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Abstract
The paper proposes and compares two distinct approaches based on deep learning for tuberculosis classi-
fication in CTs, highlighting the benefits of building the inference engine at slice-level over a volumetric
approach. The methods are evaluated in the context of the ImageClef 2021 Tuberculosis task and the
reported work belongs to the SenticLab.UAIC team, which ranked the first in the competition.

1. Introduction

According to the World Health Organization1, tuberculosis (TB) is one of the top 10 causes
of death worldwide and the leading cause from a single infectious agent. It is present in all
countries and age groups and was the cause of a total of 1.4 million deaths in 2019, with an
estimate of 10 million people infected worldwide. Generally, TB can be cured with antibiotics.
An estimated 60 million lives were saved through TB diagnosis and treatment between 2000
and 2019. However, the different types of TB require different treatments, and therefore the
detection of the TB type and characteristics are important real-world tasks.

In this regard, the 2021 edition of the Tuberculosis task within ImageCLEFmed [1, 2] aimed
at automatically categorizing CTs of TB patients into one of the following five types: (1)
Infiltrative, (2) Focal, (3) Tuberculoma, (4) Miliary, (5) Fibro-cavernous. The current paper
reports the approaches developed by the SenticLab.UAIC team obtaining the best results in the
competition2.

Given the 3-dimensional nature of the CTs, several ways to tackle the classification problem
in terms of input type exist. In previous work [3], we compared three different strategies: 1)
compressing the 3D matrix to 2D representations by computing projections onto 3 distinct
planes, 2) treating the 3D volume as a whole and thus using 3D convolutions or fusing the
information at slice level and 3) bringing the inference process to the slice level. The 3rd
approach proved to outperform significantly the others in terms of accuracy, at a higher cost of
data preparation and much less computational burden compared to a 3D approach; training
data preparation involves in this case identifying slices in the CT that present the affection
specified as label for the entire CT.
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Figure 1: Tuberculosis lesion types targeted in the competition
(https://www.imageclef.org/2021/medical/tuberculosis)

The current work experiments with two of the approaches above, the 3rd approach proving
again to be the winner solution in the competition. Another key component of the winner
solution was the aggregation step of the inference results obtained at slice level, of great
importance especially for the objective of the 2021 evaluation task, where only one label had to
be output per CT, although our analysis highlighted the existence of several affections for some
CTs.

The paper is structured as follows. Section 2 describes the challenge and the dataset. Section 3
presents the approach we used to exploit the whole volumetric information. Section 4 describes
the architectures used to process the information at slice level and the heuristics used to produce
the diagnosis report at the CT level. Section 5 summarizes the results obtained on the blind test
set in the competition and discusses comparatively the performance of the methods. Section 6
concludes the paper.

2. ImageCLEFmed Tuberculosis 2021: tasks, data, evaluation

The challenge in the 2021 ImageCLEFmed Tuberculosis competition is the automatic classifica-
tion of CTs into one of 5 TB types - illustrated in Figure 1.

The training dataset consists of chest CT scans of 917 TB patients, each CT scan being
categorized in only one TB class. The test set consists of 421 CT scans. Part of the training data
also has some additional metadata, but because such information was not available for the test
data, we did not include it in the analysis.

The resolution is 512x512 with a variable number of slices - 580 at maximum (illustrated in
Figure 2) and various spacing, the slice thickness varying from 0.6 to 5 mm with a median at 2.5
mm.

The distribution of classes is imbalanced, as illustrated in Figure 3.
The metrics used to measure the performance of the algorithms are Cohen’s Kappa and

accuracy, the former being used to rank the entries in the competition.



Figure 2: Distribution of the number of slices per CT

Figure 3: Distribution of classes in the training set

3. Learning from volumetric data

2D convolutional neural networks have been very successful in a wide range of 2D image vision
tasks from classification to object detection and segmentation. Ever since the appearance of
Alex-Net [4], state of the art results have been obtained on several benchmarks.

For these reasons we chose to work with convolutions for this competition. Although
impressive results have been obtained on 2D image tasks using 2D convolutions, 3D convolutions
still have to emerge as de facto architecture for 3D image tasks. Since the convolution operation
is a local one, searching for features in the neighbourhood of a pixel and tuberculosis type might
be influenced by several pathologies found in different and distant slices of the same patient,
we choose as our main model 3D ResNet with Non Local Features [5]. ResNets [6] have become
popular due to their residual connections which prevent failure when training very deep neural
networks.

Pretraining has had a significant role in increasing the performances of convolutional neural
networks. We chose to use pretrained 3D ResNet50 with Non Local features on Kinetics. Due to
good results mentioned in [7] we chose Inflated 3D architecture with weights pretrained on



ImageNet 1.
We converted each volume to a sequence of images, each image representing the RGB

representation of each slice. We chose window width equal to 1500 and window level equal
to -600 for the whole volume and stored only 8bit of information for each slice, thus obtaining
an [0, 255] range 1 channel image. In order to take advantage of the pretrained models which
require 3 channel images as input, we simply duplicated the first channel over the second and
the third channel. We chose to resize each image slice to 128× 128 and 256× 256 pixels. Each
input image is a 𝑁 ×𝑁 × 120 part of the whole volume, where 𝑁 is the pixel size of an image.
Padding with 0 filled slices is done if necessary.

We used 2 training phases for the final model. The first phase uses as input slices with
128× 128 dimensions and is trained with no augmentations techniques. The total number of
epochs is 100. As loss function we use Cross Entropy. Initial learning rate is 1𝑒−3. Learning rate
scheduler is Linear Scheduler with a decreasing factor of 0.5 each 20 epochs. We use Stochastic
Gradient Descent as optimizer with a weight decay of 1𝑒 − 6. We call this the 𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
phase.

The second phase is the proper training. This time we use 256× 256 images as input. We use
as augmentations Horizontal and Vertical Flips, Contrast and Color distortions and Gaussian
Blur as well, each with a 0.5 chance. With 0.5 chance we also invert the volume. The total
number of epochs is 100. Initial learning rate is 1𝑒 − 3 with a decrease factor of 0.5 each 15
epochs. The loss used is Cross Entropy with label smoothing in order to avoid overfitting.
Each volume was normalized using ImageNet mean and standard deviation. We use Stochastic
Gradient Descent as optimizer with a weight decay of 1𝑒− 6. We use as initial weights the final
weights obtained by previous 𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 phase in order to not start from scratch. For this
approach we did not use the masks for lung segmentation provided by the competition, nor any
other method to segment the lungs. The entire CT was used as is.

We use test time augmentations. We perform for each image 6 inference steps. One step
with the original image and another step with the reversed image. For the other 4 steps we use
random augmentations that we used during the training phase. We used the last model saved
during training for inference and also the last 10 models saved during training as an ensemble,
leading to a total of 66 predictions per CT. We use different techniques for aggregating the results
of the ensemble and different test time augmentations. The first method is to pick as final label
the most frequent label predicted (FS 3DNLR50). In case of frequency equality the prediction
with the highest score is chosen. The second method is based on the mean of the scores for
each label (MS 3DNLR50). The label with the highest mean is picked. The third method uses
as final label the one with the highest score predicted among all predictions (HS 3DNLR50).
The second method obtains the best performance. The single model inference consisting of
applying the model in the last epoch, with no test-time augmentation, gives the poorest results
(S 3DNLR50). We believe this is due to the fact that a single volume can’t always present
pathologies for a single type of Tuberculosis. This is hinted by the instability of the performance
metrics (loss and accuracy) computed on the training set, even on the final epochs with a small
learning rate. Label smoothing also prevents overfitting acting as a strong regularizer. Training
on the 128× 128 images without label smoothing reaches almost perfect accuracy after 150
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epochs, whereas training with label smoothing reaches less than 80% accurcy.

4. Learning at slice level

Having a closer look at the training set, one can observe that usually the lesions on the lungs
are located only on a small number of slices from the whole volume. A natural idea is to try a
2D model that could differentiate between healthy lung slices and lung slices with lesions and
construct the CT report based on the findings at slice level. For this purpose we need training
data labeled at slice level and not CT level.

We manually selected slices, at lung level, that we thought were relevant for the respective
label. This means we carefully selected only the slices that contained the representative label
even though, to our opinion confirmed later by a radiologist, that CT contained pathologies
corresponding to other labels as well. The selection was made by us, briefly trained by small
descriptions we found on the internet. We strived to make a balanced dataset, but due to the
nature of the pathology some were easier to gather than others. Also due to the easiness of
selecting healthy slices we took the opportunity to make a large healthy slices set.

Using the same architecture as last year [3], Efficient-net B4 [8], we trained a classifier with
6 labels (the initial 5 tuberculosis types + healthy class). We then aggregated the predictions
probabilities for each volume and used it as a data point for a different simpler classifier (we
tried Multi Layer Perceptron and Logistic Regression) using as output the final volume label.
This way we aggregated all slices into a single label. We further increased the scores by using
test-time augmentations (only horizontal flip) and averaging several second-stage classifier
results that were trained with different parameters.

4.1. Training

We used approximately the same approach we used last year at ImageCLEF CTReport challenge
which we will briefly describe here.

Given a selected sliced we grouped it together with the previous and the next slice in the
volume. We changed its window and level values to highlight the lung features. The selected
slices were split into half, corresponding to each lung, and we kept only the side with the
affection. We cropped the images, using a simple threshold method to remove the padding and
kept only the body. The resulting images were resized to 256× 256 pixels. These were then
normalized with values in the range [0,255] corresponding to 3 black and white images which
were concatenated at channel level. These mini volumes of 3 consecutive slices, we thought,
could better highlight the difference between an infiltration and an artery, or a cavern and a
lumen as these are can be very similar at a certain point in space but continue in a different
manners.

As augmentations we used a random crop of size 224× 224, a random horizontal flip with a
probability of 0.5 and normalized the image. We trained an EfficientNet-B4 , with 90 epochs
and batches of 32. We used this network to predict on each slice of a volume in the training
set (processed in the fashion we explained above after the volume was resized to a fixed value
of depth 128) and obtain the probabilities of each affection type. These probabilities were
concatenated into an array of size [128, 6] corresponding to [no of slices, no of labels]. These



arrays were used as input to train a simpler classifier (for example a logistic regression classifier),
each array corresponding to a label. We did not use any masks nor segmentation algorithms to
extract the lungs.

The first submission (EfMLP) using this approach resulted in a kappa score of 0.203 and used
9/10 of the data, the rest 1/10 being used for internal validation. The second stage classifier was
an MLP classifier with 2 hidden layers of size 100 and 30 respectively. No test-time augmentation
was performed. The second submission (Ef MLP LogReg) with a kappa score of 0.221 was a
mean of 4 predictions: one MLP classifier and one LogReg classifier tested on the original and
flipped images. This submission scored the highest. The rest of the submissions (Ef comb)
correspond to different training parameters and means of scores (second stage classifiers training
on flipped images, means of first stage classifier probabilities on original and flipped images,
etc).

5. Comparative results

Table 1 summarizes the results obtained in the competition on the test set.

Table 1
Results reported on the test set. The first four entries use a 3d approach, while all the others make
predictions at slice level.

Method kappa accuracy
S 3DNLR50 0.169 0.366
HS 3DNLR50 0.174 0.397
FS 3DNLR50 0.183 0.401
MS 3DNLR50 0.187 0.404
Ef comb1 0.192 0.444
Ef comb2 0.194 0.444
Ef MLP 0.203 0.458
Ef comb3 0.205 0.449

Ef MLP LogReg 0.221 0.466

The winning submission corresponds to a kappa score of 0.221. The low scores obtained
generally in the competition are not a surprise for us, since, during the phase of manual slice
labeling, we identified CTs in the training set presenting more affection types and not only the
labeled one. In our opinion, the task should be framed as a multi-label classification problem,
giving the possibility to report all the affections present. We could not find the rational behind
CT labeling for the cases that present more than one lesion type, and neither could the AI, as
the results indicate.

6. Conclusions

In the light of the results we obtained in both the 2020 and the 2021 ImageClef TB evaluation
tasks, we may conclude that an approach based on inference at slice level is superior to those
using the entire volume in such classification tasks. The effort of including in the training



set the needed information in the form of labeled slices, basically reducing to identifying the
sequence of slices presenting a certain affection, is definitely rewarding, not only in terms of
accuracy gain, but also in terms of the inference type, models built in this way being able to
provide more valuable information like localization and size of the affection.
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