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Abstract
This paper presents the submissions made by our team to PlantCLEF 2021. The challenge’s goal was to
identify plant species based on the test set made from only plant images in the field, given a training
dataset consisting of primarily herbarium images. We implemented a two-streamed Herbarium-Field
Triplet Loss Network to evaluate the similarity between herbarium and field pairs, thereby matching
species from both herbarium and field domains. The network is made from two convolutional neural
networks taking herbarium and field images as input, respectively. The network employed is a similar
but improved version of our submission to the previous year’s challenge [1]. In addition, we trained a
one-streamed network taking both herbarium and field images as input to enable the learning of the
features of each species irrespective of their domains. We found that an ensemble of these networks
performed better than the Herbarium-Field Triplet Loss Network alone. We achieved a Mean Reciprocal
Rank (MRR) of 0.181 for the primary metric, which focused on the whole test set. Comparably, we
achieved an MRR of 0.158 for the secondary metric, which focused on the subset of species with fewer
field training images.
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works

1. Introduction

The LifeCLEF evaluation campaign aims at boosting and evaluating the advances of plant and
animal identification since 2011 [2]. The 2021 edition proposed four different challenges namely,
PlantCLEF 2021 [3], BirdCLEF 2021 [4], GeoLifeCLEF 2021 [5], and SnakeCLEF 2021 [6]. The
LifeCLEF 2021 plant identification challenge (PlantCLEF 2021) was evaluated as a cross-domain
classification task. Likewise, in PlantCLEF 2020 [7], the objective was to identify plants in the
field based on a training dataset composed primarily of herbarium images with little or no
plant field images at all. The same training and test data from PlantCLEF 2020 were provided,
however, 5 traits of the species were introduced.

The results obtained in PlantCLEF 2020 demonstrated that the challenge was particularly
difficult as compared to the previous editions of PlantCLEF. Generally, herbarium and their
respective plant field images vary in terms of their attributes like color, plant organs, captured
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viewpoints, and illumination settings. Consequently, the difference in their input distribution
makes it difficult to carry out conventional automated plant species identification in which
the classification problem is straightforward, whereby the source and target domains are the
same. In addition, it was shown that transfer learning from herbarium to field data based on
conventional automated classification did not perform well [8, 9].

To tackle this problem, similarly in our approach from PlantCLEF 2020 [1], we adopt the
triplet network architecture [10] from the face recognition domain. The core concept of this
architecture is to feed the network with a triplet sample: two samples sharing the same label
and one with a different label. Then, the network is trained to minimize the feature distance
between the same labels and maximize the feature distance between different labels. The triplet
loss aims to separate identical pairs from different pairs by a distance margin.

Likewise, we implemented a Herbarium-Field triplet loss network to minimize the feature
distance between the same herbarium-field pairs, while maximizing the feature distance between
different herbarium-field pairs. This network achieved impressive genericity by obtaining
equivalent results regardless of whether the species has many or little field training images in
PlantCLEF 2020.

As an improvement to our previous approach, we employed additional input augmentation,
different network choices, finetune hyperparameters, and longer training duration in different
stages. Furthermore, a one-streamed convolutional neural network (CNN) taking both herbar-
ium and field images was trained to compare their behavior and performance to the triplet
network. In contrast, the Herbarium-Field triplet loss network only takes into account existing
herbarium-field pairs, meanwhile, the species with no herbarium-field pairs were neglected.
Therefore, in terms of input data, triplet learning has less data used compared to our one-stream
network. Moreover, we revised the extraction method of our herbarium dictionary to enhance
the representation for the herbarium-field feature similarity comparison.

This paper presents our team’s submission to PlantCLEF 2021. We discuss our implemented
networks and methods in detail, our results obtained, and analyses made from the results.

2. Methodology

2.1. Networks and Architecture

We propose a Herbarium-Field Triplet Loss Network (HFTL Network) to model common features
between herbarium-field pairs. Its main concept is to minimize the feature distance between
the same species and maximize the feature distance between different species. A large feature
distance difference denotes that a herbarium-field pair is of different species, while a small
distance denotes the same species. In addition to HFTL Network, we construct a one-streamed
mixed network (OSM Network) whereby herbarium and field images are trained together
in a single network without distinction of herbarium and field classes. These networks are
implemented based on the Inception-v4 and Inception-ResNet-v2 architectures [11] and are
detailed in Section 3.3. The two core networks constructed in our submissions are as follows:



Figure 1: Network Architecture of the Herbarium-Field Triplet Loss Network.

2.1.1. Network 1: Herbarium-Field Triplet Loss Network

This network is made from two CNNs. One being the Herbarium Network, and the other being
the Field Network. A batch normalization layer is added at their final embedding layers, and its
feature vector is reduced from 1536 to 500. The output is then L2-normalized and concatenated
to the output size of (𝑛+𝑚)×500. n denotes the batch size of the Herbarium Network, while m
denotes the batch size of the Field Network. For the ease of implementation, we set n and m to
be the same values. The concatenated feature embedding is then passed to the network’s triplet
loss layer1 whereby the network optimizes the feature embeddings of herbarium and field to
their species. It is trained to minimize the embedding distance of the same herbarium-field pair
species while maximizing the embedding distance of different herbarium-field pair species. The
network is illustrated in Figure 1.

2.1.2. Network 2: One-streamed Mixed Network

This network on the other hand is based on a single stream CNN approach. However, unlike
the objective of a conventional CNN whereby its goal is to map the test data with its learned
features, we do not directly map them but utilize the learned features since the training data
(herbarium images) and test data (field images) share different feature distributions. Therefore,
the learned features of the OSM Network are make used as a means to measure the feature

1The triplet loss is computed using triplet_semihard_loss function provided in Tensorflow 1.12 [12]



Figure 2: Network Architecture of the One-streamed Mixed Network.

similarity between herbarium-field pairs instead of directly classifying them. Implementing this
mechanism allows us to predict classes with missing field images in a similar way the triplet
network does. Likewise in the HFTL Network, its feature vector is reduced from 1536 to 500.
This network is illustrated in Figure 2.

2.2. Data

The datasets used in our submissions are from PlantCLEF 2021 and PlantCLEF 2017. In PlantCLEF
2021, 997 species have herbarium images, and a subset of 435 species have both herbarium and
field images as training data. Since the number of field images in this dataset is significantly less
than that of herbarium images, we utilize the field images from PlantCLEF 2017 to allow the
network to generalize features of field images better. In addition, PlantCLEF 2021 introduces
new data related to five traits that include traits of the plants’ growth form, habitat, lifeform,
trophic guild, and woodiness. However, we did not apply these traits in the training of our
networks.

2.2.1. Data in HFTL Network

This network has two separate streams that take in two different input domains: herbarium and
field. In the initial stage of constructing the first stream (Herbarium Network), only PlantCLEF
2021 herbarium dataset is used. In the second stage, PlantCLEF 2017 field dataset is used to train
the second stream (Field Network). We have also trained the Field Network with PlantCLEF
2021 field dataset instead, and this comparison is tabulated in Table 4. Finally, in the third stage,
where the HFTL Network is established, only herbarium and field images from PlantCLEF 2021
are used.

2.2.2. Data in OSM Network

This network utilizes the training data solely from PlantCLEF 2021. It takes in both herbarium
and field images as input without distinction between herbarium and field domains.



Table 1
Dataset Used in Training Networks.

Network Number of images Number of classes
Herbarium Field Herbarium Field

Herbarium 306,005 - 997 -
Field (2017) - 1,187,484 - 10,000
Field (2021) - 4,685 - 435
HFTL 197,985 5,824 435 435
OSM 306,005 4,685 997 435

Table 2
Network Training Parameters.

Parameter Herbarium, Field, OSM Network HFTL Network

Batch Size 256 16
Input Image Size 299× 299× 3 299× 299× 3
Optimizer Adam Optimizer [13] Adam Optimizer [13]
Initial Learning Rate 0.0001 0.0001
Weight Decay 0.00004 0.00004
Loss Function Softmax Cross Entropy Triplet Loss

The overall datatset distribution is summarized in Table 1.

2.3. Training Setup

The networks trained are set up using Tensorflow 1.12 [12] alongside slim packages with
hyperparameters as described in Table 2. The codes are available at https://github.com/NeuonAI/
plantclef2021_challenge.

3. Experiments

3.1. Dataset

To evaluate the performance of our networks, we segregated a subset of species from the
PlantCLEF 2021 dataset. This subset of species was catered for two categories of test sets: (1)
with field images in the training data and (2) without field images in the training data. For
the species without field training data, we obtained its field images from various resources via
Google Images queries to create the test set. These experimented test sets for HFTL Network
and OSM Network are detailed in Table 3.

https://github.com/NeuonAI/plantclef2021 _challenge
https://github.com/NeuonAI/plantclef2021 _challenge


Table 3
Test Set 1 (With Field Training Data) and Test Set 2 (Without Field Training Data).

Dataset Number of images Number of classes

Test Set 1 1,219 345
Test Set 2 197 100

3.2. Inference Procedure

To evaluate the test set, we first generate a herbarium dictionary to store the reference em-
beddings of all 997 species. Then, the field embedding from the test set is compared with the
herbarium dictionary formed to map the field embedding to their herbarium pair. The difference
between our method of constructing the herbarium dictionary and our previous method is that
instead of 5 corner crops, the extraction of herbarium embeddings was extended to 10 different
corner crops. Furthermore, field images were also used to form the herbarium dictionary. The
networks that utilized field images in the herbarium dictionary are tabulated in Table 4. The
process of herbarium dictionary generation is illustrated in Figure 3 while the comparison of
feature similarity is illustrated in Figure 4. The following steps describe the inference procedure:

1. Generate herbarium dictionary
a) Using a predefined herbarium dataset* that contains the herbarium of all 997 species,

extract the feature embeddings of each species from the network trained (*Note that
this herbarium dataset is later added with field images to compare the effects. The
results are seen in Table 4).

b) Upon extracting the feature embedding of each test sample, apply Center and Corner
Crops to the image to obtain 5 different images (center, top-left, bottom-left, top-right
and bottom-right) from the original sample.

c) Subsequently, flip those 5 images to obtain a total variety of 10 images.
d) Hence for each test sample, 10 images are obtained resulting in 10 feature embed-

dings.
e) Average the 10 feature embeddings for each sample.
f) Group the averaged feature embeddings of each sample belonging to the same

species.
g) Average the embeddings to obtain a single feature embedding for each species.
h) Store the averaged feature embeddings of each species in a herbarium dictionary to

be used as reference embeddings.
i) A herbarium dictionary of 997 feature embeddings is formed.

2. Compare feature similarity
a) Extract the feature embedding of each test image using the same method as the

extraction of herbarium dictionary embeddings:
i. Apply Center and Corner Crops on the images before extraction to obtain 5

differnet images (center, top-left, bottom-left, top-right and bottom-right).
ii. Flip aforementioned 5 images to obtain 10 images (feature embeddings).



Figure 3: Process of Generating Herbarium Dictionary.

iii. Average the 10 feature embeddings to obtain a single embedding for each test
image.

b) Compute the cosine similarity between the feature embedding of each test image
with the reference herbarium dictionary.

c) Subtract the computed cosine similarity from the value of 1 to obtain the cosine
distance.

d) Employ inverse distance weighting on the cosine distance.
e) Acquire the probabilities of the test image mapped to the reference herbarium

embeddings.
f) The species mapped with the highest probability denotes the class of the species.

3.3. Networks and results

We tested our networks on our test sets described in Table 3. The results are tabulated in Table
4 and the experimented networks are explained as follows:

3.3.1. Network 1: HFTL-I

An HFTL Network based on Inception-v4 in which its Field Network is pretrained from Plant-
CLEF 2017.

3.3.2. Network 2: HFTL-I-AUG

An HFTL Network based on Inception-v4 in which its Field Network is pretrained from Plant-
CLEF 2017 but with increased augmented training images.



Figure 4: Process of Comparing Feature Similarity.

3.3.3. Network 3: HFTL-I-21

An HFTL Network based on Inception-v4 in which its Field Network is pretrained from Plant-
CLEF 2021.

3.3.4. Network 4: HFTL-IR

An HFTL Network based on Inception-ResNet-v2 in which its Field Network is pretrained from
PlantCLEF 2017.

3.3.5. Network 5: HFTL-IR-AUG

An HFTL Network based on Inception-ResNet-v2 in which its Field Network is pretrained from
PlantCLEF 2017 dataset but with increased augmented training images.

3.3.6. Network 6: OSM-I

An OSM Network based on Inception-v4.

3.3.7. Network 7: OSM-IR

An OSM Network based on Inception-ResNet-v2.

3.4. Discussion

Two different test sets were used in the experiments: one on the species with field images
present in training data (Test Set 1) and the other on the species with no field images in training



Table 4
MRR Scores of Experimental Test Sets.

Network Field in Herbarium Dictionary Test Set 1 Test Set 2

HFTL-I No 0.561 0.137
HFTL-I (Field) Yes 0.083 0.154
HFTL-I-AUG No 0.602 0.141
HFTL-I-AUG (Field) Yes 0.096 0.167
HFTL-I-21 No 0.856 0.071
HFTL-I-21 (Field) Yes 0.126 0.09
HFTL-IR No 0.771 0.129
HFTL-IR (Field) Yes 0.119 0.153
HFTL-IR-AUG No 0.523 0.071
HFTL-IR-AUG (Field) Yes 0.077 0.179
OSM-I No 0.56 0.14
OSM-I (Field) Yes 0.657 0.052
OSM-IR No 0.586 0.129
OSM-IR (Field) Yes 0.692 0.055

data (Test Set 2). The extraction of herbarium features (embedding) for the herbarium dictionary
was done in two ways: one with solely herbarium images, and the other including field images.

Comparing the results from both test sets, the networks performed better in Test Set 1 as
compared to Test Set 2. This is naturally the case as the networks have learned features from
seen classes better than unseen classes.

It can be observed that without field images in the herbarium dictionary, HFTL Networks
performed better. It is as expected since they were trained without field data in their Herbarium
stream. Introducing field images in the herbarium stream potentially caused the learned pairs
to break down. In contrast, HFTL Networks performed better with field images used in the
herbarium extraction in Test Set 2. Since Test Set 2 only contains unseen classes, it would not
suffer from feature breakdown as they have in Test Set 1, instead, due to this exclusion, the
overall predicted rank for the unseen class will move up. Although this happened involuntarily
in our design, it is worth noting that it could be further improved if we could rework the
embedding generation (for future work) to have both advantages encapsulate in one type of
embedding generation that suits both Test Set 1 and Test Set 2. Aside from the effect of mixing
the field in embedding generation, it can be observed that the herbarium-only embedding
generation also gave promising results that support the triplet learning mechanism in general.

On the other hand, OSM Networks achieved a higher MRR score with field images used in
the herbarium extraction for Test Set 1. As OSM Networks have learned features from both
herbarium and field together, they perform better with field data in seen classes. However, field
data in the herbarium dictionary does not help in unseen classes since the unseen herbarium-field
pairs do not match the learned herbarium-field pairs.

Among the HFTL Networks, HFTL-I-21 performed the best in Test Set 1 but the poorest in
Test Set 2. This is likely because its Field Network was pretrained from PlantCLEF 2021 dataset
when the rest was pretrained from PlantCLEF 2017. Since its Field Network was pretrained
from PlantCLEF 2021, it is able to perform well in its seen classes rather than its unseen classes.

Meanwhile, for OSM Networks, OSM-IR (Field) performed better in Test Set 1 while OSM-I
performed better in Test Set 2.



4. Submission

4.1. Submitted Runs

The team submitted a total of 10 runs based on the networks mentioned in Section 3.3. The
submitted runs are described as follows:

4.1.1. Run 1: HFTL-I

This model was based on HFTL-I Network.

4.1.2. Run 2: OSM-ENS

This model was based on an ensemble of OSM-I and OSM-IR Networks.

4.1.3. Run 3: HFTL-I-21

This model was based on HFTL-I-21 Network.

4.1.4. Run 4: HFTL-I-21 + OSM-ENS

This model was an ensemble of Run 2 and Run 3.

4.1.5. Run 5: HFTL-I + OSM-ENS

This model was an ensemble of HFTL-I Network (with 10 corner crops) and Run 2.

4.1.6. Run 6: HFTL-I-AUG + OSM-ENS

This model was an ensemble of HFTL-I-AUG Network (with 10 corner crops) and Run 2.

4.1.7. Run 7: HFTL-I (Field) + HFTL-I-AUG (Field) + HFTL-IR (Field) + OSM-ENS

This model was an ensemble of HFTL-I (with 10 corners + field in dictionary), HFTL-I-AUG
(with 10 corner crops + field in herbarium dictionary), HFTL-IR (with 10 corner crops + field in
herbarium dictionary), OSM-I (with 10 corner crops), and OSM-IR.

4.1.8. Run 8: HFTL-I (Field) + HFTL-I-AUG (Field) + HFTL-IR (Field)

This model was an ensemble of HFTL-I (with 10 corner crops + field in herbarium dictionary),
HFTL-I-AUG (with 10 corner crops + field in herbarium dictionary), and HFTL-IR (with 10
corner crops + field in herbarium dictionary).

4.1.9. Run 9: HFTL-I + HFTL-I-AUG + HFTL-IR + OSM-ENS

This model was an ensemble of HFTL-I (with 10 corner crops), HFTL-I-AUG (with 10 corner
crops), HFTL-IR (with 10 corner crops), OSM-I (with 10 corner crops), and OSM-IR.



Table 5
MRR Scores of the Submitted Runs

Run Network MRR Whole MRR Subset

7 HFTL-ENS + OSM-ENS 0.181 0.158
10 HFTL-ENS + OSM-ENS 0.176 0.153
8 HFTL-ENS 0.169 0.150
2 OSM-ENS 0.152 0.117
9 HFTL-ENS + OSM-ENS 0.147 0.129
6 HFTL + OSM-ENS 0.143 0.126
5 HFTL + OSM-ENS 0.137 0.116
4 HFTL + OSM-ENS 0.088 0.073
1 HFTL 0.071 0.066
3 HFTL 0.060 0.056

4.1.10. Run 10: HFTL-I (Field) + HFTL-IR (Field) + HFTL-IR-AUG (Field) + OSM-ENS

This model was an ensemble of HFTL-I (with 10 corner crops + field in herbarium dictionary),
HFTL-IR (with 10 corner crops + field in herbarium dictionary), HFTL-IR-AUG (with 10 corner
crops + field in herbarium dictionary), OSM-I (with 10 corner crops), and OSM-IR.

4.2. Official Results

Our best-submitted run (Run 7) built from an HFTL-OSM ensembled network achieved an MRR
score of 0.181 on the whole test set and an MRR score of 0.158 on the test set with few field
training data. The results of the total runs submitted are tabularized in Table 5. The results of
the overall participants are summarized in Figure 5 and Figure 6.

4.3. Discussion

Our best model achieved an MRR score of 0.181 on the primary metric, and 0.158 on the
secondary metric. Our results show that our methods have improved from our last submission
in PlantCLEF 2020 which was 0.121 on the primary metric and 0.108 on the secondary metric. It
is also worth noting that for Triplets Learning-only network (HFTL-ENS) - performs better than
the one-streamed-only network (OSM-ENS) thus proves that triplet learning is better in handling
unknown classes, which further implies that triplet learning produces more generalized features
compared to conventional classification network. Last but not least, our triplet network was
trained with fewer data compared to its one-stream counterpart as it is only trained using valid
herbarium-field pairs. Nevertheless, our triplet network still achieved comparable results or
even better in some cases.



Figure 5: Official Results of PlantCLEF 2021.

Figure 6: Official Results of PlantCLEF 2021 - Difficult Subset of Test Set.



5. Conclusion

In this paper, we presented our improved version of the Herbarium-Field Triplet Loss Network
which aims to tackle cross-domain adaptation in plant identification between herbarium speci-
mens and real-world plant images. Although we have gained improvements over the previous
challenge, our MRR score for the primary metric did not surpass the organizer’s submission.
However, we can observe that the MRR score for the second metric is significantly higher
than the organizer’s submission. This indicates that our method would be more suitable to
identify plants when their field samples are limited but herbarium specimens are available.
This mechanism is better at predicting observations of species with missing field images in the
training set than traditional CNNs.

As for future works, we would like to take into account the newly provided meta - traits
- into our consideration during the learning process. Moreover, we would like to utilize the
taxonomy data to further improve predictions.
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