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Abstract
We present a winning solution to the BirdCLEF2021 challenge, in which we detected bird calls from a
sound source and classified the type of birds successfully. Our method consists of a multi-stage pipeline
using CNN and Gradient Boosting Decision Trees. Using a unique labeling scheme, our models can
learn efficiently from data with noisy and weak labels. By transforming the sound recognition task into
a time-series tabular data classification task, the model of our method can learn various information
such as the preceding and following sounds, regional characteristics, and seasonality. In addition, it can
learn with fewer computational resources. The final submission of our method achieved a row-wise
micro averaged F1 score of 0.7620 for the public test set and 0.6932 for the private test set. Our method
is versatile enough to be applied to tasks on other time-series data that are labeled only for the whole.
This reduces the cost of annotations required for training.
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1. Introduction

The ecology of birds, including their habitats, has a huge relationship with the quality of
their environment. By identifying which areas birds appear in, it is possible to track current
biodiversity trends. However, to keep tracking them on a large scale is not easy to do because
of the burden on observers [1].

BirdCLEF2021 [2], one of the LifeCLEF challenges[3], was a contest to identify bird calls from
recordings of soundscapes by training a model mainly using bird sound sources. The better the
model it was, the more accurately it would be able to detect bird calls and classify the type of
birds from large amounts of audio.

One of the difficulties of this contest was that the domains of the training data and the test
data were different. Most of the training data, we call train_short_audio, consisted of recordings
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and metadata of 397 different bird calls uploaded by users to https://www.xeno-canto.org/. The
peculiarities of the dataset posed the following difficulties:

• Due to incomplete labeling, it was unclear which of the labeled birds was singing within
each short segment.

• The label given itself might have been wrong.
• The measure of whether a bird was singing or not was unclear.

Other data provided by BirdCLEF2021 were train_soundscapes and test_soundscapes. These
data contained soundscape recordings from four different recording locations. The major differ-
ence between train_short_audio and train/test_soundscapes were their recording environments
and labeling method. Speaking of the labeling method, train_short_audio was labeled for the
entire sound source, but train/test_soundscapes were annotated every 5 seconds. Participants
in this contest needed to accurately predict which of 397 different birds were singing and
which were not in a 5-second segment. Participants also had to predict nocall if none of the
birds were singing. However, a simple sound recognition model could not fully handle this
challenge because not only one segment but also the segments before and after it might have
been meaningful.

There are many different ways to perform sound recognition with deep learning. Some use
raw, continuous data of audio sources as is [4], while other approaches transform audio data
into images and then use Convolutional Neural Networks (CNN). For example, the audio can
be transformed into a spectrogram using the Fourier transforms or other techniques and then
trained with CNN [5].

However, in this contest, using only audio data was not the best learning method. It was
difficult to make a decision based on the sound alone since it included many factors such as
dialect, degree of mastery of the sound, and similar birds. It was possible to classify with high
accuracy by taking into account regional and seasonal characteristics, environmental sounds,
and segments before and after the audio comprehensively.

One of the most promising methods for learning such meta-information and time-series
information as tabular data is Gradient Boosting Decision Trees (GBDT) [6]. It is characterized
by its ability to learn quickly and predict something with high accuracy, and there are efficient
implementations such as XGBoost [7], Lightgbm [8], and CatBoost [9].

In this paper, we present a three-step method that achieved highly accurate prediction by
learning from sound and metadata. The models of the first stage were used for training of the
second and third stages, and the models of the second and third stages were used for inference
(Figure 1). Our method has a low learning cost and is versatile enough to be applied to other
tasks on time-series data that are labeled only for the whole.

2. Methods

We describe the details of our pipeline consisting of three stages. First, Section 2.1 gives details
about the dataset to be used and presents what data will be used at which stage. In Section 2.2,
we explain the details of the nocall detector in the first stage. The predictions of this model will
be used during the training of the second and third stages. Section 2.3 describes the second stage
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Figure 1: Inference Pipeline of the proposed method. The model of the first stage was used for training
of the second and third stages, so it was not used for inference. In the second stage, CNN was used to
predict the probability of occurrence for 397 bird species. In the third stage, GBDT was used to predict
whether the candidate extracted in the second stage was the correct answer.

model for multi-label classification with CNN using only audio converted to images. Section
2.4 describes the third stage model, which is trained with Gradient Boosting Decision Trees
using metadata and predictions from the second stage. In Section 2.5, we describe a threshold
optimization using ternary search and a method that mixes nocall and bird labels in the final
prediction to improve the score while expressing ambiguity, which we call nocall injection.

2.1. Data Sets

This section describes the data given in BirdCLEF2021 and the external data sets we used.

Training Data. BirdCLEF2021 provided train_short_audio and train_soundscapes as training
and validation data. train_short_audio contained the sounds of 397 bird species that had been
uploaded by xeno-canto users. These files were re-sampled to 32 kHz to match the audio in
the test set. The label was given only in audio units. While the primary label of the bird that
appeared primarily in the audio was given for all audio, the secondary label of other birds
that also appeared in the audio might have been missing. It was also possible that the labels
themselves were wrong because the data was uploaded by xeno-canto users. It also contained
meta-information about the source, such as the latitude and longitude of the recording, and the
date. train_soundscapes was a set of 20 10-minute files annotated every 5 seconds. This data set
was in the same format as the test data. Each file was recorded in either COR (Costa Rica) or
SSW (Sapsucker Woods, Ithaca, New York, USA). The location and date of the recording were
given.

Test Data. test_soundscapes had a total of 80 files consisting of 10 minutes of audio sampled at
32 kHz. Each file was recorded in either COR (Costa Rica), COL (Colombia), SNE (Sierra Nevada,
California, USA), or SSW (Sapsucker Woods, Ithaca, New York, USA). The location and date of
recording of these files were known. Participants were asked to predict what birds were singing
in segments separated by 5 seconds for this audio data. This data was used in the contest to
evaluate the results.



Table 1
Data sets used in each stage. BirdCLEF2021 provided train_short_audio and train_soundscapes as train-
ing and validation data. We used freefield1010 and validation data of BirdCLEF2020 as external data.

Data Set First Stage Second Stage Third Stage

train_short_audio no train train
train_soundscapes no validation validation
freefield1010 train and validation train no
validation data of BirdCLEF2020 no train no

External Data. Since further improvement in accuracy could be achieved by using data other
than that provided by BirdCLEF2021, we used two additional external data sources. The first was
freefield1010, which was annotated again in the Bird Audio Detection challenge [10], instead of
the originally published annotation of 7,690 10-second audio samples [11]. The data without
birdsong was divided into 5,755 segments, while the data with birdsong was divided into 1,935
segments, and every 10 seconds of audio was given a label. The second was the validation data
in BirdCLEF2020 [12]. There was a total of 2 hours of audio data, but we split it into 5-second
segments and used only the segments where no bird calls appeared.

Pre-processing. Table 1 shows the stages in which the data was used. All datasets were divided
into segments of 5 or 7 seconds. Using as long a segment as possible increases the likelihood
that the birdcall will be included in the segment and will match the label added to the entire
audio. Therefore, we decided to use 7-second segments when training the first and second
stage models. For the BirdCLEF2020 validation data, we used segments divided into 5-second
segments, since the data was labeled every 5 seconds. The training data was converted to mel
spectrograms in advance. Although this had the disadvantage that data augmentation was not
possible for the original audio data, it was superior in that it reduced the cost of converting
the audio to a mel spectrogram during training time, and allowed faster training. We used
128 mel-scaled frequencies in the range of 0Hz to 16000Hz. When converting the audio to a
mel spectrogram, we set the length of the FFT window to 3200 and the hop length to 800. For
example, a 7-second segment would be converted to an image with a resolution of 128x281
(frequencies × time).

2.2. First Stage

In this stage, we created nocall detectors using ResNeXt50 [13], which is a kind of CNN-based
model. In our pipeline, the nocall detector was used in two ways:

• To weight the labels of segments that were predicted to have no birds singing during the
second stage of training.

• To create labels for training during the third stage of training.

As mentioned in 2.1, the data given by BirdCLEF2021 was not sufficient, so we used freefield1010
[11] to create the nocall detector. The sound source was given every 10 seconds, but only
the sound source for 7 seconds from the start of the audio was used. This was because the



train_short_audio used for learning in the second and third stages were separated every 7 sec-
onds. Since the data set was converted to images beforehand, it became difficult to use the data
augmentation used in normal sound recognition, such as adding noise. However, we used the
usual augmentations for images, such as flip, normalization, decreasing JPEG compression of
an image, to improve the generalization performance.

The model was trained using the ADAM optimizer and a Cosine Annealing Warm Restarts
scheduler.

2.3. Second Stage

We detected and classified the birds that appeared in the segment. Multi-label classification was
performed on the transformed mel spectrogram using CNN-based ResNeSt50 [14].

Data. For the training data, we used train_short_audio separated by 7 seconds. In the case of
long audio, only the first 10 segments were used. For some models, we also used freefield1010
and the validation data from BirdCLEF2020. For these data, only the nocall data was used,
and all 397 dimensions of the target were set to 0. For the validation data from BirdCLEF2020,
since it was separated every 5 seconds, we padded the mel spectrogram with zeros before and
after (in random ratios) during training so that it could be converted to a 128x281 image. Data
augmentation was difficult to apply to raw sound because the dataset had been converted to
images beforehand. Instead, the mixup [15] was used as data augmentation. This would improve
the generalization performance and also allowed us to better recognize that multiple birds might
be singing at the same time.

Labels. We used the nocall detector created in the first stage to modify the labels for the data
used for training in this stage. Specifically, each segment was multiplied by the output value
of the first stage (the closer to 0, the fewer birds were singing, and the closer to 1, the more
likely multiple birds were singing), and the weight of the segment with no birds singing was
set to be smaller. In addition, for datasets with secondary labels, we used a value of 0.6 times
the predicted value of the nocall detector as the target. This was because birds with secondary
labels were considered to occur less frequently than birds with primary labels, and therefore
might not have appeared throughout the audio.

The models were trained using the ADAM optimizer and a Cosine Annealing LR scheduler.
The batch size was 100, and label smoothing [16] was performed to adjust the target value to
a maximum of 0.995 and a minimum of 0.0025. To avoid overfitting on noises specific to the
equipment used to record the sound, some models were trained and cross-validated using the
data grouped by the authors so that it did not appear commonly in the training and validation
data. In the next stage, we used the model from the epoch with the highest row-wise F1 score
on train_soundscapes. Details of the evaluation method are found in Section 3.1.

As the data set had weak labels, it was not enough to fix the labels using the first stage models.
In the second stage, we still had the following issues:

• It was unknown which bird was singing in that segment (primary or secondary labels).



• It was only known with probability whether a bird was singing in that segment.

Since we needed a mechanism to determine which bird was singing with high accuracy while
reducing noise to some extent, we used the third stage to sort the prediction results of the
second stage.

2.4. Third Stage

In this stage, based on the results of the second stage, we extracted the top N (we used 5) bird
species that were likely to be singing in each segment, and combined information other than
singing (date, latitude, longitude, and whether the bird was singing in the previous or following
segment). LightGBM was trained to perform binary classification. The closer the output was
to 0, the less likely it was that the target bird was singing in the target section, and the closer
it was to 1, the more likely it was. Several new features were generated by transforming the
metadata.

To solve the problem of noisy labels in the second stage, we created a problem in which the
correct answer was the intersection of the following "Correct answer set" and the "Candidate
set." In this way, we converted the task to one in which the correct labels could be automatically
assigned with high accuracy while taking advantage of the characteristics of the second stage
model using image features.

• Correct answer set: Primary labels and secondary labels for segments judged to be singing,
nocall for segments judged not to be singing.

• Candidate set: Top N values of the probability of each bird singing as predicted by the
second stage model from the mel spectrogram (𝑁 = 5 was adopted).

Taking advantage of the fact that both candidates and correct answers rarely had anything in
common, this method allowed us to automatically annotate with high accuracy.

By converting the data into tabular data for each segment divided into several-second intervals,
we could make predictions that took into account various information such as time-series,
seasonality, and regionality in the segment. Details of the features are found in Appendix A.

2.5. Post-processing

After the completion of binary classification in the third stage, we determined the optimal
threshold value by ternary search, and performed nocall injection to improve the score while
leaving ambiguity by mixing nocall and bird labels in the final prediction.

Threshold Optimization. A threshold was set for the predicted probability of binary classifi-
cation in the third stage. Candidates with probability values higher than the threshold were
included in the final output, and if none of the candidates were included in the segment, we
called it nocall . Assuming that the score was a convex function of the threshold, the threshold
was set to the highest score by ternary search, and since the optimal threshold range was
multiplied by 2/3 each time the score was calculated, it was possible to determine the optimal
threshold after several dozen score calculations. The optimal threshold was calculated using



train_soundscapes, and the same value was used when inferring test_soundscapes.

Nocall Injection. After determining the threshold, we decided whether to add nocalls to the
segments that did not become nocalls. Specifically, for the birds that were decided to be included
in the final output by setting the threshold, nocall was added to the rows with low total predicted
probability. This had the following two advantages:

• It was able to unambiguously predict what was not highly predictable in the third stage.
• Due to the nature of the row-wise micro averaged F1 score, mixing nocall and bird labels

might increase the score.

As an implementation, we thought it would be convex here as well and used ternary search.

3. Experiment

3.1. Evaluation Metrics

The BirdCLEF2021 contest dealed with the task of identifying all singing birds in segments of 5
seconds each. Submissions were evaluated based on their row-wise micro averaged F1 score.
The F1 score is calculated as follows:

F1 =
2

recall−1 + precision−1
=

tp
tp + 1/2(fp + fn)

Until the end of the contest, only the score calculated using 35% of the data (public score)
was shown, while the remaining 65% of the data (private score) was hidden. The final ranking
was determined using the private score.

3.2. Results

First Stage. The training of one model took about 90 seconds per epoch, using a Tesla P100
for the GPU. Models were trained for 10 epochs, and the one with the best score was selected.
Cross-validation was performed by dividing the data into five parts with equally distributed
labels, and the average percentage of correct answers was 0.89857.

Second Stage. Ten ResNeSt50s were trained, varying on the following conditions:

• mixup 𝛼

• Whether to cross-validate the nocall detector (No: Hold-out, Yes: CV)
• Whether to use BirdCLEF2020 validation data in training or not
• Whether or not to use freefield1010 during training
• Whether to group authors so that they do not appear in different folds. (No: StratifiedK-

Fold, Yes: StratifiedGroupKFold)
• The fold id of train_short_audio used for verification. If the data were split by grouped

authors, we split the data into 5 parts and assigned 0-4 ids. When the data was not split
by author, the data was also split into 5 parts and given the id of 0’-4’.



Table 2
Second Stage Models. Scores and main properties of models used for submitted runs. ResNeSt50 was
used as the backbone for all models. The F1 score was calculated for train_soundscapes. The F1 score,
calculated as the simple average of the predictions of the models from M1 to M10, was 0.788.

Model ID M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

mixup 𝛼 0.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
use BirdCLEF2020 No No No No No No No Yes Yes Yes
use ff1010 No No No No No No No Yes Yes Yes
nocall detector cv No No Yes Yes Yes Yes Yes Yes Yes Yes
grouped by author No No Yes Yes Yes Yes Yes Yes Yes Yes
validation fold id 0’ 0’ 0 1 2 3 4 0 0 1
epochs 27 13 33 34 34 20 34 78 84 27
F1 0.741 0.750 0.755 0.737 0.750 0.755 0.737 0.751 0.757 0.754

For each model, the threshold was determined by ternary search, and the epoch with the best
F1 score during validation in train_soundscapes was used in the final submission. More details
about the condition settings when training the model and the number of epochs and scores
are shown in Table 2. The F1 score, calculated as the simple average of the predictions of the
models from M1 to M10, was 0.788.

We trained the models on Tesla P100 or V100 GPUs; for ResNeSt50, it took 6-7 minutes per
epoch on P100. Although we did not include ResNeSt26 in the final submission for the contest,
ResNeSt26 performed better than ResNeSt50 in the second stage and required less training time
(4-5 minutes per epoch) on P100.

Third Stage. For training, we used the inference results of M4 in the second stage and metadata
for the validation data of train_short_audio. When extracting candidates, we selected the top 5
candidates with the highest prediction probability from the inference results for 397 bird species
in the second stage. For inference, we used the simple average of the 10 models in Table 2 to
improve accuracy.

It took about 15 minutes to complete the submission, including learning the tabular data.
When the threshold was optimized, the CV score was 0.833286 and after the nocall injection

it was 0.837063. The row-wise micro averaged F1 score for the final submission achieved 0.7620
for the public test set and 0.6932 for the private test set.

3.3. Discussion

The uniqueness of our work was that we used the intersection for the labels for entire audio
files and the segment-level candidates, as the new segment-level labels to train the tabular data
in the third stage. This had the following advantages:

• Dealing with weak and noisy supervision: It could be used to learn accurately from data
that was only labeled in audio units or contained errors.



• Taking into account time-series information: Image classification task could be converted
to a time-series tabular data classification task, improving accuracy.

• Taking into account metadata: The accuracy was improved by being able to incorporate
a variety of information such as before/after information, regional characteristics, and
seasonality.

• Reducing computational cost: Our solution was fast, which saved time and computational
resources in learning and inference.

Although our method performed well in the contest, there was still room for improvement.
For example, it could learn effectively even with noisy and weak labels, but the accuracy could
have been further improved by using more data that was accurately annotated.

For the first stage, in addition to the addition of other data, further performance improvement
could have been achieved by changing the CNN model and ensembles.

For the second stage, due to time constraints, we were not able to incorporate another highly
accurate model that we tried, such as ResNeSt26. In addition, only ResNeSt50 was used, and
other models were not used in the ensemble.

For the third stage, the second stage models used for training and inference were different.
That is, there was only one model used to infer the probability values for train_short_audio and
10 models used to infer the probability values for train_soundscapes. The fact that these models
did not match might cause differences between the training data and inferred data in the third
stage, so unifying them could have further improved the accuracy. When extracting candidates,
the top five candidates with the highest prediction probability for each segment were extracted,
which did not take into account the fact that the ease of appearance of birds differed for each
segment. It might have been possible to extract a large number of candidates for segments
where many birds were likely to appear, and a smaller number for segments where not so many
birds were likely to appear. There was also room for improvement in feature engineering. For
example, since there were interactions (co-occurrences) between birds, it might be possible to
add new features that included relevant information such as birds that tended to sing together
or birds that coexisted.

Since our method could learn to include information from the previous and following seg-
ments, as well as meta-information such as region and time, further improvement could be
expected depending on how the features were created.

4. Conclusion

We have presented a method for audio recognition consisting of a multi-stage pipeline. The
first stage is a binary classification of whether a bird is singing or not for label correction. The
second stage is to predict which bird is singing from the sound source. In the third stage, we
select the candidates extracted in the second stage.

By building a multi-stage pipeline and devising a semi-automatic labeling scheme, it is
possible to learn effectively even from weak and noisy teacher data. Our method is superior in
terms of computational cost, yet can learn accurately from data in different domains that are
labeled only per audio. Our semi-automatic labeling method in the third stage makes it possible
to label segments of audio by simply annotating the entire audio. Therefore, assuming that our



method is used, the cost of annotation can be reduced. It is a great deal of effort for a person to
annotate each segment in detail, and the annotation itself is prone to have errors. Therefore,
it is a great advantage to reduce the effort required for annotation. In addition, our method
may be able to detect preliminary sounds of the bird itself (e.g., the sound of rustling in the
bushes), even if the bird itself is not singing. This is difficult for humans to determine, so if we
can identify them as candidates, they may be useful for future research.

Our method is also versatile enough to be applied to other tasks on time-series and series
data labeled to the whole. For example:

• Identifying a lesion slice from multiple slices in MRI.
• Identifying which scenes were good from video ratings.
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A. Features used in third stage

• "year": The year when the audio was recorded.
• "month": The month in which the audio was recorded.
• "sum_prob": The sum of the probability values of the 397 dimensions for the segment.
• "mean_prob": Mean of the 397 dimensional probability values for the segment.
• "max_prob": Maximum 397-dimensional probability values for the segment.
• "prev_prob" - "prev6_prob": Probability values for the candidate birds in the previous N

segments.
• "prob": Probability value for the candidate bird in the target segment.
• "next_prob" - "next6_prob": Probability values of the candidate bird in the next N segments.
• "rank": The probability that the bird of interest has the highest probability value out of

397 in the segment.
• "latitude": The latitude of the location where the audio was recorded.
• "longitude": The longitude of the location where the audio was recorded.
• "bird_id": Which of the 397 birds is the target.
• "seconds": The number of seconds in the segment.
• "num_appear": The number of files where the bird is the primary label in train_short_audio
• "site_num_appear": How many times the bird in train_short_audio appeared in the region
• "site_appear_ratio": "site_num_appear" divided by "num_appear"
• "prob_diff": Difference between prob and average of prob values for 3 segments

B. Online Resources

The source code is available via GitHub: https://github.com/namakemono/kaggle-birdclef-2021.

https://github.com/namakemono/kaggle-birdclef-2021

	1 Introduction
	2 Methods
	2.1 Data Sets
	2.2 First Stage
	2.3 Second Stage
	2.4 Third Stage
	2.5 Post-processing

	3 Experiment
	3.1 Evaluation Metrics
	3.2 Results
	3.3 Discussion

	4 Conclusion
	A Features used in third stage
	B Online Resources

