic
web technology. This system provides a simple web
interface that allows the user to search, browse, view, and
download information about, ontology usage patterns. These
pattern specifications include downloadable/reusable RDF
representations, figures, textual descriptions, and other
information about the pattern itself.

Implementation

Our repository application is implemented in Python 3.6
using the Flask web framework (8) and semantic web tools,
including rdflib and other Python libraries. The user
interface consists of HTML forms and pages rendered by
Flask, with simple styling in CSS. Some of the more
complex planned extensions to this work discussed more in
our Future Work section below will require the use of
Javascript for more complicated interactions.

The only database underlying this application is a triple
store, which is used to persistently store all information
needed to operate and organize the repository, as well as
user-added information such as pattern definitions, contents,
and metadata. We are currently using as a triple store a
version of Ontotext GraphDB (9), which is a proprietary
commercial triple store system available for use free of
charge. However, this application will work with any
system that supports SPARQL queries. The application uses
the SPARQLWrapper Python library to query our GraphDB
instance via its endpoint interface.

Fig. 3. A pattern used to generate instance data about
trauma program organization in the CAFE project

Application Ontology

The information required to operate this repository and
represent ontology usage patterns in a triple store back-end
is encoded using just RDF/OWL and a handful of classes
and properties from standard semantic web resources and
OBO ontologies, such as the Information Artifact Ontology
(IAO). We define only a single new class, ‘ontology use
pattern specification’ to represent the information needed to
operate this repository, so technically this application is
backed by a very small application ontology. That class is a
subclass of IAO: ‘directive information entity’, as shown in
Table 1.

In this ontology we use the persistent URL
http://purl.org/ontology-use-patterns# as
a prefix for its identifiers, including for the ‘ontology use
pattern specification’ class, any future classes or properties
that are added to achieve additional functionality, and
named individuals repository triple store, for instance those
instances of ‘ontology use pattern specification’ used to
represent each individual pattern.

Triple store & Named graph

The RDF triples defining each pattern added to the
repository are stored within the triple store in a dedicated
named graph (10) used only for that pattern. Named graphs
are useful for combining information in a single triple store
while maintaining some separation based on its origin, for
example to assemble genomics data from different sources
and manage that data along with information about its
provenance in a single database (11).

By using a separate named graph for the contents of each
pattern, we prevent our triple store from containing
assertions that could be interpreted as making claims about
the world that may be false, unverifiable, or non-referring. It
should be possible, and is often desirable, to design and
specify a representation pattern for future use that would
contain falsehoods if it were instantiated now. An example
is a pattern designed for use with some instance data that
will in the future be part of a data collection that does not

yet exist. In such a case, it is clearly better not to have a
database that contains unconditioned assertions about those
entities when they do not exist.

Leaving aside things that do not yet exist and other
hypothetical entities, it is also clearly better not to have
assertions to the effect that a particular instance of homo
sapiens exists, that a particular instance of some disease
exists, that the disease instance inheres in the human being,
and so on, with instances for those individuals sitting in this
repository, because this repository is not intended to store
assertions about patients and their diseases. Even more
practically, the system does not seek to constrain how users
may choose to “name” the RDF blank node individuals that
appear in their patterns (e.g. _:person1), though it is
recommended to use names that hint at the type of
individual indicated (but to never rely on this hint in place
of actual type assertions). By separating out each pattern
into its own named graph, we avoid the possibility of
conflicts, for instance, assertions across patterns that appear
to be about the same individuals. Keeping names separate is
also made easier by allowing GraphDB to generate unique
symbols to name individuals. Because these generated
symbols are long and unwieldy for users to deal with, we

PREFIX oup: <http://purl.org/ontology-use-patterns#>
oup:pattern_000001 rdf:type oup:OUP_000001 .
oup:pattern_000001 rdfs:label "An example pattern" .
_:fig1 rdf:type <http://purl.obolibrary.org/obo/IAO_0000308> .
_:fig1 rdfs:label "example_figure1.svg" .
_:fig1 <http://purl.obolibrary.org/obo/BFO_0000050> oup:pattern_000001 .

Listing 1: example triples defining an individual ‘ontology use pattern specification,’ and specifying the figure it has as its part

a person
_:person1 rdf:type <http://purl.obolibrary.org/obo/NCBITaxon_9606> .
some HPV inhering in the person
_:hpv1 rdf:type <http://purl.obolibrary.org/obo/DOID_11166> .
_:hpv1 <http://purl.obolibrary.org/obo/RO_0000052> _:person1 .

Listing 2: RDF triples defining part of an ontology use pattern for HPV diagnoses

Name: ontology use pattern specification
URI:
http://purl.org/ontology-use-
patterns#OUP_000001
Superclass: IAO ‘directive information entity’
(IAO_0000033)

Definition: A directive information content entity that
specifies a specific RDF representation for instance data
of a particular sort using terms from pre-existing
ontologies. This specification may include figures and
metadata associated with the pattern in addition to RDF
triples.

Table 1: ontology use pattern specification

truncate them for display purposes within the system.

In addition to providing a tidy way to keep separate the
RDF definitions of patterns in our repository, using named
graphs for each pattern also allows us to specify additional
information about the pattern, including textual descriptions
that explain the intended use, figures that show the pattern
rendered in visual format, and additional “metadata” such as
the creator, the license for use, etc. This is achieved by
using as the name for each named graph a URI that is
asserted to be an instance of the ‘ontology usage pattern
specification’ class described above, and inserting the triples
that define the RDF pattern within that named graph.

Assertions about a pattern instance are made within the
main graph of the triple store (that is, outside of any named
graph). For example, the RDF triples in Listing 1 below are
used to store the information that the individual
oup:pattern_000001 is an instance of ‘ontology use
pattern specification,’ that there is an individual (here
identified by the blank node _:fig1) that is an instance of
IAO: ‘figure’ (IAO_0000308), that this figure has the
filename ‘example_figure1.svg’, and that the figure
is a part of the pattern specification.

Pattern definition triples

The most crucial piece of a pattern is the set of RDF triples
that define the pattern itself. As mentioned above, the
system expects blank node identifiers (e.g. _:person1) to
be used for the instances in these patterns. For example, the
following shows triples (part of the pattern shown in Fig. 1)
representing a person and an instance of HPV that inheres in
that person.

When a pattern definition is inserted into the database,
GraphDB replaces its blank node identifier with generated

unique blank node identifiers that contain the user’s original
identifier as a suffix (e.g. _:person1 becomes
_:genid-
bc43f3ab4ec54362af7ed97c9dddcf44-
person1). When displaying a pattern for view or
download, the patterns repository interface strips out the
generated part of the identifier. As currently implemented
this feature does rely on GraphDB’s unique way of handling
blank nodes internally, and would not generalize to other
triple store implementations. Future versions of our tool will
implement a more general approach for assigning
meaningful names to variables in patterns, for instance by
using an annotation property.

Currently adding a pattern definition to the repository
through our application involves producing a representation
of the pattern as a set of RDF triples expressed in text
formatted as N-Triples (12). Possible future work includes a
more user-friendly interface for creating such patterns, as
discussed more below.

Fig. 4 illustrates the use of named graphs to represent
instances of ‘ontology use pattern specification’, RDF triple
patterns within the named graphs, and information asserted
about the patterns (descriptions, and other parts, such as
figures) in the triple store.

Results

We have created an initial implementation of the ontology
use patterns repository proposed and described above. This
repository is available at
http://purl.org/ontology-use-patterns.
It is currently populated with several ontology usage pat-
terns used in projects within our group.

Figure 4: Ontology use pattern specification instances represented as named graphs containing pattern RDF triples

The repository system implements a core set of features,
including the ability to capture and store information about
ontology use patterns within a semantic database. This
information about patterns includes:
● RDF definitions of the pattern specifications themselves
● Pattern specification names and descriptions and other

metadata
● Figures depicting the patterns
The system also provides the ability to search for and view
patterns based on their names and descriptions. We will
shortly add the option to also search based ontology terms
that are used within the patterns, including text-based search
for patterns over term labels and other annotations used in
the patterns. This allows the user to identify patterns that use
terms of interest by inputting a search string that the system
then uses to identify all terms that appear across the entire
database whose labels contain the string, determining which
named graphs contain triples using any of those terms, and
return the list of those pattern specifications for the user to
browse.

Once the user has found and loaded a pattern of interest, the
system displays the pattern’s details in a single page that
includes the name, description, and metadata about the
pattern; a linked rendering of the pattern’s RDF triples
representation with ontology term identifiers appearing as
clickable links that resolve to the terms themselves via
Ontobee; a listing of labels for the terms in the pattern; one
or more figures depicting the pattern visually; and a link to
download the pattern as an RDF file in the N-Triples format.

Discussion & Future Work

This paper has proposed and presented a solution for the
problem of sharing and reusing information about how
ontology terms are typically combined into patterns used to
instantiate instance data: a repository of ontology use
patterns that allows users to create, view, and reuse these
patterns and their descriptions. We have implemented an
initial release of such a tool and populated it with a diverse
set of example patterns related to our work. Development is
ongoing to add new features and other improvements.

One planned feature is a diagramming tool for creating RDF
instance diagrams with a consistent style like that used in
many of the figures in this document, possibly following
conventions established by VOWL (13). This tool will then
automatically generate the RDF definition of the pattern
based on the user’s interaction with the diagramming tool.
This will allow users to create ontology use patterns within
the repository in a single step without going to the separate
effort of sketching a diagram and manually creating the
RDF pattern, as is currently required. It will also help to
ensure the consistency of the main pattern figures used in
the repository, as well as the ease of interpreting them. The
CAFE project already includes a tool for generating
diagrams from its internal instantiation patterns.

Another planned feature is tooling to support copying and
editing an existing pattern from within the system itself.
We are also considering adding a pattern-based search
interface that would allow for more complex queries than
the current text-based interface supports.

In addition to this search capability we also plan a more
term-based navigation option that will allow users to
explore available patterns based on which terms appear in
them. In the simplest case, this would involve renderug a
page for each ontology term that is used in any pattern
within the repository that links to those patterns that use it.
In a pattern repository actively populated and used by the
biomedical ontologies community, such a term landing page
could provide useful information about how, and how often

Acknowledgements

Work on this project has been funded in part with federal
funds from the National Cancer Institute, National Institutes
of Health under Contract No. HHSN261200800001E. The
content of this publication does not necessarily reflect the
views or policies of the Department of Health and Human
Services, nor does mention of trade names, commercial
products, or organizations imply endorsement by the U.S.
Government. Under this contract the University of Arkansas
is funded by Leidos Biomedical Research subcontract
16X011. Funding was also provided by U24CA215109

The CAFE project described in this paper is funded by the
National Institute of General Medical Sciences of the Na-
tional Institutes of Health under award number
R01GM111324.

The DCOC work described in this paper was funded by
grant number U24OD024957 from the National Institutes of
Health Office of the Director through the ECHO program.

The work on representing prescription data described in this
paper was supported by the Translational Research Institute
(TRI), grant UL1TR000039 through the National Center for
Advancing Translational Sciences of the National Institutes
of Health (NIH). The content is solely the responsibility of
the authors and does not necessarily represent the official
views of the NIH. This work was also supported in part by
BJA-2018-13607: CATEGORY 5 HAROLD ROGERS
PRESCRIPTION DRUG MONITORING PROGRAM
(PDMP) IMPLEMENTATION AND
ENHANCEMENT PROJECTS

References

1. Utecht J, Judkins J, Otte JN, Colvin T, Rogers N,
Rose R, et al. OOSTT: a Resource for Analyzing the Organ-
izational Structures of Trauma Centers and Trauma Sys-
tems. CEUR Workshop Proc [Internet]. 2016 Aug [cited
2019 Apr 17];1747. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312685/

2. Jonathan P. Bona, Tracy S. Nolan. Ontology-
Enhanced Representations of Non-image Data in The Can-
cer Imaging Archive. In: Proceedings of the International
Conference on Biological Ontology 2018. CEUR-WS.org;
2018.
3. Ceusters W, Smith B. Strategies for referent track-
ing in electronic health records. Journal of Biomedical In-
formatics. 2006 Jun 1;39(3):362–78.
4. Ceusters W, Smith B. Aboutness: Towards Foun-
dations for the Information Artifact Ontology. In: Proceed-
ings of the Sixth International Conference on Biomedical
Ontology (ICBO). CEUR vol. 1515; 2015. p. 1–5.
5. Gangemi A, Presutti V. Ontology Design Patterns.
In: Staab S, Studer R, editors. Handbook on Ontologies [In-
ternet]. Berlin, Heidelberg: Springer Berlin Heidelberg;
2009 [cited 2019 Apr 15]. p. 221–43. (International Hand-
books on Information Systems). Available from:
https://doi.org/10.1007/978-3-540-92673-3_10
6. Ławrynowicz A, Potoniec J, Robaczyk M, Tudor-
ache T. Discovery of Emerging Design Patterns in Ontolo-
gies Using Tree Mining. Semant Web. 2018;9(4):517–44.
7. Daga E, Presutti V.
http://ontologydesignpatterns.org [ODP]. Proceedings of the
Poster and Demonstration Session at the 7th International
Semantic Web Conference (ISWC2008). 2008;401:2.
8. Grinberg M. Flask Web Development: Developing
Web Applications with Python. Sebastopol, CA: O’Reilly
Media; 2014. 258 p.
9. Ontotext GraphDBTM - a Semantic Graph Database
Free Download [Internet]. Ontotext. [cited 2019 Apr 17].
Available from:
https://www.ontotext.com/products/graphdb/
10. Gandon F, Corby O. Name That Graph [Internet].
W3C. 2009 [cited 2019 Apr 16]. Available from:
https://www.w3.org/2009/12/rdf-ws/papers/ws06/
11. Zhao J, Miles A, Klyne G, Shotton D. Linked data
and provenance in biological data webs. Brief Bioinform.
2009 Mar 1;10(2):139–52.
12. RDF 1.1 N-Triples [Internet]. [cited 2019 Apr 17].
Available from: https://www.w3.org/TR/n-triples/
13. Visualizing Ontologies with VOWL |
www.semantic-web-journal.net [Internet]. [cited 2019 Apr
17]. Available from: http://www.semantic-web-
journal.net/content/visualizing-ontologies-vowl-0

