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Abstract
Mathematical Information Retrieval (MIR) deals with the task of finding relevant documents that contain

text and mathematical formulas. Therefore, retrieval systems should not only be able to process natural

language, but also mathematical and scientific notation to retrieve documents. The goal of this work is

to review the participation of our team in the ARQMath 2021 Lab where two different approaches based

on ALBERT and ColBERT were applied to a Question Answer Retrieval task and a Formula Similarity

task. The ALBERT-based classification approach received competitive results for the first task. We found

that by pre-training on data separated in chunks of text and formulas, the model performed better on

formula data. This way of pre-training could also be beneficial for the Formula Search task.
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1. Introduction

With the rising number of scientific publications and mathematics-aware online communities

available Mathematical Information Retrieval has become more important since many of these

documents and posts not only use natural language, but also mathematical notation to com-

municate. Only interpreting natural language is not sufficient for retrieval in such documents

anymore since the usage of mathematical notation is crucial to understand the information

conveyed by the author. Hence, in order to search or retrieve information from these platforms,

a retrieval system needs to understand the notation of mathematical expressions.

The ARQMath Labs 2020 [1] and 2021 [2] have two related aims: Task 1 deals with the retrieval

of relevant answers given a question from the Mathematics StackExchange Community. This

task involves understanding the problem of the question poster in terms of natural language

in combination with mathematical notation in form of LATEX, Symbol Layout Trees (SLTs) or

Operator Trees (OPTs). For Task 2 on the other hand, the participants were required to develop

a system that returns relevant formulas given a query formula.

For Natural Language based Information Retrieval systems based on large pre-trained lan-

guage models such as BERT [3] have been found to be effective and out-performed previous,

traditional IR systems that were based on string matching methods [4]. In a previous work,

we showed that our approach of using an ALBERT-based classifier as a similarity measure is
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beneficial for Mathematical Question Answering when answers depend on the written text [5].

However, when answering the question depends on proper interpretation of the formulas,

traditional methods are still more suitable.

The second disadvantage is that the average query latency of BERT-based systems is a few

orders of magnitude larger compared to non-neural methods [6, 7], due to the fact that for each

query-document pair an entire forward pass through the deep network needs to be performed.

A recent advance in terms of speed without neglecting performance is ColBERT [7], where the

authors applied a late interaction mechanism to assess the relevance of a document given a

query. This approach made offline indexing of the collection and a faster evaluation possible,

since only one forward pass of the query is necessary.

Furthermore, our ALBERT-based models have only been applied to Task 1, the retrieval of

answers given a textual query question. But the application of this approach to formula retrieval,

such as in Task 2, has not been tested yet.

Therefore, with our participating in this year’s ARQMath Lab we would like to address the

following three areas:

• Pre-training adjustments in order to increase the models’ performance on formula under-

standing

• Faster evaluation by using ColBERT

• Application of our ALBERT-based approach to formula retrieval

This work is structured as follows: We will first introduce the ARQMath 2021 Lab and

then review relevant literature for Information Retrieval and BERT-based systems for natural

language and multi-modal tasks. In Section 4 the overall architecture of our approach will be

explained. Section 5 and Section 6 introduce Task 1 and Task 2, respectively. We will describe

the data set we used to pre-train and fine-tune the different models including a description of

the experiments and discuss their results. Finally, the last section summarizes our work.

2. ARQMath 2021 Lab

The aim of ARQMath Lab 2021 [2] is to accelerate the research in mathematical Information

Retrieval and includes two related, but different tasks: Task 1 involves the retrieval of relevant

answer posts for a question asked on the Mathematics StackExchange, which is a platform

where users post questions to be answered by the community. The questions should be related

to mathematics topics at any level
1
. Users have the possibility to add mathematical formulas to

their post to clarify their questions. These formulas are written in LATEX notation. Task 2 is built

on top of the same data, but with a different goal in mind: Participants are expected to retrieve

relevant formulas given a query formula in context of its post. This task is related to the formula

browsing task of NTCIR-12 [8]. The participating teams submitted for each topic a ranked list

of 1.000 documents retrieved by their systems, which were scored by Normalized Discounted

Cumulative Gain, but with unjudged documents removed before assessment (nDCG’). The

graded relevance scale used for scoring ranged from 0 (not relevant) to 3 (highly relevant). Two

additional measures, mAP’ and P@10, were also reported using binarized relevance judgments
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(0 and 1: not relevant, 2 and 3: relevant). The relevance assessment was performed by pooling

after the teams submitted their results.

ARQMath 2021 provides data from the Mathematics StackExchange including question and

answer posts from 2010 to 2018. In total, the collection contains 1 M questions and 1.4 M

answers. Furthermore, users may use mathematical formulas to clarify their posts. These

formulas written in LATEX notation were extracted and parsed into Symbol Layout Trees and

Operator Trees. Each formula got assigned a formula id and a visual ids. Formulas sharing

the same visual appearance received the same visual id. Apart from this corpus of posts and

formulas that are available for training and evaluating models, also a test set of queries is

released by the organizers of ARQMath. The query topics of 2020 and 2021 contain 99 and 100

topics, repectively, which are question posts including title, text and tags. In the 2020 test set 77

queries were evaluated for Task 1 and 45 formula queries for Task 2, while the evaluation of

Task 1 in 2021 included 71 queries and 58 for Task 2.

3. Related Work

Bidirectional Encoder Representations from Transformers (BERT) is an architecture based on

the encoder of a Transformer model which was designed for language modelling [3]. Due to

the success of this and other pre-trained, Transformer-based language models, BERT has been a

basis in many systems for Natural Language Understanding (NLU) tasks and applications in

Information Retrieval. Hence, there exist several advanced versions such as RoBERTa [9] or

ALBERT [10] with the goal to optimize BERT’s performance.

The influence of in-domain pre-training has been analyzed by Gururangan et al.[11] who

found that this is especially valuable when the domain vocabulary has a low overlap with

the pre-training data. As a consequence, various models for different domains have been

developed, such as BioBERT [12], ClinicalBERT [13, 14] or SciBERT [15] for scientific domains

or CuBERT [16] and CodeBERT [17]. A notable difference between these models is that BioBERT,

ClinicalBERT and CodeBERT use the original vocabulary that their base model was pre-trained

on while SciBERT and CuBERT trained their own domain specific vocabulary. However, each

of these models could demonstrate its improvements compared to the original models without

domain specific pre-training.

BERT-based models for mathematical domains have also been studied with the most recent

example being MathBERT [18]. In addition, during the last ARQMath Lab 2020, two teams

submitted systems based on BERT and RoBERTa [19, 20]. Both teams used the models to

generate post embeddings for a given question and all answers. Their similarity is calculated by

comparing the vectors using cosine similarity.

Shortly after BERT outperformed previous approaches in various NLU tasks, it was also

successfully applied to Information Retrieval. The model by Nogueira et al. classified its input

consisting of a query and one document for their relevance resulting in a score that can be

used to rank multiple documents [4]. This approach achieved state-of-the-art performance, but

was much slower and computationally expensive than previous systems, because one forward

pass through the entire deep neural network was necessary to score one query-document pair.

Nevertheless, this approach has also been proven to be effective for the multi-modal retrieval of



Figure 1: Overview of our pre-training (details in Figure 2) and fine-tuning procedure (details in Figure 3

and 4).

source code [17] and was also applied to Mathematical Question Answering using an ALBERT

model trained and evaluated on the ARQMath Lab 2020 test set [5]. The evaluation results

were also broken down to the categories determining which part of the question influenced

answering it the most. The model showed the best performance when answering the question

depended on the written text. But for questions relying on formulas the results were worse

than systems based on non-neural methods. Therefore, the modeling capability of formulas

needs to be improved to also be able to capture their semantics in a better way.

Due to the fact that the ranking model by Nogueira et al. came with a steep increase in

computational cost, recent research focused on improving the evaluation time without neglecting

its performance gains. Despite there is more than one model dealing with this challenge, we will

focus in this work on the approach by Khattab et al. called ColBERT [7]. ColBERT uses a BERT

model to separately encode a query and a document and then apply a novel late interaction

mechanism to calculate the similarity. This way they achieved competitive results when re-

ranking on the popular MSMARCO data set [21] with a latency of 61 ms compared to 107,000

ms using the BERT-based approach by Nogueira et al.

4. Model Architecture

BERT-based models have proven to be effective in Natural Language Understanding and In-

formation Retrieval tasks. Their strength was also shown in scenarios where not only natural

language plays an important role, such as Code Retrieval or Mathematical Language Processing

as in this lab [17, 5, 18]. Building on top of these achievements, we apply two deep neural

models based on the popular BERT in our submission: ALBERT and ColBERT. ALBERT is an

even more recent model based on BERT, which is optimized by factorization of the embeddings

and parameter sharing between layers. The general idea of our first approach is to employ the



ALBERT model to determine the similarity score between two snippets, for Task 1 a question

and an answer and for Task 2 two formulas with context. This is achieved by fine-tuning a

classifier on top of the pre-trained ALBERT model which predicts how well the two snippets

match. We apply ALBERT for this approach, because its optimizations result in less training pa-

rameters and therefore a lower memory consumption and accelerated training speed compared

to BERT. The second method that we apply for Task 1 uses a BERT model as a basis of ColBERT.

The query and each document are passed through BERT separately in order to encode their

respective content. This way an offline computation of the representations of each document is

possible beforehand. The late interaction mechanism in form of the L2 distance is applied to

aggregate and compare the contextualized embeddings. Finally, the documents are ranked by

this computed L2 distance.

The success of BERT and BERT-based models is attributed to its transformer architecture [22]

and also to the self-supervised pre-training on large amounts of data. In this work, we will focus

on the latter aspect and pre-train models on different data highlighting its influence. The overall

process of our approach is depicted in Figure 1. We will present details about the pre-training

and fine-tuning in the next sections.

5. Task 1

The goal of Task 1 is the retrieval of an answer post from 2010 - 2018 to questions that were

posted in 2019. The ARQMath Lab 2021 added a second set of 100 questions asked in 2020. The

optimal answers retrieved by the participants are expected to answer the complete question on

its own. This relevance of each question was assessed by reviewers during a pooling process.

In the following sections we will present our two approaches for this mathematical question

answering task. We will first explain the models we used, then how we processed the data

corpus for pre-training and fine-tuning. Finally, we give details on our experiments, the results

and a comparison to other models.

5.1. Pre-Training

As mentioned previously, BERT and also ALBERT rely on pre-training on rather simple tasks.

BERT is pre-trained using two objectives to obtain general understanding of language: the

masked language model (MLM) and the next sentence prediction (NSP).

Pre-training is performed on a sentence-level granularity. Each sentence 𝑆 is split into tokens:

𝑆 = 𝑤1𝑤2 · · ·𝑤𝑁 . Before inputting the sentence into the model, each token 𝑤𝑖 is embedded

using a sum of three different embeddings, the word embedding 𝑡𝑖 encoding the semantic of the

token, the position embedding 𝑝𝑖 denoting its position within the sentence, and the segment

embedding 𝑠𝑖 in order to discern between the first and the second segment when the model is

presented e.g., two sentences as for the NSP task. The segment embeddings will also help our

model to differentiate between the query and document as the two segments later. All three

embeddings are added up to form the input embedding 𝐸𝑖 for each token:

𝐸𝑖 = 𝑡𝑖 + 𝑝𝑖 + 𝑠𝑖.



Figure 2: BERT’s and ALBERT’s pre-training process, 0.9 symbolizes the NSP or SOP score for the two

sentences, the red word ’values’ is the predicted word for the masked token.

In order to obtain a representation of the entire input, we prepend the sentence 𝑆 with a

classification token 𝑤𝑆 = ⟨𝐶𝐿𝑆⟩. It is embedded in the same way as the other tokens and will

be used for the NSP task and also for fine-tuning tasks that rely on a representation of the input

such as classification.

The first pre-training task is the masked language model meaning tokens from the input

sentence are randomly replaced by a ⟨𝑀𝐴𝑆𝐾⟩ token, a different token or is not changed at all.

After embedding the input, it is feed into the BERT model, consisting of 12 layers of transformer

encoder blocks, resulting in a contextualized output embedding 𝑈𝑖 for each input token:

𝐶𝑈1𝑈2 · · ·𝑈𝑁 = BERT(𝐸𝐶𝐿𝑆𝐸1𝐸2 · · ·𝐸𝑁 ),

where 𝐸𝐶𝐿𝑆 and 𝐶 are the input and output embeddings of the ⟨𝐶𝐿𝑆⟩ token. Afterwards, a

simple classifier is applied in order to predict the original word from the input:

𝑃 (𝑤𝑗 |𝑆) = softmax(𝑈𝑖 ·𝑊𝑀𝐿𝑀 + 𝑏𝑀𝐿𝑀 )𝑗 ,

where 𝑤𝑗 is the 𝑗-th word from the vocabulary. This determines the probability that the 𝑖-th
input word was 𝑤𝑗 given the input sentence 𝑆. The weight matrix 𝑊𝑀𝐿𝑀 and its bias 𝑏𝑀𝐿𝑀

are only used for this pre-training task and are not reused afterwards.



The next sentence prediction objective predicts whether the sentence given to the model as

the first segment 𝑆𝐴 appears in a text before the sentences given to the model as the second

segment 𝑆𝐵 (label 1) or whether the second sentence is a random sentence from another

document (label 0). This task is performed as a binary classification using the output embedding

𝐶 as its input:

𝑝(𝑙𝑎𝑏𝑒𝑙 = 𝑖|𝑆) = softmax(𝐶 ·𝑊𝑁𝑆𝑃 + 𝑏𝑁𝑆𝑃 )𝑖,

where the matrix 𝑊𝑁𝑆𝑃 and the bias 𝑏𝑁𝑆𝑃 are only used for the NSP and are not used otherwise

later.

ALBERT also makes use of the MLM objective, but it has been found that NSP, predicting

whether the second sentence in the input is swapped with a sentence from another document

from the corpus, is a relatively challenging task and was changed to the sentence order prediction

(SOP). Here, the model is asked to determine what the correct order of two presented sentences

is. Hence, the model is presented with two sentences and performs their classification in the

same way as BERT’s NSP. Therefore, the formulas for NSP as introduced above apply as well.

The pre-training process of BERT and ALBERT is depicted together in Figure 2. Note, that

BERT applies a classification on the output embedding 𝐶 for the NSP objective, while ALBERT

does the same for the SOP objective. Both models use the MLM objective.

Pre-Training Data

Before pre-training we applied the official tool provided by ARQMath to read the posts, wrapped

formulas in $ and removed other html markup, yielding a list of paragraphs for each post. BERT

and ALBERT models rely on sentence separated data during pre-processing for the NSP and

SOP tasks. Two different strategies were tested: (1) split the text into sentences, (2) split it into

chunks of text and formulas. The SOP task is designed to work with sentences. Hence, (1) is

usually used in various NLP tasks. On the other hand, our goal was to increase the model’s

understanding of formulas. Therefore, strategy (2) splits a paragraph first into sentences,

but also when a sentences contains a formula (with more than three LaTeX tokens to avoid

splitting at e.g., definitions of symbols). In case the remaining text is too short (less than ten

characters), it is concatenated to the formula before, separated by a $ sign. Before inputting

the data into the models, tokenizing, creating the pre-training data for each task, i.e., masking

tokens and assembling pairs of sentences, and further pre-processing was performed by the

pre-processing scripts provided in the official BERT and ALBERT repositories
2
. For the models

that started from official checkpoints, we used the released sentencepiece vocabulary [23].

For the models that started from scratch, we trained our own sentencepiece model using the

parameters recommended in the ALBERT repository which had a vocabulary overlap of 32.1%

compared to the released sentencepiece vocabulary for ALBERT. Sentencepiece tokenizes the

input into subwords using byte-pair-encoding[24], e.g., the sentence ’how can i evaluate $

\sum_{n=1}ˆ\infty \frac{2n}{3ˆ{n+1}} $?’ would be tokenized into ’how can i evaluate $ \ sum _ {

n = 1 } ˆ \ in ##ft ##y \ fra ##c { 2 ##n } { 3 ˆ { n + 1 } } $?’ by the BERT tokenizer, where single

tokens are separated by spaces. Input sequences whose length after tokenization exceeded

the maximum number of input tokens where truncated to the maximum length. In case two

2
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Figure 3: Architecture of Task 1’s Fine-Tuning.

segments together exceeding the maximum length during e.g., NSP or fine-tuning, token by

token was deleted from the longest sequence until the sum of the number of both segments

equaled the maximum length.

5.2. ALBERT Model

In order to predict whether an answer 𝐴 = 𝐴1𝐴2 · · ·𝐴𝑀 is relevant to a question 𝑄 =
𝑄1𝑄2 · · ·𝑄𝑁 a classifier is trained on top of the pre-trained ALBERT model as depicted in

Figure 3. The input string ⟨𝐶𝐿𝑆⟩𝑄1𝑄2 · · ·𝑄𝑁 ⟨𝑆𝐸𝑃 ⟩𝐴1𝐴2 · · ·𝐴𝑀 , with ⟨𝐶𝐿𝑆⟩ being the

classification token and ⟨𝑆𝐸𝑃 ⟩ the separation token, is presented to the model:

𝐶𝑈1𝑈2 · · ·𝑈𝑁 = ALBERT(𝐸𝐶𝐿𝑆𝐸1𝐸2 · · ·𝐸𝑁+𝑀 ),

where 𝐸𝑖 and 𝐸𝐶𝐿𝑆 are the input embeddings for each input token and the ⟨𝐶𝐿𝑆⟩ token,

respectively, calculated as explained in Section 5.1. After the forward pass through the model,

the output vector of the ⟨𝐶𝐿𝑆⟩ token 𝐶 is given into a classification layer:

𝑝(𝑙𝑎𝑏𝑒𝑙 = 𝑖|𝑄,𝐴) = softmax(𝐶 ·𝑊𝑇𝑎𝑠𝑘1 + 𝑏𝑇𝑎𝑠𝑘1)𝑖,

where the label 1 stands for a matching or correct answer for the query and label 0 otherwise.

During evaluation, the resulting probability of the classification layer for label 1, is the assigned

similarity score 𝑠 for the answer 𝐴 to a question 𝑄 and is then used to rank the answers in the

corpus:

𝑠(𝑄,𝐴) = 𝑝(𝑙𝑎𝑏𝑒𝑙 = 1|𝑄,𝐴).

Fine-Tuning Data

In order to fine-tune the ALBERT models for Task 1, we paired each question with one correct

answer and one incorrect answer. The correct answer was randomly chosen from the answers



of the question. Each question in the corpus comes along with tags, i.e., categories indicating

the topic of a question such as sequences-and-series or limits. As an incorrect answer for each

question, we picked a random answer from one question sharing at least one tag with the

original question by chance. Following this procedure, we yielded 1.9M examples, of which 90%

were used as training data for the fine-tuning task. We presented the model the entire text of

the questions and answers using the structure introduced in the previous section.

5.3. ColBERT Model

Our second approach was to train ColBERT on top of a pre-trained BERT model. In each training

step, the model is presented the query 𝑄 and two answers: one being a relevant answer 𝐴, the

second being an answer 𝐵 that should be regarded as non-relevant by the model. All three

strings, 𝑄, 𝐴 and 𝐵 are prepended with a token denoting the string as either question (query),

⟨𝑄⟩ or answer (document) ⟨𝐷⟩, and are passed through the BERT model individually to create

contextualized embeddings for each post:

𝐶𝑄𝑄𝑈1𝑈2 · · ·𝑈𝑁 = BERT(𝐸𝐶𝐿𝑆𝐸𝑄𝐸1𝐸2 · · ·𝐸𝑁 ),

𝐶𝐷𝐷𝑉1𝑉2 · · ·𝑉𝑀 = BERT(𝐸𝐶𝐿𝑆𝐸𝐷𝐹1𝐹2 · · ·𝐹𝑀 ),

where 𝐸𝑖, 𝐹𝑖, 𝐸𝐶𝐿𝑆 , 𝐸𝑄, and 𝐸𝐷 are the input embeddings for each input token, the ⟨𝐶𝐿𝑆⟩
token, ⟨𝑄⟩ token and the ⟨𝐷⟩ token, respectively, calculated as explained in Section 5.1. Using

the late interaction mechanism as specified by Khattab et al. [7] a relevance or similarity score

is calculated for each question-answer pair and optimized by applying softmax cross-entropy

loss over the scores:

𝑠(𝑄,𝐴) =
𝑁∑︁
𝑖=1

max𝑗∈{1,...,𝑀} 𝑈𝑖𝑉
𝑇
𝑗 .

More implementation specific detail can be found in work by Khattab et al. [7].

Fine-Tuning Data

We use the same procedure to generate training data for the ColBERT-based models, but with the

difference that we used up to 𝑁𝑎𝑛𝑠𝑤𝑒𝑟𝑠 = 10 correct and incorrect answers in case a question

had that many submitted answers. If less answers were present, the minimum of correct and

incorrect answers was used such that the number of correct and incorrect answers matched.

We paired each correct answer with all incorrect answers, generating at most 10× 10 = 100
samples for each question. We experimented with 𝑁𝑎𝑛𝑠𝑤𝑒𝑟𝑠 = 1 and 𝑁𝑎𝑛𝑠𝑤𝑒𝑟𝑠 = 5, but we

achieved best results with 𝑁𝑎𝑛𝑠𝑤𝑒𝑟𝑠 = 10.

5.4. Evaluation Data

During evaluation we exploited the tag information from the queries in order to rank only

the answers that shared at least one tag with the query question. In this way, we saved large

amounts of computation time for the ALBERT-based models. Each question and the answers

were pre-processed and paired in the same way as during fine-tuning.



Table 1
Overview of Pre-Training Configurations of ALBERT models

Model Pre-Training Data Steps

Base 750k (1) sentence split 750k

Base 250k (1) sentence split 250k

Base Combined (1)+(2) combined 135k

Scratch 1M (1) sentence split 1M

Scratch 2M (1) sentence split 2M

Scratch Separated (2) separated 1M

For ColBERT, we generated an index based on all answers whose question had at least one

tag that was associated with at least one query question.

For each query the organizers of the Lab annotated whether answering the question mostly

depends on its text, its formulas or both. We used these categories for the interpretation of our

results.

5.5. Experiments

We tested various scenarios for training ALBERT of which we report six in this work: The

models Base 750k, Base Combined and Base 250k are initialized from the official weights of the

ALBERT base model released by the ALBERT authors and were further pre-trained on ARQMath

data using strategy (1), i.e., sentence split text (see Section 5.1). The data pre-processed with

strategy (2), i.e., data split into text and LATEX, was mixed with the aforementioned data to

pre-train Base Combined. The weights of Scratch 1M, Scratch Separated and Scratch 2M

were initialized randomly. Scratch 1M and Scratch 2M used the sentence split data (1) while

Scratch Separated was only pre-trained on the separated data of strategy (2). All six models

followed the recommendations for hyperparameter configuration during pre-training, with 12M

parameters, using the LAMP optimizer [25], 3,125 warm up steps, maximum sequence length of

512 and a vocabulary size of 30,000. Furthermore, we used a batch size of 32 and a learning rate

of 0.0005. The models were trained for different numbers of steps: Base 750k was trained for

750k steps while the training of Base 250k was already stopped after 250k steps. Scratch 1M

and Scratch Separated pre-trained for 1M steps. This amount was doubled for Scratch 2M.

Finally, Base Combined could only be trained for 135k steps before the final submission of the

results. A summary of the different combination of pre-training data and number of steps for

each model can be found in Table 1. After pre-training, each classification model was fine-tuned

for 125k steps using a batch size of 32, a learning rate of 2e-5 and 200 warm-up steps. Both

pre-training and fine-tuning was performed using the code published in the official ALBERT

repository. We submitted results of four ALBERT-based models to the ARQMath 2021 Lab and

evaluated Base 250k and Scratch 2M using the official evaluation tools.

ColBERT can be seen as an extension of BERT whose performance depends on its pre-training

[7]. Therefore, we apply three differently pre-trained models as the basis for ColBERT: ColBERT

uses the weights of the original BERT-base, ColSciBERT uses SciBERT [15], which was trained

on a large corpus of scientific publications from multiple domains and finally, we pre-trained



our own BERT model for ColARQBERT. The last model was initialized using the original BERT

weights and was then further pre-trained on the sentence split data (1) described earlier. The

hyperparameters recommended by the BERT authors in their repository were used to pre-train

this model: The learning rate was set to 2e-05, one batch contained 16 samples and the models

were trained for 500k steps. In contrast to the recommendations we set the maximum length

of the input to 512, because we did not start to train the model from scratch, where the initial

sequence length was set to 128, but rather further trained the already fully pre-trained model on

additional data. The training of all three ColBERT models made use of the same hyperparameter

configuration. We optimized the L2 similarity between 128-dimensional vectors with a batch

size of 128 for 75k steps. Other parameters kept their default values. Punctuation tokens were

masked, but we also experimented with models that did not mask them, but we could not see a

significant difference in the results. We also started to incorporate ALBERT as a base model

for ColBERT, but did not yet find a configuration for a successful training. The pre-training

of ColARQBERT was performed using the code published by the BERT authors, while the

ColBERT repository was slightly adapted to support different checkpoints than BERT base in

order to train the other models. Finally, ColSciBERT model was submitted to the competition,

while ColBERT and ColARQBERT were evaluated later using the official evaluation guide.

5.6. Evaluation

The results of our ALBERT and ColBERT-based models are shown in Table 2 together with

additional experiments that were not submitted and results of other models from the ARQMath

2021 Lab for comparison. We report the scores of the 2020 test set and the new 2021 test

set. In addition, we break down the nDCG’ score results of 2020 by the categories on which

part answering the question depends. These categories are either text, formula or both in

combination and were annotated by the organizers of the lab. The scores for each category are

reported in Table 3.

Pre-Training Adjustments

In general, our results can be seen as competitive. Regarding nDCG’, all ALBERT-based models

could outperform the baseline systems in both years. On the 2020’s test set, one team with three

systems received the highest scores for mAP’, while our ALBERT-based models are all in the

range of the top four teams. In 2021, our best model ranks second among all teams regarding

mAP’. Our results for p’@10 are not as high as the best baseline, but there was not a single

system from any of the teams that could beat the baseline results for p’@10. Comparing to the

other participants, our system receives the highest score for p’@10 in 2021.

The reason why our Precision is relatively high, but the nDCG’ is lower compared to the

other teams that received higher scores could be that our systems do not rank all answers for

each topic due to the too time consuming evaluation. Possibly, our results would have been

better if all answers would have been scored for their relevance.

We will now take a deeper look at the differences between the models we trained. When

comparing Base 750k and Base 250k, the overall score is slightly increased by the longer pre-

training. In Table 3 we see that with longer pre-training the model learned a better understanding



Table 2
Results of Task 1

2020 2021

Model Official Identifier nDCG’ mAP’ p’@10 nDCG’ mAP’ p’@10

Base 750k TU_DBS_P 0.380 0.198 0.316 0.377 0.158 0.227
Scratch 1M TU_DBS_A1 0.362 0.178 0.304 0.353 0.132 0.180

Base Combined TU_DBS_A3 0.359 0.173 0.299 0.357 0.141 0.194

Scratch Separated TU_DBS_A2 0.356 0.173 0.291 0.367 0.147 0.217

ColSciBERT TU_DBS_A4 0.045 0.016 0.071 0.028 0.004 0.009

Additional Experiments

Base 250k - 0.375 0.193 0.311

Scratch 2M - 0.359 0.177 0.297

ColARQBERT - 0.225 0.073 0.131

ColBERT - 0.183 0.053 0.110

ARQMath Competitors

Best ’20&’21 MathDowsers-primary 0.433 0.191 0.249 0.434 0.169 0.211

Best ’20 DPRL-RRF 0.422 0.247 0.386 0.347 0.101 0.132

Best Baseline linked_results 0.279 0.194 0.386 0.203 0.120 0.282

Table 3
nDCG’ Scores of Task 1 by Category, 2020 Test Set

Base 750k Scratch 1M Base Combined Scratch Separated Base 250k

Both 0.365 0.365 0.364 0.321 0.370
Formula 0.382 0.354 0.338 0.367 0.366

Text 0.411 0.375 0.399 0.421 0.408

of text and formulas on their own, but for category ’both’ the results decreased. On the other

hand, pre-training for too many steps shows effects of over-fitting as the scores start to decrease

again as we see in the difference between Scratch 1M and Scratch 2M.

The comparison of Scratch 1M and Scratch Separated shows that the separation of text

and mathematical formulas leads to better nDCG’ scores for queries dependent on formulas

and text separately, but the performance degrades on question-answers pairs that depend on

both, which is expected since the model was not pre-trained on data that involved both in

one example. Base Combined has a much lower nDCG’ value for the formula category in

comparison to the other models. This can be explained by the fact that it was pre-trained for

a much lower number of steps. The same effect is visible when viewing Base 750k and Base

250k. Therefore, we hypothesize that a pre-training of 750k or even more steps could even

outperform Base 750k and Scratch Separated in all three categories.

BERT-base models generally benefit from a long pre-training on a large corpus. In our

experiments, we could not observe this behavior. We experimented with models trained for 2M

steps on data from 41 StackExchange communities supporting LATEX, but the results are worse

than the ones presented in Table 2.



Figure 4: Architecture of Task 2’s Fine-Tuning.

ColBERT

ColSciBERT is the fifth model we submitted for the 2020 ARQMath Task 1 and it was trained

using ColBERT. As can be seen from the results table, its performance is not optimal hinting at

a substantial problem during training or evaluation. This could be caused by using SciBERT as

the basis for ColBERT. Two other models that were not officially submitted to the Lab received

higher scores, but are still not on par with our other ALBERT-based approaches regarding all

three metrics. This confirms the hypothesis that SciBERT is not suitable in this scenario.

Nevertheless, with ColBERT the time required to evaluate all 100 topics of 2020 took around

six minutes using two NVIDIA GTX 1080 while evaluating one query using our ALBERT-based

classification approach took between ten minutes and one hour on one NVIDIA V100. Therefore,

further research in this direction is worthwhile for speeding up the evaluation while receiving

competitive scores at the same time. Future work here should further analyze the performance

and determine the best training scenario for a ColBERT-based system.

6. Task 2

Task 2 deals with the retrieval of relevant formulas given a query formula together with the post

in which it appeared. As for Task 1 we will start from a pre-trained ALBERT model, which was

already introduced in Section 5.1. In the following section, we will therefore only highlight how

the fine-tuning and data processing was performed and present the results of the application of

an ALBERT-based model for the task of formula similarity search.

6.1. Fine-Tuning Model

For formula similarity search our approach slightly differs from the one presented in Section 5.2

for Task 1. Instead of presenting the model the two formulas as the query and answer to classify



whether they are relevant to each other, we add the question in which the first formula appears

as additional context since the same formula and especially its variables can have different

interpretations depending on its context, e.g., 𝑃 (𝑋) can be a probability of a random variable

or a polynomial depending on its context. Each query formula was concatenated with its

question forming the first part of the input 𝑄1𝑄2 · · ·𝑄𝑁 , separated by $. The formula that

should be assessed for its similarity to the first formula makes up the second part of the input

𝐴1𝐴2 · · ·𝐴𝑀 . Analogously to Task 1, the classification token ⟨𝐶𝐿𝑆⟩ is added at the beginning

of the input and both parts are separated by the separation token ⟨𝑆𝐸𝑃 ⟩. The output of the

classifier is the similarity score that is optimized during training and used for the ranking of

candidates during evaluation. The process of fine-tuning ALBERT for Task 2 is depicted in

Figure 4.

Fine-Tuning Data

Fine-tuning was performed on formulas in context with the post in which they appeared in order

to provide the model with information on how the formula was used by the author. First, we

removed formulas that contained less than three LATEX token and filtered the ARQMath corpus

for posts that had at least one formula remaining. For each post in the corpus one formula was

chosen either by chance (denoted as random) or the longest formula was used as the query

formula (denoted as longest). Formulas from the title of the post were preferred when the title

contained any formulas, because the title can be seen as a summary of the post that should

include the formula with the most meaning to the post. We chose this procedure because we

faced the problem that the posts contained many formulas (on average 9.41 formulas per post)

not all of which were directly relevant to the post or the given answers, such as, definitions of

variables or examples.

For each query formula we determined positive and negative examples. The positive examples,

i.e., the ones that should be classified as relevant formulas by the model, originate in the answers

given a post. This assumes that the formulas in the answers are relevant to the formulas in its

question post. We chose the negative examples from answer posts where their questions had at

least one common tag with the query post. For each query we used a maximum of five positive

and negative examples, where the number of positive examples and negative examples were

equal. Hence, when a question had 𝑁𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑠 with 𝑁𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑠 < 5 formulas in its answers or

we found only 𝑁𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑠, 𝑁𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑠 < 5 formulas in other posts with the same tags, then only

𝑁𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑠 formulas for positive and negative examples would be used. In total, we yielded

5,812,412 question-answer formula pairs of which 90% were used as training data. The training

data was presented to the model in the way that was described above.

6.2. Evaluation Data

Due to time and hardware constraints, it was not possible to evaluate our models on the entire

collection of formulas. Therefore, we limited the corpus to visually distinct formulas with more

than three LATEX tokens which appeared in questions and answers that shared either one or all

tags with the query post, denoted by ’one’ or ’all’ in the results table, respectively. The ARQMath

collection provided each formula with its visual id and the post id in which it appeared. We



Table 4
Results of Task 2

Fine-Tuning Eval Official 2020 2021

Data Tags Identifier nDCG’ mAP’ p’@10 nDCG’ mAP’ p’@10

random one TU_DBS_A3 0.426 0.298 0.386 - - -

longest one TU_DBS_A1 0.396 0.271 0.391 - - -

random all TU_DBS_A2 0.157 0.085 0.122 0.154 0.071 0.217

longest all TU_DBS_P 0.152 0.080 0.122 0.153 0.069 0.216

Best 2020 DPRL-ltrall 0.738 0.525 0.542 0.445 0.216 0.333

Best 2021 Approach0-P300 0.507 0.342 0.441 0.555 0.361 0.488
Baseline TangentS_Res 0.691 0.446 0.453 0.492 0.272 0.419

determined the tags of the posts from the post’s corpus and aggregated for each visual id the

tags of all posts in which formulas with this visual id appeared. For each visual id that remained

in the corpus for a given query we provided the model with the query formula, its posts and

the first formula that was associated with this visual id. The post id that was reported as our

Task 2 result was the post id corresponding to the formula in the model input, i.e., the post id of

the first formula for each visual id.

6.3. Experiments

In total, we trained two classifiers on different fine-tuning data and evaluated each of them

in two settings as described above. These four configurations can be found in Table 4. Both

models are based on the pre-trained ALBERT-base model that was used for the Task 1 Model

Base 750k. The fine-tuning hyperparameters are the same as for the models of Task 1: we used

a learning rate of 2e-5, batch size of 32 and 200 steps for warm-up. Both classifiers were trained

for 125k steps.

6.4. Evaluation

The results of our experiments for Task 2 can be seen in Table 4. Our best model on the 2020

topics is fine-tuned on the random formulas as queries. It is evaluated on all distinct question

and answer formulas that shared at least one tag with the query post. In general, the two models

trained on data with a random query formula showed better results than the two models always

using the longest formula. Including all formulas that had at least one similar tag increases

the search space and therefore the results for the retrieved formulas from this search space are

better. This suggests that the performance could be even more increased if all formulas from

the entire corpus were used for the classification. This was not done in this work due to our

hardware constraints leading to long evaluation times.

Generally speaking, our ALBERT-based model is a promising approach, but the comparison

to other participants of the lab demonstrates that it is not on par with state-of-the-art models or

the baseline system. Hence, future work should explore better methods of representing formulas

using ALBERT. In this work, only LATEX-based representations have been used, but ARQMath also



provides tree-based data for each formula. One possible improvement could be the prediction

of relationships between nodes in these trees as it was done in a similar way for Programming

Language Understanding using data flow graphs [26]. Furthermore, as seen in the evaluation of

Task 1 in Section 5.6, pre-training on data that separated text and formulas improved the scores

on formula dependent questions pointing to a better understanding of mathematical formulas

compared to models trained on non-split data. Therefore, these pre-trained models could also

be beneficial as basis for Task 2 fine-tuning.

7. Conclusion

Mathematical Information Retrieval deals with the retrieval of documents from a corpus, which

are relevant to a query, where documents and queries may include both, natural language

and mathematical formulas. Two instances for such an objective are Task 1 and Task 2 of the

ARQMath Lab, whose goal is to either retrieve answers given a question or formula retrieval

using a formula in its context. Since this challenge includes not only text written in English,

but also formulas, approaches from Natural Language Processing and Information Retrieval

have to be adapted in order to be able to interpret also the semantics of mathematical formulas.

This has also been demonstrated in our previous work, where we showed that ALBERT has

to be further pre-trained on relevant data in order to better handle formulas in MIR tasks. In

this work we further analyzed this claim and showed that our previous results for Task 1 could

even be improved by a longer pre-training on the data provided by ARQMath. Furthermore,

we showed that separating large chunks of natural language text and LATEX notation in one

sentence increased the model’s performance on formula-only and text-only dependent questions,

respectively. The second contribution of this work was to explore the application of ColBERT

in order to accelerate the evaluation of queries, because our classification-based approach is

too time-consuming. Thereby, we trained and evaluated a ColBERT model and showed that

further improvements are necessary before this approach can reach state-of-the-art performance.

We also applied our ALBERT-based approach to the formula retrieval objective of Task 2 and

showed that there is still work necessary in order to improve the model’s understanding of

formula similarity. In conclusion, we showed promising approaches for Mathematical Answer

Retrieval and Formula Similarity Search by applying differently pre-trained and fine-tuned

ALBERT models and one ColBERT model. In order to improve the modeling capabilities of

mathematical formulas, we recommended strategies involving several pre-training methods

that include syntactical features of formula that we have not yet taken into account. To facilitate

research based on our work, we release the code for data pre-processing and the training of the

models in the project’s repository
3
. The source code for training the ColBERT-based models

was forked from the official ColBERT repository and slightly adjusted
4
.

3

https://github.com/AnReu/ALBERT-for-Math-AR

4

https://github.com/AnReu/ColBERT-for-Formulas

https://github.com/AnReu/ALBERT-for-Math-AR
https://github.com/AnReu/ColBERT-for-Formulas
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