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Abstract
The paper presents a method for image-based snake species identification. The proposed method is
based on deep residual neural networks – ResNeSt, ResNeXt and ResNet – fine-tuned from ImageNet
pre-trained checkpoints. We achieve performance improvements by: discarding predictions of species
that do not occur in the country of the query; combining predictions from an ensemble of classifiers;
and applying mixed precision training, which allows training neural networks with larger batch size.
We experimented with loss functions inspired by the considered metrics: soft F1 loss and weighted cross
entropy loss. However, the standard cross entropy loss achieved superior results both in accuracy and
in F1 measures. The proposed method scored third in the SnakeCLEF 2021 challenge, achieving 91.6%
classification accuracy, Country F1 Score of 0.860, and F1 Score of 0.830.

Keywords
Snake Species Identification, Fine-grained Classification, Computer Vision, Convolutional Neural Net-
works, Deep Learning

1. Introduction

The paper describes a method for automatic image-based snake species identification submitted
by the CMP team to the SnakeCLEF 2021 challenge [1] – a part of LifeCLEF 2021 workshop [2].
The problem of identifying snake species from images is difficult because the classification is
fine-grained, some species look very similar, and up to hundreds of different snake species live
in one country.

Taxonomic knowledge about snakes is crucial in diagnosis and medical response to snakebites.
Accurate identification of the snake species is important for the appropriate treatment of
snakebite victims since specific antivenoms are effective against specific venomous snakes.
Moreover, antivenoms should not be used to treat bites from non-venomous snakes because of
side effects such as allergic reactions [3]. Snakebites are a global health problem that kills or
disables half a million people a year in developing countries [3].

This paper is structured as follows: Section 2 describes related work focusing on snake species
identification. Section 3 introduces the input data and evaluation methodology of the SnakeCLEF
2021 challenge. Section 4 describes the adopted architecture of deep neural network and the
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optimization procedure. Section 5 covers all experiments, ranging from preliminary experiments
to the final challenge submissions. Finally, the results are summarized in Section 6.

2. Related Work

Before the existence of large-scale image datasets for snake species classification, Abeysinghe
et al. [4] proposed a one-shot learning approach for fine-tuning a Convolutional Neural Net-
work (CNN) for the task of snake species identification. The authors used a small dataset of 84
snake species, with most species having no more than 3 training images. The authors utilize
a Siamese network [5] that ranks similarity between two inputs: The network is trained by
binary cross entropy minimization to estimate the probability of the query image belonging
to the same class as the reference image. At test time the query image is compared against all
annotated reference images of each class.

In 2020, the first year of the SnakeCLEF challenge [6], introduced a dataset with 287,632
images of 783 snake species taken in 145 countries. Only two teams presented their recognition
systems for identifying snake species.

The best scoring team in SnakeCLEF 2020, gokuleloop [7], fine-tuned ResNet-50-V2 [8] from
ImageNet-1K and ImageNet-21K [9] pre-trained checkpoints, the latter leading to better results.
The author applied the following training techniques:

• Gradient accumulation – a technique that accumulates gradients from small mini-batches
allowing larger effective mini-batch size.

• Mixup augmentation [10] – an augmentation technique that combines random image
pairs from the training dataset.

• Group normalization [11] – differently from batch normalization, GN divides the channels
into groups and computes the mean and variance within each group.

The second team in SnakeCLEF 2020, FHDO_BCSG [12], first detected regions where snakes
occur using a Mask R-CNN [13] object detector, and then classified the snake species in the
regions using EfficientNet [14]. The authors adjusted the output probabilities of EfficientNet
based on the geographic location of the image: The softmax values for each image were
multiplied by the species a priori probability for a given geographic location. To clean the
training dataset from noisy samples, the authors utilized an ImageNet-1K pre-trained ResNet-50
network and discarded images not classified as snake and reptile classes.

3. Challenge Description

3.1. Dataset

The training dataset provided by SnakeCLEF 2021 covers 772 snake species and contains
annotated images from three different sources: iNaturalist, HerpMapper and Flickr. Examples
of images are in Figure 1. The majority of images are from iNaturalist and HerpMapper, with
277,025 and 58,351 images, respectively. Their labels are confirmed by human annotators.
The Flickr dataset is the smallest, with 50,630 web-scraped images that contain noisy data.



Figure 1: Image examples from the SnakeCLEF 2021 dataset. The images are resized and center
cropped to 224 × 224. CC-BY-NC images from iNaturalist: ©srhein, ©jance, ©roig10, ©arturobtzz,
©John Clough, ©William Wimley, ©nobiscuits, ©feistygirl75.

In total, 386,006 images with annotations were provided. Training with external data was not
allowed.

The challenge organizers suggested a subset of 70,208 images, referenced as a mini-subset
in the rest of this paper, made of samples from INaturalist and HerpMapper. The experiments
described in Section 5 are based on the said subset.

In addition to the images, the dataset contains metadata with information about the country
where the image was taken. In total, the training dataset includes images from 188 countries.
The dataset is fine-grained with a long tail class distribution. More than 22,000 images represent
the most frequent species, while the least frequent species have only 10 images. The least
represented species are often found in regions such as Middle and South America, South Africa
and Australia. Table 1 shows the distribution of images in geographical regions. For some
images, information about the geographical location is missing.

Furthermore, the challenge organizers provided 28,418 images without annotations. Top one
species predictions for the test images were sent to the organizers to participate in the challenge.

3.2. Data Preparation

During the data exploration phase, we discovered that training and validation datasets contain
noisy data from Flickr. The noisy data are non-relevant images with various animal species
or objects. We estimate1 that the percentage of non-relevant images is 10.6 ± 0.1, with 95%
confidence interval. We decided to remove all Flickr images and proceeded with verified images
from iNaturalist and HerpMapper.

1We used the Student’s t-distribution with 𝑛 = 20 samples and 𝑛− 1 degrees of freedom where each sample
denotes the percentage of non-relevant images in a set of randomly selected 100 images.

https://www.inaturalist.org/photos/1965427
https://www.inaturalist.org/photos/45245433
https://www.inaturalist.org/photos/18067840
https://www.inaturalist.org/photos/53023905
https://www.inaturalist.org/photos/80758394
https://www.inaturalist.org/photos/38735486
https://www.inaturalist.org/photos/35649843
https://www.inaturalist.org/photos/98276632


Table 1
Geographical distribution of SnakeCLEF 2021 images.

Region Number of images

North America 258,732
Europe 18,689
Middle America 17,403
Asia 16,518
South America 12,735
Africa 6,017
Australia 4,313
Oceania 538

unknown 51,061

The challenge organizers suggested a data split with 90% training and 10% validation samples.
However, after removing Flickr images, it turned out that some species were not represented in
the proposed validation set. Table 2 displays the number of snake classes represented, i.e. classes
with at least one image, in the dataset sources. iNaturalist and HerpMapper combined have 768
classes which are all represented across the training set but only 733 classes in the validation
set. We thus created a new dataset split where all classes are represented in both training and
validation splits if more than one image of the species is available. If not, the image is placed in
the training set.

Technically, the last 10% of images, ordered by metadata ID, for every species and country
combination were selected as the validation data. One validation image was selected for the cases
that had fewer than 10 images. We assume the ID ordering is random w.r.t. image content and
properties.

Table 2
Number of species included in SnakeCLEF 2021 dataset sources: iNaturalist, HerpMapper and Flickr.
The last row represents our new dataset split, after removing all Flickr images due to noisy labels and
sampling a new validation set covering as many species as possible.

Source Training set Validation set Number of images

iNaturalist 762 716 277,025
HerpMapper 603 357 58,351
Flickr 730 585 50,630
iNaturalist + HerpMapper + Flickr 772 772 386,006
iNaturalist + HerpMapper 768 733 335,376

Mini-subset (introduced in Section 3.1) 768 763 70,208
iNaturalist + HerpMapper (new split) 768 765 335,376



3.3. Evaluation Metrics

The challenge used two metrics for the final evaluation. The primary metric is the macro
averaged F1 Score across countries ("Country F1 Score"), shown in equation 4. The secondary
metric is the macro averaged F1 Score ("F1 Score"), shown in equation 2.

The F1 Score for each species 𝑠 = 1, 2, ..., 𝑘 is computed as a harmonic mean of precision 𝑝𝑠
and recall 𝑟𝑠:

𝐹1𝑠 =
2𝑝𝑠𝑟𝑠
𝑝𝑠 + 𝑟𝑠

. (1)

The macro averaged F1 Score is the average of the 𝐹1 scores of all species:

macro(𝐹1) =
1

𝑘

𝑘∑︁
𝑠=1

𝐹1𝑠. (2)

Country F1 Score 𝐶𝐹1𝑐 for each country 𝑐 = 1, 2, ...,𝑚 is the macro averaged F1 Score
computed only for species living in country 𝑐:

CF1𝑐 =
∑︀𝑘

𝑠=1 𝐹1𝑠𝐴𝑐𝑠∑︀𝑘
𝑠=1𝐴𝑐𝑠

, (3)

where 𝐴 is a 𝑘 ×𝑚 matrix with elements 𝐴𝑐𝑠 =

{︃
1, country 𝑐 is a habitat of species 𝑠

0, otherwise
.

Similarly, macro averaged Country F1 Score is obtained by averaging CF1𝑐 over all countries:

macro(CF1) =
1

𝑚

𝑚∑︁
𝑐=1

CF1𝑐. (4)

The macro averaged Country F1 Score thus increases the importance of species that appear in
more countries.

4. Methodology

The proposed method is based on the state-of-the-art Convolutional Neural Networks (CNNs)
for image classification, described in Subsection 4.1. The following subsections describe the op-
timization procedure, loss functions, the post-processing of the predictions, applying mixed
precision training and implementation details.

4.1. Deep Residual Networks

All experiments are based on deep residual neural networks, namely the original ResNet [15],
the ResNeXt [16], and the recent ResNeSt [17]. The ResNet architecture consists of a stack of
residual blocks – building modules with residual connections that combine input and output by
element-wise addition. The ResNeXt additionally includes a split-transform-merge strategy,



where each block performs a set of transformations with the same topology whose outputs are
aggregated by element-wise addition. For example, a single transformation can be a group of
convolutions. The ResNeSt incorporates a channel-wise attention strategy within each split-
transform-merge block: Each transformation consists of split groups over which the network
calculates the channel-wise split attention weights.

All networks in our experiments were fine-tuned from ImageNet-1K [18] pre-trained check-
points. Residual networks typically [15, 16] use input size about 224 × 224, the pre-trained
ResNeSt-101 and ResNeSt-200 are available with a larger input sizes of 256×256 and 320×320,
respectively.

4.2. Optimization Procedure

We use two optimization algorithms for training CNN models: stochastic gradient descent with
momentum (SGD) and Adam [19]. Our preliminary experiments showed that Adam optimizer is
able to converge quickly, but the prediction score is inferior compared to SGD. The application of
the one cycle schedule policy [20] (one cycle) improved the results when applied with the Adam
optimizer while applying it with SGD did not work well in our preliminary experiments.

The training hyper-parameters, such as learning rate, momentum and weight decay, are listed
in Table 3 and were set the same as in the network pre-training. Batch sizes were adjusted to fit
the network on the graphics processing unit (GPU). The input image size stays the same as in
the pre-trained networks.

During the training, we select the best checkpoint based on the highest validation Country
F1 Score.

Table 3
The hyper-parameter setting used for training the challenge submissions.

Network ResNeSt-101 ResNeSt-200 ResNeXt-101 ResNet-101
Optimizer SGD SGD Adam Adam
LR Scheduler - - one cycle one cycle
Learning Rate 0.1 0.1 0.01 0.01
Weight Decay 0.0001 0.0001 0.01 0.01
Batch Size 128 64 128 128

4.3. Country-specific Removal of Predictions

For each image, the dataset metadata include the country where the image was taken. Ad-
ditionally, the dataset comes with a list of countries and snake species that live there. We
utilize this information to adjust the model predictions to the country of the query as follows:
The classifier predictions are set to 0 for all species that do not live in the country of the query.
This adjustment is applied only at test time.



4.4. Mixed Precision Training

When training large CNN architectures, fitting the model into limited GPU memory is a bot-
tleneck. We considered the following workarounds: selecting a smaller batch size or applying
mixed precision training [21]. Both approaches have an accuracy trade-off.

Mixed precision training is a technique that combines single-precision (32-bit floats, "FP32")
and half-precision (16-bit floats, "FP16") float numbers. In order to lower the memory require-
ments, the forward and backward pass with the large batch size only use a half-precision version
of the model. Then, the gradient descent is applied to the single-precision version of the model.
In every training step following procedure is applied:

1. Apply the forward pass, compute the loss and apply backward pass on a model in FP16.
2. Convert the gradients from FP16 to FP32.
3. Apply the update on the primary model in FP32.
4. Create a copy of the primary model in FP16.

4.5. Loss Functions

The baseline loss function for training the classifiers is the standard cross entropy loss:

ℓce = −
𝑛∑︁

𝑖=1

log 𝑦𝑖,𝑡𝑖 , (5)

where 𝑡𝑖 is the ground truth target and y𝑖 are the classifier predictions for the 𝑖-th example,
and 𝑦𝑖,𝑡𝑖 is the prediction for the ground truth class of the 𝑖-th example.

The following subsections describe the loss functions proposed to use the challenge metrics,
described in Section 3.3, as a loss measure.

4.5.1. F1 Loss with Soft Assignments

The F1 Score from Equation 2 is not differentiable and thus cannot be utilized as a loss function
for back-propagation. We use an approximation of the F1 Score, referenced as soft F1 loss in
the rest of this paper, which uses soft assignments that make the function differentiable:

• the true positives for species 𝑠 are estimated using the softmax predictions y and one-hot

encoded target vector t as follows: ̂︁TP𝑠 =
𝑛∑︀

𝑖=1
y𝑖t𝑖

• the false positives for species 𝑠 are estimated using the softmax predictions y and one-hot

encoded target vector t as follows: ̂︁FP𝑠 =
𝑛∑︀

𝑖=1
y𝑖(1− t𝑖)

• the false negatives for species 𝑠 are estimated using the softmax predictions y and one-hot

encoded target vector t as follows: ̂︁FN𝑠 =
𝑛∑︀

𝑖=1
(1− y𝑖)t𝑖

Notice, that ̂︁TP, ̂︁FP, and ̂︁FN are now real valued. Soft F1 Score for species 𝑠, ̂︁𝐹1𝑠, is obtained by
computing the harmonic mean of precision ̂︀𝑝𝑠 and recall ̂︀𝑟𝑠:



̂︀𝑝𝑠 = ̂︁TP𝑠̂︁TP𝑠 +̂︁FP𝑠

, ̂︀𝑟𝑠 = ̂︁TP𝑠̂︁TP𝑠 + ̂︁FN𝑠

, ̂︁𝐹1𝑠 =
2̂︀𝑝𝑠̂︀𝑟𝑠̂︀𝑝𝑠 + ̂︀𝑟𝑠 . (6)

The macro averaged soft F1 Score is obtained by averaging ̂︁𝐹1𝑠 over all species:

macro(̂︁𝐹1) =
1

𝑘

𝑘∑︁
𝑠=1

̂︁𝐹1𝑠. (7)

The final loss function is ℓ ̂︀𝐹1
= 1− macro(̂︁𝐹1), so that it ranges from 0 (perfect) to 1 (worst).

4.5.2. Weighted Cross Entropy

Because the macro averaged Country F1 Score from Equation 4 increases the importance of
species appearing in more countries, we propose a weighted variant of the cross entropy loss
with species weights 𝑤𝑠 based on the number of countries in which it appears:

ℓwce = −
𝑛∑︁

𝑖=1

𝑤𝑡𝑖 log 𝑦𝑖,𝑡𝑖 , (8)

The Maximum Likelihood Estimation (MLE) of 𝑤𝑠 would simply count the relative frequencies
𝑓𝑠 in the provided species-country incidence list. In order to avoid zero weights, we add Laplace
smoothing:

𝑤𝑠 =
𝑓𝑠 + 1

𝑘∑︀
𝑗=1

(𝑓𝑗 + 1)

. (9)

4.6. Implementation Details

The proposed method was developed using the PyTorch [22] machine learning framework and
the fastai framework [23] built on top of PyTorch. The code is available online2. All models
were fine-tuned from ImageNet-1K [18] pre-trained PyTorch Image Models [24] on one NVIDIA
Tesla V100 with 32GB graphic memory.

5. Experiments

5.1. Comparison of Residual Networks

Table 4 shows classification scores of residual networks ResNet, ResNeXt and ResNeSt with
50 and 101 layers. All networks are fine-tuned for 30 epochs on images of size 224 × 224,
minimizing the cross-entropy loss using SGD with momentum. One ResNeSt-101 version is
fine-tuned on a larger image size 256 × 256 to match the image size of the ImageNet pre-
trained checkpoint. Both ResNeSt versions, ResNeSt-50 and ResNeSt-101, achieve higher scores
compared to the corresponding ResNet and ResNeXt architectures.

2https://github.com/chamidullinr/snake-species-identification

https://github.com/chamidullinr/snake-species-identification


Table 4
Classification scores of residual networks fine-tuned for 30 epochs on the mini-subset from Section 3.1.
The results are computed on our validation set.

Architecture Input Size Accuracy F1 Score Country F1 Score

ResNet-50 224 44.0% 0.331 0.300
ResNeXt-50 224 47.2% 0.352 0.333
ResNeSt-50 224 53.8% 0.447 0.409

ResNet-101 224 42.4% 0.290 0.273
ResNeXt-101 224 50.5% 0.428 0.396
ResNeSt-101 224 56.7% 0.475 0.432

ResNeSt-101 256 58.8% 0.500 0.455

5.2. Results of Mixed Precision Training

As observed in the previous section, ResNeSt-101 with a higher input size achieves the highest
scores of the experimented residual networks. Since its deeper version, ResNeSt-200, does not fit
into our GPU memory with larger batch sizes, we experiment with the mixed precision training
from Section 4.4.

Table 5 compares the training time and accuracy of ResNeSt-101 and ResNeSt-200 when
training with and without the mixed precision technique. Note that in our computational
environment, mixed precision runs slower than single precision. The prediction scores after
10 epochs show that mixed precision has little impact on prediction accuracy in setups with
the same architecture and batch size. Increasing the batch size from 32 to 64 has a much larger
impact on the accuracy. Thus the network trained on a larger batch size with mixed precision
achieves better scores than the single-precision network with a smaller batch size.

Table 5
Classification scores and training times when fine-tuning for 10 epochs with and without the mixed
precision technique. Cells with "×" denote setups for which the network did not fit into the 32GB GPU
memory. The networks are fine-tuned on the mini-subset from Section 3.1 and the results are computed
on our validation set.

Architecture BS Precision type Accuracy F1 Score Country F1 Score Epoch time

ResNeSt-101 128 Mixed 48.0% 0.387 0.355 14 min
ResNeSt-101 128 Single 47.6% 0.385 0.348 10 min

ResNeSt-200 128 Mixed × × × ×
ResNeSt-200 128 Single × × × ×
ResNeSt-200 64 Mixed 52.7% 0.424 0.398 40 min
ResNeSt-200 64 Single × × × ×
ResNeSt-200 32 Mixed 46.9% 0.376 0.345 41 min
ResNeSt-200 32 Single 46.9% 0.371 0.345 28 min



Table 6
Classification scores on ResNeSt-101 with different loss functions. Standard cross entropy achieves
superior results. The networks are fine-tuned on the mini-subset from Section 3.1 and the results are
computed on our validation set.

Loss Function Accuracy F1 Score Country F1 Score

Cross Entropy Loss 58.8% 0.500 0.455
Weighted Cross Entropy Loss 48.4% 0.349 0.385
F1 Loss 0.2% 0.001 0.000

5.3. Evaluation of Different Loss Functions

The loss functions introduced in Section 4.5, namely the soft F1 loss and the weighted cross
entropy loss, resulted in inferior classification scores compared to cross entropy loss, see Table 6.
We, therefore, fine-tune the CNN classifiers with cross entropy loss, and then choose the best
training checkpoint based on the highest validation Country F1 Score.

One possible explanation for the failure of the soft F1 loss is that the batch size of 64 is
significantly smaller than the total number of classes, 772. This leads to the classes not being
represented in every mini-batch, making the approximation of the F1 loss inaccurate. Figure 2
illustrates the inaccurate approximation of the F1 loss on an example, where the loss values are
mostly 0s or 1s.

5.4. Evaluation of Country-specific Removal of Predictions

We measure the prediction scores of ResNeSt-200 with and without the removal of species
predictions based on the country incidence information. Table 7 compares the prediction scores
on our validation set. The improvement is 0.150 in F1 Score and 0.193 in Country F1 Score.

Figure 2: F1 Scores for Acrochordus granulatus across all training iterations in one epoch. The example
illustrates the inaccurate approximation of the F1 loss: the loss rarely takes values other than 0 and 1.



Table 7
Comparing classification scores of ResNeSt-200 with and without the removal of species predictions
based on the country incidence information. The networks are fine-tuned on the mini-subset from
Section 3.1 and the results are computed on our validation set.

Country-specific removal of predictions Accuracy F1 Score Country F1 Score

No 74.8% 0.483 0.504
Yes 79.0% 0.633 0.697

5.5. Challenge Submissions

We submitted the following five runs to the SnakeCLEF 2021 challenge:

CMP_S1: ResNeSt-200 fine-tuned for 20 epochs on the full dataset with SGD.
CMP_S2: ResNeSt-200 from CMP_S1 fine-tuned for additional 10 epochs on the full dataset

with SGD.
CMP_S3: ResNet-101 fine-tuned for 25 epochs on the full dataset with Adam and one cycle.
CMP_S4: ResNeXt-101 fine-tuned for 30 epochs on the mini-subset from Section 3.1 with Adam

and one cycle.
CMP_S5: An ensemble of all four previous runs, combining the top one predictions by majority

voting strategy. In case of ties, predictions of CMP_S1 are preferred.

Table 8 shows the final challenge scores on the test set. While different in accuracy, the CNN
architectures ResNeSt-200, ResNeXt-101 and ResNet-101 achieve similar results in the primary
challenge metric, the Country F1 Score. The highest scores are achieved by the ensemble.

We recognize a shortcoming of the ensemble submission (CMP_S5), which inclines towards
the ResNeSt-200 submissions related to each other (CMP_S2 is fine-tuned from CMP_S1).
The remaining networks cannot outvote an agreement of CMP_S1 and CMP_S2.

Table 8
Classification scores of the submitted challenge runs on the SnakeCLEF 2021 challenge test set. The net-
works are fine-tuned either on the full dataset (Full) or on the mini-subset (Mini) from Section 3.1. The
CNN architectures ResNeSt-200, ResNeXt-101 and ResNet-101 achieve similar results in the Country
F1 Score. The highest scores are achieved by the ensemble of all networks.

Submission Architecture Dataset Accuracy F1 Score Country F1 Score

CMP_S1 ResNeSt-200 Full 90.6% 0.772 0.839
CMP_S2 ResNeSt-200 Full 89.5% 0.779 0.819
CMP_S3 ResNet-101 Full 90.7% 0.795 0.837
CMP_S4 ResNeXt-101 Mini 77.6% 0.796 0.839
CMP_S5 Ensemble of CMP_S1-S4 - 91.6% 0.830 0.860



6. Conclusions

The paper presents a deep learning method for image-based snake species identification, a fine-
grained classification problem with a long tail class distribution. The method is based on
deep residual neural networks – ResNeSt, ResNeXt and ResNet – fine-tuned from ImageNet
pre-trained checkpoints. We achieve performance improvements by: discarding predictions of
species that do not occur in the country of the query; combining predictions from an ensemble
of classifiers; and applying mixed precision training, which allows training neural networks
with larger batch size.

The experimented soft F1 loss and weighted cross entropy loss produced inferior results
compared to the standard cross entropy minimization. Thus, the competition submissions are
fine-tuned with the standard cross entropy loss.

The proposed method scored third in the SnakeCLEF 2021 challenge, achieving 91.6% classifi-
cation accuracy, Country F1 Score of 0.860, and F1 Score of 0.830.
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