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Abstract 
Data granularity is the level of direct correspondence between data in an Information System (IS) 
and the real-world things represented by the data. It determines the amount of detail that may be 
captured, stored, and used by contributors and consumers of information in an IS. We present a 
between-groups lab experiment in which we manipulated the granularity of a crowdsourcing 
project’s interface to assess the impact of granularity on data completeness, data correctness, and 
overall contributor participation. We found that contributors using a finer-grained data collection 
interface contributed more complete data, while contributors using a coarser-grained data collection 
interface contributed more incorrect data. Moreover, the level of granularity did not influence the 
degree of participation. These findings suggest that granularity is an important issue in the design 
of data crowdsourcing projects. 
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1. Introduction 

How does the design of data crowdsourcing projects influence the level of detail contributors are 
able and willing to contribute? How does the level of detail contributors are able to contribute influence 
their ability to contribute complete and correct data? In this paper, we explore how granularity (the level 
of direct correspondence between data in an Information System (IS) and the real-world things 
represented by that data [1]) influences the level of completeness and correctness in data captured by a 
crowd in a data crowdsourcing project.  

Data crowdsourcing is a phenomenon in which a crowd is mobilized to collect or analyze large 
volumes, varieties, and/or velocities of data [2]—of potentially-questionable veracity [3]. Observational 
crowdsourcing is a kind of data crowdsourcing in which contributors capture observations about some 
domain (e.g., wildlife) of the real world over a continuous period [4, 5].  

An important opportunity for data crowdsourcing projects is the unanticipated use and reuse of 
collected data [6, 7]. Yet, once data has been collected, it can be very difficult or even impossible to 
return to the observation that was the object of that data and capture more detail from it. For this reason, 
data granularity is an important issue for data crowdsourcing (and especially for observational 
crowdsourcing). Granularity is an important factor in the ability to use and reuse data. If data is captured 
at finer-grained levels of detail (e.g., features and descriptions of observed wildlife), it may be possible 
to combine the collected details in useful ways. However, if data is collected at coarse-grained levels 
(e.g., classes, such as type of animal), then potentially important details about the observation cannot 
be captured and may be lost forever [8].  

However, before we can leverage the granularity in the design of data crowdsourcing projects, we 
need to guarantee that fine-grained data collected from data crowdsourcing actually does contain more 
detail than coarse-grained data. Moreover, we must make sure that this detail is useful (e.g., does it 
facilitate more complete representation of the real-world phenomena the observer is capturing?) and 
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that it is correct (e.g., finer-grained data capture does not introduce errors). So, in the present research, 
we explore three related research questions: (1) Are observations captured at finer levels of granularity 
more or less complete than observations captured at coarser levels of granularity? (2) Are observations 
captured at finer levels of granularity more or less correct than those captured at coarser levels of 
granularity? (i.e., does finer-grained data cause contributors to introduce more errors?) (3) As 
contributing fine-grained data may require more effort than coarse-grained data, do contributors 
providing fine-grained observations contribute fewer overall observations?  

2. Experimenting with granularity in crowdsourced data collection 

One way to expose the conceptual model of an information system to data contributors is through 
the interface used to submit data. The interfaces data contributors use shape the data they contribute, as 
prompts, input boxes and so on shape and frame the structure, type, and content of contributions. 
Therefore, in this experiment, we use different degrees of granulation in data collection interfaces to 
represent different levels of granularity in the hypothetical project’s conceptual model.  

2.1. Hypotheses 
2.1.1. Data completeness 

Wand and Wang [9] define completeness, an intrinsic dimension of data quality, as “the ability of 
an information system to represent every meaningful state of the represented real world system” (p. 93). 
Granularity clearly plays a role in enabling this ability in information systems: if the conceptual model 
of the IS is insufficiently granulated to represent some details of the real world, the data captured within 
that IS (determined by data collection and storage decisions) cannot include those details. An IS with a 
more finely-granulated conceptual model will be more able to completely represent a given domain 
than an IS with a less granulated conceptual model. At the same time, it may be unnecessary to 
maximally granulate a conceptual model in order to benefit from the effects of granularity. A coarse-
grained model may facilitate a similar level of completeness as a fine-grained model. While both would 
encourage contributors to break down their contributions into more detail, at a certain threshold that 
level of detail may be tedious, leading to diminishing returns on increasing levels of granularity. We 
are therefore interested in the degree of benefit fine granularity and coarse granularity each provide 
over an ungranulated alternative. This gives us our first set of hypotheses:  

• H(1a): An IS with a fine-grained data collection interface will generate more complete data 
than an IS with an ungranulated data collection interface. 

• H(1b): An IS with a coarse-grained conceptual model will generate more complete data than 
an IS with an ungranulated data collection interface. 

Note that we do not hypothesize a difference between coarse-grained and fine-grained interfaces in 
terms of the completeness of data collected. 

2.1.2. Data correctness 

We follow Wand and Wang’s [9] definition of data correctness: the degree to which an information 
system’s data represents valid states of its real-world domain. The more finely granulated the conceptual 
model of an IS is, the more specifically it can represent the target domain. Coarsely granulated 
conceptual models create data that depend on user inference to fill in details. In turn, we propose that 
less granulated conceptual models lead to data that is more prone to incorrectness. This gives us our 
second set of hypotheses (Note that we do not hypothesize a difference between coarse-grained and 
fine-grained interfaces in terms of the correctness of data collected): 

• H(2a): An IS with a fine-grained data collection interface will generate less incorrect data 
than an IS with an ungranulated data collection interface.  

• H(2b): An IS with a coarse-grained data collection interface will generate less incorrect data 
than an IS with an ungranulated data collection interface.  



 

2.1.3. Granularity and cognitive effort 

As discussed above, we expect granulated data to be more complete and more correct than 
ungranulated data. However, capturing this degree of completeness and correctness will be more 
cognitively demanding on users. Consequently, we expect that contributors will make fewer 
contributions when data collection is granulated than when it is ungranulated. This gives us two final 
hypotheses: 

• H(3a): Users contributing data to an information system with an ungranulated data 
collection interface will produce more contributions than users contributing data to an 
information system with a fine-grained data collection interface. 

• H(3b): Users contributing data to an information system with an ungranulated data 
collection interface will produce more contributions than users contributing data to an 
information system with a coarse-grained data collection interface. 

2.2. Methodology 

To explore how granularity influences data completeness, we ran a between-groups experiment in 
which we manipulated the data collection interface of a data crowdsourcing system to instantiate three 
different levels of conceptual model granularity. Participants were randomly assigned to one of the 
three conditions. After reviewing instructions for the task, completing a simple comprehension test, and 
responding to some background questions (e.g., self-report measures of wildlife expertise), participants 
were presented a set of up to 20 photos of wildlife, one at a time, in random order. Their task was to 
describe each photo using the system interface. Each participant completed a minimum of five such 
observations, after which they could choose to end their participation at any time. After participants 
opted to exit, or after they completed all 20 observations, they were asked a few questions about their 
experience in the before concluding their participation in the experiment. The experimental 
manipulation was never revealed to participants—i.e., participants in one condition were not told about 
the existence of alternative interfaces. More details about the experiment’s participants, materials, and 
resulting measures are described below. 

2.2.1. Participants 

One hundred participants were recruited via Amazon Mechanical Turk (MTurk), a crowdsourcing 
platform in which people receive money for completing micro-tasks. Participants received $2 USD as 
a reward for completely participating in the experiment. 41 participants were randomly assigned to the 
“ungranulated” condition, 32 to the “coarse granularity” condition, and 27 to the “fine granularity” 
condition. Several participants (six from the “ungranulated” condition, five from the “coarse 
granularity” condition, and two from the “fine granularity” condition) seemed to complete each 
observation by using the sample photo to complete a reverse-image search on Google, then copying 
and pasting information from the first result into the task text boxes. These results were discarded, 
leaving 87 participants: 35 in the “ungranulated” condition, 27 in the “coarse granularity” condition, 
and 25 in the “fine granularity” condition. 

2.2.2. Materials 

In the MTurk interface, participants were given a brief overview of the experiment (essentially 
explaining that they would be helping researchers describe photos of wildlife), an informed consent 
form, a hyperlink to the task, and a text box in which to paste a completion code received after 
successfully completing the task. 
  



 

 
The hyperlink in the MTurk interface brought participants to the experimental task materials, 

developed using Qualtrics survey software. Upon arrival, participants were presented with the task 
instructions. After reviewing the instructions, participants needed to successfully answer two questions 
testing their basic comprehension of the task. They were then asked four questions about their 
background before beginning the task itself. These materials are provided in Appendix 1. 

2.2.3. Task 

After completing the background questions, participants began the experimental task. Each 
participant completed between five and 20 observations in which they described the contents of a photo 
of wildlife. We allowed participants to exit after a minimum of five completed observations in order to 
assess whether our granularity manipulation influenced the number of contributions a participant was 
willing to make. This design allowed us to evaluate the influence of the experimental conditions in a 
setting without an extrinsic motivator. If participants completed fewer observations in any given 
condition (e.g., if they dropped out before completing 20 observations), it would indicate that the 
condition involved a more difficult or aversive task compared to a condition where participants 
completed more observations. The sample photos were taken from NL Nature (www.nlnature.com), a 
crowdsourcing platform in which users contribute sightings of wildlife in Newfoundland and Labrador. 
Up to twenty different photos of wildlife were presented to each participant in random order. For each 
observation, we measured the number of seconds between when the observation was first loaded and 
when the participant submitted the observation to exit the task or to move on to the next observation. 

 

For each observation, depending on the condition to which they were assigned, participants were 
presented with a screen like one of the three shown in Figure 2. While each participant had to complete 
the same task—describing the wildlife in the photo—we modified the ways in which participants had 
to provide their description across each condition. In the “Ungranulated” condition, participants were 
asked “What do you see?”, seeking to emulate similar interfaces in real-world data crowdsourcing 
interfaces. In the “Coarse granularity” condition, participants were instead asked “What kind of wildlife 
do you see?”, “What are the features of the wildlife?”, and “What are the behaviours of the wildlife?”—

Figure 2: From left to right: ungranulated, coarse granularity, and fine granularity interfaces for the 
experimental task 
 



 

these three questions granulate the question “what do you see?” into three major possible groups of 
observations. Last, in the “Fine granularity” condition, participants were asked “What kind of wildlife 
do you see?”, “Colour(s) of the head:”, “Features of the head:”, “Colour(s) of the tail:”, “Features of 
the tail:”, “Colour(s) of the limbs:”, “Features of the limbs:”, “Colour(s) of the body:”, “Features of the 
body:”, “What behaviours do you see?”, and “What is it interacting with?”, further granulating the 
questions in the coarse-grained category. To maintain structural equivalence, each condition included 
only 11 text boxes of identical size, exactly as depicted in the figure. Participants were instructed only 
to report what they could actually see, not to guess based on what kind of wildlife they thought they 
were looking at. Participants were also instructed not to fill in text boxes if it wasn’t possible to answer 
a given prompt. 

2.3. Results 

Analysis was completed with SPSS Statistics version 27. As seen in Table 2, participants in the 
Ungranulated condition completed an average of 9.17 (std. dev. = .86) observations (e.g., they looked 
at and described 9.17 photos of wildlife, on average). Participants in the Coarse Granularity condition 
completed an average of 9 (std. dev. = .89) observations, and participants in the Fine Granularity 
condition completed an average of 7.68 (std. dev. = .94) observations. The results presented here 
therefore include analysis of 756 total observations from 87 participants across the three conditions. 

 
 Using a one-way ANOVA (Table 2), we found no significant difference between groups’ self-

reported biology/ecology education (F(2, 84) = .692, p = .882), identification as citizen scientists (F(2, 
84) = .750, p = .475), or hours spent outdoors (F(2, 84) = .297, p = .744). However, we found that 
participants’ self-report of wildlife expertise violated Levene’s test of homogeneity of variances, F(2, 
84) = 6.576, p = .002. Therefore we used a one-way ANOVA with Welch’s adjusted F ratio to test for 
significance, again finding none, F(2, 55.683) = .597, p = .554. 

Condition n 

Expertise in 
wildlife (5-point 

scale) 

Education in 
biology/ecology 
(4-point scale) 

Self-
identification 

as a citizen 
scientist (5-
point scale) 

Hours spent 
outdoors (5-
point scale) 

Mean Std. 
Dev. Mean Std. 

Dev. Mean Std. 
Dev. Mean Std. 

Dev. 
Ungranulated 35 2.23 1.33 2.14 0.77 2.4 1.29 1.63 0.91 

Coarse granularity 27 1.93 1.04 2.22 0.85 2.04 1.29 1.78 1.28 
Fine granularity 25 1.96 0.84 2.24 0.83 2.4 1.26 1.56 0.96 

Condition n 
Observations completed 

Total Mean Std. Dev. Skewness 
(std. dev.) 

Kurtosis 
(std. dev.) 

Ungranulated 35 384 9.17 0.86 1.02 (.40) -.40 (.78) 
Coarse granularity 27 275 9 0.89 1.25 (.45) .345 (.87) 

Fine granularity 25 216 7.68 0.94 1.77 (.46) 1.73 (.90) 

Table 2 
Observations completed per condition 

Table 1 
Participant background information. 



 

To explore potential differences in task completion time (Table 3), we analyzed the difference 
between the average completion time per-observation in each condition. These measures violated 
Levene’s test for equality of variances, F(2,84) = 3.648, p = .030. So, we conducted a one-way ANOVA 
with Welch’s adjusted F ratio, finding a statistically significant difference in mean observation 
completion time per-participant between conditions, F(2, 49.918) = 3.619, p = .034. Because group 
sizes were uneven and variances were unequal, we used Games-Howell’s post-hoc procedure for 
multiple comparisons, finding only a significant mean difference between the fine-grained and coarse-
grained conditions (mean difference = 48.68, p (.035) < α (.05).)  

 
Finally, we checked to see if participants in any condition had more or less confidence, found the 

task easier or more difficult, or more or less enjoyable than the other conditions. To do this, we 
conducted a one-way ANOVA on each measure, finding no statistically significant difference in 
participant confidence (F(2, 84) = .177, p = .838), ease (F(2, 84) = .128, p = .838), or enjoyment (F(2, 
84) = 1.609, p = .206) across the three conditions (Table 3). 

2.3.1. Measuring completeness and correctness 

To compare the differences between our experimental conditions, each observation for every 
participant was coded by one of the authors into three measures: a “total feature count,” “total correct 
feature count,” and “total nonconforming feature count” per observation.  

Each observation was randomly ordered with the condition hidden, such that the coder could not tell 
which observations were submitted under which conditions. The coder reviewed the content of each 
submission by comparing it to the photo, counting the number of distinct pieces of information the 
participant contributed about the wildlife in the photo. This process resulted in a “total feature count” 
per observation. An example of this coding process, including the sample photo used, is provided in 
Appendix 2. 

Next, the coder tallied the “total correct feature count” by comparing the text of each feature against 
the photo. If the content of the observation described something that did not conform with the photo 
(e.g., “furry body” for a bird, or “eight legs” for a spider with two legs obscured in the photo), 
completely inferential (“looking for food” or “flies”, referring to a bird standing in a meadow), 
opinionated (“nice” or “attractive”) or otherwise meaningless (“it’s difficult to say.”), it was not tallied. 
All other submitted features were summed in a “total correct feature count” per observation. When in 
doubt about a given feature’s uniqueness or its correctness, the coder always opted to include the 
uncertain feature in the count. Last, we subtracted the total correct feature count from the total feature 
count for each observation, resulting in a “total nonconforming feature count” measure for each 
observation: a tally of features that were not evident by the photo alone. 
  

Condition n Completion 
time per-

observation 

Confidence in 
the task (5-point 

scale) 

Ease of the task 
(5-point scale) 

Enjoyability of 
the task (5-
point scale) 

Mean Std. 
Dev. 

Mean Std. 
Dev. 

Mean Std. 
Dev. 

Mean Std. 
Dev. 

Ungranulated 35 86.40 73.39 3.91 0.98 3.77 0.84 3.89 0.99 
Coarse granularity 27 88.41 41.22 3.78 0.93 3.70 1.10 4.30 0.72 

Fine granularity 25 137.09 84.72 3.88 0.78 3.64 1.08 3.96 1.02 

Table 3 
Task experience measures 



 

Does granularity influence data completeness? 
 
To test Hypotheses 1a and 1b, we evaluated the difference between conditions in terms of the total 

correct feature count. Observations-per-condition sample sizes were low (ranging from 6 to 22)—recall 
that participants had to complete at least five observations, but could quit anytime between five and 20. 
We believe that some images were less likely to be seen than others due to chance distribution (images 
were presented in random order). Because of these small sample sizes, we first tested the assumption 
of normality using Shapiro-Wilk, finding that normality is violated for 21 cases within the 60 condition-
sample pairs (tables available upon request). Since our data does not adhere to a normal distribution, 
we used the Kruskal-Wallis H-test [10] to assess if the number of reported features is significantly 
different between conditions. If the Kruskal-Wallis test is significant, it indicates that at least one of the 
samples in a comparison is dominant over the other samples. If a given sample showed significance 
according to Kruskal-Wallis, we then used pairwise comparisons with Bonferroni corrections to identify 
which condition-pairs were significantly different from one another. Table 4 briefly presents the results 
of these analyses. 

 

Observation 
Asymptotic 
Significance 

p-values 

Significant pairwise comparisons (Bonferroni-corrected 
Mann-Whitney U test p value) 

White-throated Sparrow .095 N/A 
Rabbit .021* Ungranulated–Fine granularity (.17) 

Purple Finch .012* Coarse granularity–Fine granularity (.036) 
Ungranulated–Fine granularity (.10) 

Moose .002* Ungranulated–Fine granularity (.002) 
Coarse granularity–Fine granularity (.016) 

Kittiwake .016* Ungranulated–Fine granularity (.014) 

Jumping Spider .003* Ungranulated–Fine granularity (.002) 
Coarse granularity–Fine granularity (.029) 

Trout .004* Coarse granularity–Fine granularity (.008) 
Ungranulated–Fine granularity (.012) 

Mourning Cloak 
Butterfly .270 N/A 

Spotted Sandpiper .005* Ungranulated–Fine granularity (.005) 
Whale .108 N/A 

Harbor Seal .002* Ungranulated–Fine granularity (.001) 

Weasel .008* Ungranulated–Fine granularity (.007) 
Coarse granularity–Fine granularity (.036) 

Hummingbird .035* Coarse granularity–Fine granularity (.048) 
Fox .025* Ungranulated–Fine granularity (.033) 

Crab .012* Ungranulated–Fine granularity (.016) 
Coarse granularity–Fine granularity (.032) 

Bat .051 N/A 
Blue Jay .000* Ungranulated–Fine granularity (.000) 

Lynx .000* Ungranulated–Fine granularity (.000) 
Coarse granularity–Fine granularity (.021) 

Black Bear .016* Ungranulated–Fine granularity (.020) 
Coarse granularity–Fine granularity (.049) 

American Crow .043* Ungranulated–Fine granularity (.036) 

Table 4 
Results of the differences in data completeness between groups across all observations as resulting 
from the Kruskal-Wallas H-test. *: p < .05. 



 

As illustrated by the results in the table, we found differences between the conditions in 16/20 of the 
images. In all 16 of these cases, fine granularity was consistently dominant. Moreover, in eight of these 
16 cases, fine granularity observations dominated both coarse and ungranulated observations. This 
evidence leads us to accept hypothesis (1a). However, our results do not show that coarse granularity 
leads to a more complete dataset than ungranulated, so we reject hypothesis (1b). 

Does granularity influence data correctness? 
 
To test hypotheses (2a) and (2b), we examined the difference between conditions in terms of the 

total nonconforming feature count for each observation. Again, we began by testing the assumption of 
normality with Shapiro-Wilk (Appendix 3), and again, very few (only four) image-condition pairs 
followed normal distribution. Therefore, we used the Kruskal-Wallis H-test on this data to test for 
statistically significant differences between conditions in each sample. When significant differences 
were found, we used Mann-Whitney pairwise comparisons with Bonferroni corrections to identify 
which condition-pairs were significantly different from one another. 

 
 

Observation 
Asymptotic 
Significance 

p-values 

Significant pairwise comparisons (Bonferroni-corrected 
Mann-Whitney U test significance value) 

White-throated Sparrow .111 N/A 
Rabbit .009* Ungranulated–coarse granularity (.006) 

Purple Finch .106 N/A 

Moose .001* Fine granularity–coarse granularity (.001) 
Ungranulated–coarse granularity (.034) 

Kittiwake .001* Fine granularity–coarse granularity (.001) 
Ungranulated–coarse granularity (.009) 

Jumping Spider .002* Fine granularity–coarse granularity (.010) 
Ungranulated–coarse granularity (.006) 

Trout .000* Fine granularity–coarse granularity (.001) 
Ungranulated–coarse granularity (.001) 

Mourning Cloak 
Butterfly .005* Ungranulated–coarse granularity (.004) 

Spotted Sandpiper .001* Fine granularity–coarse granularity (.002) 
Ungranulated–coarse granularity (.011) 

Whale .256 N/A 
Harbor Seal .056 N/A 

Weasel .209 N/A 
Hummingbird .004* Ungranulated–coarse granularity (.004) 

Fox .028* Ungranulated–coarse granularity (.028) 
Crab .007* Ungranulated–coarse granularity (.007) 
Bat .000* Ungranulated–coarse granularity (.000) 

Blue Jay .039* Fine granularity–coarse granularity (.041) 

Lynx .000* Fine granularity–coarse granularity (.001) 
Ungranulated–coarse granularity (.001) 

Black Bear .051 N/A 
American Crow .026* Ungranulated–coarse granularity (.023) 

Table 5 
Results of the differences in data correctness between groups across all observations as resulting from 
the Kruskal-Wallas H-test. *: p < .05 

 



 

As can be seen in Table 5, 14/20 images had significant differences between conditions in terms of 
the number of nonconforming features contributed by participants. However, contrary to our 
hypotheses, it was not the ungranulated condition that produced the most nonconforming data. Instead, 
observations in the coarse granularity condition were consistently more nonconforming. This leads us 
to reject hypotheses (2a) and (2b). 

Does granularity influence contribution quantity? 
 
Hypotheses (3a) and (3b) concern the number of contributions made by each user. We expect that 

participants in ungranulated condition will provide fewer contributions than those in the granulated 
conditions. To test this hypothesis, we used a one-way ANOVA to compare the means of the number 
of completed observations across participants in the three conditions. Surprisingly, we found no 
statistically significant difference between the groups (F(2, 84) = .773, p = .465). Therefore, we reject 
hypotheses (3a) and (3b). 

2.4. Discussion 

In all but four images, the number of correct features described by participants in the fine-grained 
condition was substantially greater than those described by participants in the ungranulated condition. 
Two of the four exceptions were photos of a bat and a whale. In both photos, the wildlife was relatively 
obscure, and many participants struggled to identify what it was. The obscurity may have limited what 
participants could comment on, even when asked many detailed questions about the wildlife (as in the 
fine-grained condition.) In the other two exceptions, the cause of the discrepancy is less obvious. One 
sample was a close-up photo of a Mourning cloak butterfly, the other of a White-throated sparrow. 
Perhaps the level of detail and variety of patterns and colours visible on both subjects facilitated more 
descriptive contributions. 

Otherwise, however, the evidence overwhelmingly supports the acceptance of hypothesis 1a. Fine-
grained data collection interfaces drastically changed the degree of completeness of description 
provided by participants. Moreover, the fine-grained data collected here was often specific to the exact 
animal in the photo participants were observing (e.g., “small antlers” vs. “antlers,” in the case of the 
Moose). Additionally, while it was beyond the scope of the present study to explore the usefulness of 
this data, anecdotally the data includes many examples where finer-grained data may have helped 
recover otherwise-bad contributions. For two particularly illustrative examples, when participants 
identified a Moose as a “forest donkey” and a Harbor seal as a “sea cow”), the other features they 
provided may still have been useful: according to these participants, the “forest donkey” had strong, 
long legs, while the “sea cow” lived in snowy water, and in the North. In other words, when asked to 
contribute granulated data participants seemed to describe the instance, not just the class, of what they 
were observing [8]. 

Surprisingly, fine-grained data was substantially more detailed than coarse-grained data, while the 
difference between coarse-grained data and the ungranulated condition was not statistically significant 
(i.e., hypothesis 1b was rejected). It could be that there is a threshold for the benefits of fine granularity 
in data collection interface designs: only after participants are encouraged to contribute a certain degree 
of detail does the effect on completeness start to show. On the other hand, granulation in data collection 
interface designs could have a linear relationship with completeness. A future experiment could test the 
nature of this relationship with more fine-grained manipulations of granularity in a data collection 
interface.  

Our second set of hypotheses was not supported by the evidence in our experiment: more 
nonconforming data was introduced by participants in the coarse-grained condition, not in the 
ungranulated condition as we had expected. To restate, we used Wand and Wang’s [9] notion of data 
correctness to code participants’ descriptions, which notes that data that is incorrect is that which “does 
not conform to [the real-world things] used to create the data” (emphasis added). If a participant stated 
that the moose has “large antlers,” but the moose in the photo had short, stubby antlers, we coded this 
as nonconforming. Yet, obviously, the participant was basing their contribution on their understanding 
of moose in general, not the moose in the photo. The interpretation of this data as “incorrect” therefore 



 

may be overly strict. Recoding the data to differentiate between “errors” (e.g., describing the moose as 
a “hippopotamus,” as one participant did) and these generalized inferences may lead to new insights 
about the relationship between granularity and data correctness. 

Still, the finding that participants using a coarse granularity interface performed the worst with this 
definition of correctness is worth discussion. Perhaps these participants felt tasked to provide 
information, but without the specific, detailed scope of a fine-grained interface, they weren’t sure what 
else to add—thus, they provided information that wasn’t supported by the photo.  

It is also worth noting that there were three images in which the fine-grained condition participants 
did not provide any nonconforming information—the nonconforming feature total was 0 for all 
participants. The sample size of these three groups was small: 6, 7, and 10 participants. This means that 
fine-grained data collection interfaces both increase data completeness (hypothesis 1a) while 
maximizing data correctness (at least, defined as data that conforms to the real-world it was created 
from).  

We found no statistically significant difference between groups in the number of observations 
participants completed. As per hypotheses 3a and 3b, we expected that more fine-grained data collection 
would be more demanding of participants, leading to fewer observations per participant in the coarse-
grained and fine-grained conditions. Participants in the fine-grained condition generally produced more 
features than their counterparts in the other conditions, but perhaps fine-grained data collection made 
this task easier for them to do, balancing the amount of detail against lower cognitive effort per feature. 
Put another way, it may be easier to answer simple questions about the specific colours and features of 
wildlife than to answer more ambiguous questions about what a photo contains. Note, however, that we 
also found that participants in the fine-grained condition spent longer at the task than those in the coarse-
grained condition. Managing crowd motivation is a crucial issue [11]: asking too much of contributors 
could have caused disengagement. Yet, in our experiment, participants using a fine-grained data 
collection interface submitted more information, more correctly, and spent longer doing so than their 
peers.  

 

3. Implications 
3.1. Contributions 

The key contribution of this paper is considering data granularity as a key consideration for designers 
of data crowdsourcing projects. In many contexts in which the observed phenomena are fleeting, data 
simply cannot be re-collected. We conducted an empirical study on the effects of granularity on data 
collection via crowdsourcing, finding evidence suggesting that fine-grained data facilitates the 
collection of more complete and potentially more correct information, while having no effect on the 
number of contributions participants were willing to make. To underscore this point: finer-grained data 
may provide a more complete and correct representation of contributor observations, with no effect on 
level of participation. We encourage designers of crowdsourcing platforms to strive to collect more 
fine-grained data when possible, as data captured in this form may be more valuable than more coarse-
grained forms. 

3.2. Limitations 

While we asked participants to self-report several important background characteristics, such as 
biology/ecology education and degree of expertise in wildlife, we did not constrain these measures to 
any particular geography, and we did not ask about participants’ geographical backgrounds. Participants 
may have been participating from all over the world. It is possible that participants in certain conditions 
were more or less familiar with wildlife in Canada’s East coast than others; future experiments should 
account for this geographical factor. 

There are several possible limitations about our encoding of features from participant contributions. 
First, only one coder encoded the collected data. To make our results more robust, we are in the process 
of engaging a second coder to establish interrater reliability as part of our coding process. As previously 



 

discussed, we may have had too strict a definition of correctness: some descriptors offered by 
participants were true of the wildlife sample in general, but not evident in the photo. Another question 
is whether a class-based descriptor should count as one feature, or if instead it implies many features. 
Participants in the fine granularity condition still reported classes but added many features. Also, 
reporting the species was not strictly the task: describing the individual animal itself was. What if 
researchers were searching this labelled dataset for instances of sickly-looking animals, to surveil for 
potential zoonoses? A fine-grained dataset would likely be more useful in this case (several participants 
described wildlife in this experiment as “healthy looking” or similar). Moreover, this effect further 
illustrates the benefits of fine-grained data when classes are mistakenly reported. In many cases where 
a species is mistakenly reported but other details are provided, the other details are still useful 
information.  

Finally, the experimental design provides only a very crude operationalization of granularity. In 
practice, there could be many levels or degrees of granularity and we do not have insight into how 
varying levels of granularity might have unanticipated effects on other outcomes, such as contributor 
motivation or engagement. 

3.3. Future directions 

The development of data science has been characterized in terms of three movements: business 
intelligence and analytics 1.0, 2.0, and 3.0 [12]. Data science 3.0 includes increased use of mobile sensor 
data, more individualized and contextual analysis, and more human-centered and mobile data reporting 
(e.g., visualization; [12], see Table 1, p. 1169). To this end, is there a fourth wave of business 
intelligence and analytics? The 4.0 movement might involve recognizing the important role data 
contributors play in a data-driven world. To take advantage of this movement, data consumers and 
analysts should account for data producers in the design of their information systems. This 4.0 wave 
might therefore be characterized by design-centric data models calibrated to the ontology of the world 
a given data project aims to represent. This means tuning for appropriate granulations—as a corollary, 
other dimensions may be open to tuning as well. 

The guidelines in [6] include a stipulation for mechanisms that automatically reconcile the instance-
based data collected in the project with the coarse-grained features of a Target Organizational Model 
for the project sponsor’s needs. Machine learning techniques such as supervised classifiers [13] may be 
useful here. Such a technique might be used as an automatic reconciliation system that treats every new 
contribution of sets of attributes as raw data and, simultaneously, as training data for an instance. A 
recent study, for example, demonstrates the potential of machine learning classification by classifying 
fine-grained crowdsourced data into more useful coarse-grained data with reasonable accuracy [7]. 
Further explorations of how to use similar artificial intelligence tools to enhance the utility of 
crowdsourced data is a potent area for future research.  

4. Conclusion 

The Internet, big data technologies, and other trends are rapidly unlocking new possibilities for 
massive, directed collaboration: data crowdsourcing. These methods can allow data consumers to 
collect data at unprecedented scales. However, if the data these activities generate is poorly captured, it 
limits their potential value. We have provided a better understanding of the effect of finer-grained data 
capture on data collection in crowdsourcing projects. Projects that enable their contributors to provide 
finer-grained data may be better suited to leverage data at big data scales.  

5. Acknowledgements 

This research was partially supported by grants from The Natural Sciences and Engineering 
Research Council of Canada (NSERC) and The Social Sciences and Humanities Research Council of 
Canada (SSHRC).  



 

6. References 

[1] R. Murphy and J. Parsons, Capturing the Forest or the Trees: Designing for Granularity in Data 
Crowdsourcing, in: Proceedings of the 53rd Hawaii International Conference on System Sciences, 
2020, pp. 395-404.  

[2] M. Stonebraker, What Does ‘Big Data’ Mean, Blog@CACM, 2012. URL: 
https://cacm.acm.org/blogs/blog-cacm/155468-what-does-big-data-mean/fulltext 

[3] The Four V’s of Big Data, IBM Big Data & Analytics Hub, n.d. URL: 
https://www.ibmbigdatahub.com/infographic/four-vs-big-data 

[4] A. Castellanos, R. Lukyanenko, V. Storey, Modeling Observational Crowdsourcing, in: ER Forum, 
Demo and Poster 2020, 2020. URL: http://ceur-ws.org/Vol-2716/paper11.pdf 

[5] R. Lukyanenko, J. Parsons, Beyond Micro-Tasks: Research Opportunities in Observational 
Crowdsourcing, Journal of Database Management 29.1 (2018): 1-22. 

[6] R. Lukyanenko, Y. Wiersma, B. Huber, J. Parsons, G. Wachinger, R. Meldt, Representing Crowd 
Knowledge: Guidelines for Conceptual Modeling of User-generated Content, Journal of the 
Association for Information Systems 18.4 (2017): 297-339. 

[7] R. Lukyanenko, J. Parsons, Y. Wiersma, M. Maddah, Expecting the Unexpected: Effects of Data 
Collection Design Choices on the Quality of Crowdsourced User-Generated Content, Management 
Information Systems Quarterly 43.2 (2019): 634-647. 

[8] J. Parsons, Y. Wand, Emancipating Instances from the Tyranny of Classes in Information 
Modeling, ACM Transactions on Database Systems 25.2 (2000): 228-268. 

[9] Y. Wand, R. Y. Wang, Anchoring Data Quality Dimensions in Ontological Foundations, 
Communications of the ACM, 39.11 (1996): 86-95. 

[10] W. J. Conover, Practical Nonparametric Statistics, 3rd. ed., New York, NY, John Wiley & Sons, 
1998. 

[11] J. Rogstadius, V. Kostakos, A. Kittur, B. Smus, J. Laredo, M. Vukovic, An Assessment of Intrinsic 
and Extrinsic Motivation on Task Performance in Crowdsourcing Markets, in: Proceedings of the 
5th International Association for the Advancement of Artificial Intelligence Conference on 
Weblogs and Social Media, 2011, pp. 321-328. 

[12] H. Chen, R. H. L. Chiang, V. Storey, Business Intelligence and Analytics: From Big Data to Big 
Impact, MIS Quarterly 36.4 (2012), pp. 1165-1188. 

[13] F. Provost, T. Fawcett, Introduction to Predictive Modeling: From Correlation to Supervised 
Segmentation, USA, O’Reilly Media, 2013. 

 

7. Appendix 1 
7.1. General Task Instructions 

For the remainder of your participation in this study, you will be asked to report what you observe 
about a series of photos of wildlife. We are interested in identifying and labelling the flora and fauna 
you see in each photo. Please be as descriptive as you can be—fill in everything you can. Identify 
anything in the photo you think may be useful to researchers studying this wildlife. 

To qualify as having completed this task, you must complete at least five such observations. That is, 
you must look at five different photos and report what you see for each. At any point before you 
complete the fifth observation, you may choose to exit the study by closing the window. If you exit the 
study in this way you will not be counted as having participated in the study and your data will not be 
used. 

You may continue beyond five observations to complete as many as you’d like; more observations 
are helpful for our research.  

 
 
 



 

7.2. Task Comprehension Check 

Before you continue, we must check that you understand the task. Please demonstrate your 
comprehension by responding to the following questions: 

1. In this study, you are reporting what you observe about: 
• Space 
• Wildlife 
• People 
• Architecture  

2. In this study, you must complete a minimum of how many observations to participate? 
• 2 
• 10 
• 1 
• 5 

Note for reviewers: only participants who answer b. Wildlife for question 1 and d. 5 for question 2 
will continue to participate in the study. 

 

7.3. Participant Background Questionnaire 

Please respond to the following questions: 
1. I am an expert in wildlife. 

• Strongly disagree 
• Somewhat disagree 
• Neither agree nor disagree 
• Somewhat agree 
• Strongly agree 

2. At what level of education have you studied wildlife, ecology, or biology? 
• I have never studied wildlife, ecology, or biology 
• I have some high school education in wildlife, ecology, or biology 
• I have some college or university education in wildlife, ecology, or biology 
• I have a college or university degree in wildlife, ecology, or biology 

 
3. I consider myself a citizen scientist. 

• Strongly disagree 
• Somewhat disagree 
• Neither agree nor disagree 
• Somewhat agree 
• Strongly agree 

4. Approximately how many hours per week do you spend outdoors? 
• 0-5 
• 5-10 
• 10-15 
• 15-20 
• 20+ 

  



 

8. Appendix 2 
8.1. Data Coding Instructions 

We have collected observations—descriptions of photos of wildlife—from participants using an 
experimental interface. The interface instantiates conceptual model granularity into three levels: 
ungranulated, coarse-grained, and fine-grained data. In our experiment, participants were randomly 
assigned to one of these levels of granularity. They completed between five and 20 observations. 

To compare the differences between our experimental conditions, we are coding each observation 
for every participant. Each observation is randomly ordered with the condition hidden, such that coders 
cannot tell which observations were submitted under which conditions.  

The result of this coding process will be three measures of each observation: a “total feature count,” 
“total correct feature count,” and “total nonconforming feature count” per observation.  

“Total feature count” is the total number of distinct features described in the text of each observation. 
“Wing” is one feature; “Brown wing” is two: the animal has a “wing,” and the wing is “brown.”  

To code the “total correct feature count”, compare the text of each observation with the 
corresponding photo. Total correct feature count is the total number of features that are concretely, 
visibly present in the photo. “Four legs” would count as two correct features (the observed animal has 
legs, and it has four of them) if and only if all four legs are visible in the photo. The contents of the 
observation should not be counted when they describe: 

• something that does not conform with the photo (e.g., “furry body” for a bird, or “eight legs” 
for a spider with two legs obscured in the photo),  

• is an assumption of the observer (“looking for food” or “flies”, referring to a bird standing 
in a meadow),  

• was opinionated (“nice” or “attractive”), or  
• was otherwise meaningless (“it’s difficult to say.”) 

When in doubt about a given feature’s uniqueness or correctness, always opt to include the uncertain 
feature in the count. 

The total nonconforming feature count is calculated by subtracting the total correct feature count 
from the total feature count. 

To summarize, the coding algorithm is: 

1. Review the contents of each part of the observation. 
2. Count the number of distinct features described in the part. This is the “total feature count”—

write it in the coding sheet. 
o When uncertain about a given feature’s uniqueness, always opt to include the 

uncertain feature in the count. 
3. Count the number of features that directly correspond to what is observable in the photo. This 

is the “total correct feature count”—write it in the coding sheet. 
o Do not count non-conforming observations, assumptions, opinions, or otherwise 

meaningless information. 
o When uncertain about a given feature’s correctness, always opt to include the 

uncertain feature in the count. 
4. Subtract the “total correct feature count” from the “total feature count.” This is the “total 

nonconforming feature count”—write it in the coding sheet. 
5. Repeat steps 1–4 for each part of the observation. 
6. Repeat steps 1–5 for each observation. 

 
For demonstration purposes, an example of this process is on the next page. Notes on incorrect 

features are provided for explanation only. You do not need to record your own notes when encoding 
the data. 

 
 
 



 

9. Appendix 3 

 

 

 
 
 

Data collected 
from participant 

Individual features 
identified by the 

coder, separated by 
commas 

Total 
feature 
count 

Total correct feature 
count (Comment on 
why a feature was 

not correct) 

Total 
nonconforming 
feature count 

moose Moose (a type of 
animal) 1 1 0 

large deer like 
mammal 

The moose is large, 
The moose is deer-

like, 
The moose is a 

mammal 

3 

2 (The fact that the 
moose is a mammal 
cannot be observed 
by the photo alone) 

1 

male has very 
large antlers 

Male moose have 
antlers, moose antlers 

are very large 
2 

1 (The antlers in the 
photo are quite 

stubby) 
1 

long face; 
hanging skin 

under their chin 

The moose has a long 
face, the moose has 
skin hanging from 

underneath the chin 

2 2 0 

eat grass and 
bushes 

Moose eat grass, 
moose eat bushes 2 

0 (The moose is not 
eating anything in 

the photo) 
2 

often live near 
water 

Moose often live near 
water 1 

0 (The moose is not 
near water in the 

photo) 
1 

can swim Moose can swim 1 
0 (The moose is not 

swimming in the 
photo) 

1 

they make loud 
bellowing 

sounds 
sometimes 

Moose sometimes 
make bellowing 

sounds, these sounds 
are loud 

2 

0 (Cannot tell if the 
moose is bellowing in 
the photo, much less 

at what volume) 

2 

 Total: 12 6 6 

Figure 1: The sample photo of a moose used by participants in the study 

Table 7 
A demonstration of how features submitted by a participant were encoded for statistical analysis 
 

 


