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Abstract
Recent work in contrastive representation learning has pushed the boundaries of classification tasks
in computer vision, achieving state of the art results on many established benchmarks. However, their
performance on natural imagery tasks which fall into the category of fine-grained image classification
can be further improved. In this paper, I present a methodology that explores this issue and achieves
state of the art results on species distribution modelling from remote sensing imagery as part of the
GeoLifeCLEF2021 challenge. My method is able to beat the current state of the art on this challenge
(trained on 4 types of imagery) using only base RGB imagery. Initial experiments indicate that modifying
the architecture to include additional image modalities leads to further improvements in performance
on the task of location-based species recommendation. Additionally, I introduce a consistency function,
which relies on the strategy of withholding data from the model and is useful in checking for model
generality without relying on a validation split.
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1. Introduction

Species Distribution Modelling (SDM) is the study of computational techniques to predict species
distribution across both geographical locations and time using different forms of environmental
data. Computer vision techniques have garnered attention in this area due to the ability to
effectively incorporate contextual and geographic information to improve the modelling of
species distribution[1]. Advances in this area have many implications in ecological analysis
including the ability to more effectively engage with citizens regarding wildlife preservation and
education[2]. Methods based in computer vision that allow large datasets of habitat imagery
to be processed in order to generate a prediction of the most likely species inhabiting that
area allow for significant theoretical and applied improvements in this area. However, the key
challenges on this problem from a classification-based computer vision perspective are two
fold: unbalanced data and having classes with only minute differences to distinguish one from
another.

Imagery in the environment can be broadly divided into two categories: built and natural
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world. Remote sensing datasets will generally contain imagery pertaining to both these types.
Many challenging tasks in computer vision arise in the natural world imagery domain[3]. Such
tasks usually fall under the domain of "fine-grained visual categorization" - an active area of
research in computer vision.

Imagery based classification problems with a fine distinction between classes can be difficult
for computer vision techniques to perform robustly on, especially when combined with a large
number of classes featuring unbalanced data and certain classes being heavily under-represented.
This is termed the "long-tailed class distribution" problem. These difficulties are present in the
classification problem explored in this paper, where using a satellite image of a habitat location,
the species that inhabits that location must be predicted from a list of over 30,000 candidate
species. In contrast to standard classification problems, the target candidate for classification is
absent within the image in this particular task.

Contrastive representation learning techniques have been extensively explored for classifica-
tion problems. However, their performance on representation learning across different data
domains is less well understood[4]. This work contributes to the body of existing literature ex-
ploring self-supervised representation learning methods on remote sensing imagery and related
data sources. These include methods exploring the performance of existing self-supervised
methods on remote sensing data[5], self-supervision techniques which exploit location and time
invariance of remote sensing data to perform representation learning[6] and methods which
exploit the spatiotemporal structure of remote sensing data to perform self-supervision[7].

In this paper, I detail my workflow for the winning submission to GeoLifeCLEF2021 and
summarize my performance representing the University of Melbourne at this challenge. This
competition1 was organized as GeoLifeCLEF 2021[8], as part of LifeCLEF 2021[9] and in con-
junction with FGVC82 workshop at CVPR3 2021. Comparisons of results are made primarily
with existing benchmarks which include the state of the art for this problem. A comparison with
other competitors is not included. Additionally, I explore the details around the transformations
pipeline used for improving the feature representation learned by the model and also introduce
a consistency-based model selection function. This function was useful for the purpose of model
selection for evaluation on the public leaderboard. This work is derivative of a larger computer
vision framework connecting aspects of the environment (built and natural). This framework
draws high-level inspiration from [10] and the insights gained from both projects allowed a
winning solution to be crafted for this problem. Further discussion of such insights is beyond
the scope of this paper.

2. Data and Evaluation Metrics

In this section, I explore the datasets and evaluation metrics that are used for the purposes of
training and evaluating my models. An overall description of all datasets used in this work is
also presented, as my workflow only uses either one or two of the available datasets for training
and evaluation. Top-30 error is used for comparing different methods. Detailed discussion of the

1https://www.kaggle.com/c/geolifeclef-2021
2https://sites.google.com/view/fgvc8
3IEEE/CVF Conference on Computer Vision and Pattern Recognition - http://cvpr2021.thecvf.com/



metrics used in the competition can be found in [11] with a detailed discussion of the datasets
present in [12].

2.1. Dataset

This work builds upon the following types of imagery:

• RGB remote sensing imagery
• Altitude imagery

These imagery types have a pixel-wise correspondence in terms of geographical overlap
at each location and are 256x256 in size and have a spatial resolution of 1 meter per pixel.
Therefore each image covers an area of 256x256 square meters. Altitude imagery was derived
using elevation data from the NASA Shuttle Radar Topography Mission4. RGB remote sensing
imagery was from 2 sources: in the US - from the 2009-2011 cycle of the National Agriculture
Imagery Program5 and in France - imagery from BD ORTHOR 2.0 and ORTHO HRR 1.0
databases from the French National Institute of Geographic and Forest Information6.

2.2. Class Distribution

One of the main difficulties in this problem arises due to the unbalanced class distribution.
Interestingly, over 60% of all classes have fewer than 10 training images and nearly 8,000 classes
have a single image to train on (about 25% of all classes). The data distribution shown by
Figure 1, which shows the number of training records on the x-axis as a closed interval on a
discretized logarithimic scale and the number of classes that belong to that range on the y-axis.

2.3. Consistency-based Model Selection Metric

In this section, I introduce a metric which was used in lieu of a validation split on this problem.
I use the proxy task of "country prediction" in order to derive an additional validation metric
building on the "city prediction" task introduced in [13]. Given that many of the species
were endemic to each country (US or France but not both), it is reasonable that a model with
higher accuracy in terms of species prediction would be also be able to perform better on the
pseudo-task of predicting which country. This is derived from the model’s understanding of
which species can belong to a particular country. An error rate is calculated for each model
corresponding to how many times the model makes an impossible prediction by assigning a
species to a country that does not host that species (based on the training data). Note that this
consistency only makes sense with the "variable-withholding" strategy described in Section 3,
since if the model has access to any geographical information(GPS co-ordinates or country
label), it would simply learn this information and not make such mistakes. By intentionally
withholding such information from the model I gain two advantages:

4https://lpdaac.usgs.gov/products/srtmgl1v003/
5https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/
6https://geoservices.ign.fr



Figure 1: Training dataset distribution. Most classes are heavily under-represented in the dataset.

• I am able to use this consistency error as a pseudo-validation metric.
• It is possible to incorporate withheld-data at a later stage of model training (for example

during ensembling of individual models trained on all co-variates) in order to further
improve model performance.

The calculation of this function is straightforward:

1. For each species categorize them as "fr", "us" or "both" depending on country of occurrence
2. At validation time, for each predicted label in the top-30 predictions for a particular image

do the following:

• Count the number of "US” species : 𝑁𝑈𝑆

• Count the number of "FR” species : 𝑁𝐹𝑅

• Count the number of "US and FR” : 𝑁𝐵𝑂𝑇𝐻



3. Count the number of instances where both 𝑁𝑈𝑆 > 0 and 𝑁𝐹𝑅 > 0

This count acts as the "confounder” count (or misclassification count) for that model variant
where models with fewer confounders are better. This metric was used for model checkpoint
selection for submission to the leaderboard, but its effectiveness requires further exploration
with respect to performance against an actual validation split of the data.

3. Methodology

The main problem explored in this paper is the overlapping value of the different data sources
provided as part of the competition. Since the prediction problem was quite difficult, I focused on
approaches that allowed the model to exploit all possible information present in each individual
image type, starting with RGB imagery. I explore the following questions in this regard:

• Given that the data consists of base imagery (RGB) augmented by 3 co-variates (NIR,
land-use and altitude) at the same location, is it possible to derive most of the information
present in all 4 data types using only the base RGB imagery?

• Given the above is achievable, what further information regarding the prediction variable
can be extracted from the co-variates?

• What is the best way to combine this information to improve prediction performance?

3.1. Transformations

Image transformations have often been touted as a means of providing more variety to the
training process. As the input data used for training neural networks is often fixed, it can lead
to the model seeing the same data epoch upon epoch leading to overfitting. This is especially
true in fine-grained visual categorization problems with poorly represented classes (<10 images
per class) making up the majority. In such cases approaches such as adverserial training and
image transformations/augmentations have been shown to provide significant improvements
on baseline methods. In this section I explore the image augmentation strategy that was used to
combat overfitting. A discussion of modifications for multimodal analysis can be found under
Section 3.3.

The transformation pipeline is as follows:

• Subtracting the per-channel ImageNet[14] mean and dividing by the per-channel Ima-
geNet standard deviation.

• Random horizontal flip
• Random vertical flip
• RandAugment[15] was used to augment images N, M with hyperparameters N set to 2,

and M set to 9. N represents the number of augmentation transformations to be applied,
while M controls the magnitude for all the transformations.



3.2. Unimodal Analysis

In order to explore the possibility of extracting more information from the base RGB imagery,
the initial experiment focused on creating a workflow that uses only RGB imagery and ignores
all other information available to the model for training and evaluation purposes. This includes
co-variate images, geographic (GPS) location, country tag and environmental feature vectors.
Additionally, past work [16] indicates the benefits of using pretrained feature representations
for fine-grained visual categorization tasks. MoCo[17] was used as a contrastive representation
learning framework to initialize a feature representation for the model to build off of with
pretraining carried out for 20 epochs using a single 4 GPU node on Spartan[18] using the
hyperparameters in Table 1. The standard protocol for pretraining was followed, but combining
all data across the US and France to form a combined representation, which is required for
the combined (both countries at the same time) modeling approach followed in this paper.
Further training was conducted for 7 epochs in a supervised manner to finetune the feature
representation further. This training was performed with end-to-end finetuning of the ResNet50
using the parameters available in Table 2. Checkpoints were generated each epoch and the
model with the lowest consistency error (as defined in section 2.3) was used to determine the
best performing model.

Table 1
Representation Learning Parameters

Parameter Value Comments

Architecture ResNet50 Smaller backbone for faster training
Batch size 128

Learning rate 1.5e-2
Softmax temperature 0.2

Table 2
Training Parameters

Parameter Value Comments

Framework PyTorch[19]
Architecture ResNet50 Same as above
Batch size 128

Learning rate 1e-3

3.3. Multimodal Analysis

In this section I explore how multimodal imagery was incorporated into the training workflow.
Only the addition of altitude imagery is covered in this section with the other co-variates being
left as future work for exploration. This section uses same workflow as in Section 3.2 with a
few key differences.



Figure 2: Generic Architecture applicable to this problem. Resnet50 is used as the Deep Feature Ex-
tractor and the unimodal workflow only uses the top branch for training and analysis

Pretraining using MoCo was carried out on altitude imagery as well, using an architecture
identical to the bottom branch in Figure 3.3. The architecture was modified to include an
identical architectural sister network as in the unimodal analysis, which was combined using
concatenation at the final bottleneck layer of the ResNet50. The new layer containing 4096
nodes had a 31180 node linear layer with softmax applied in order to infer labels for the task at
hand. In this regard, the architecture, which is shown in Figure 3.3, was identical to the unimodal
case with the key difference being the number of inputs to the linear layer (multimodal - 4096 vs
unimodal - 2048). The single altitude channel was replicated across 3 channels to be compatible
with a standard ResNet-50. An advantage of this architecture is its extensibility to different
image modalities with the added ability to create seperate filters for the individual image
modalities and thereby combine higher level features rather than lower level features (which
was the main reason for stacking near the end of the ResNet50 architecture as opposed to near
the beginning). My intuition in doing so is that the architecture is able to process more refined
knowledge about the different image domains instead of trying to learn an embedding that
attempts to unify its representation of all domains combined. This has the marked disadvantage
of increasing the GPU memory footprint of the architecture which significantly impacts training
time and is perhaps the key weakness of this approach. The batch size was lowered to 64 to
accommodate the larger architecture, leading to a roughly 3-fold slowdown on training the
model. End-to-end finetuning of the ResNet50 was only conducted for 4 epochs because of
these additional computational requirements. A Siamese network based representation learning
approach based on the approach from [20] (where weights are shared between the branches,
thereby reducing the model footprint on the GPU) was considered but quickly discarded on
the basis that the image domains in this problem are too different to each other to benefit from



shared knowledge from each other at the filter levels.
One other key difference was the modification of the transformations pipeline to remove

most augmentations during training. This is primarily an artefact of the implementation, which
used two seperate PyTorch Dataloaders instead of a single dataloader. Therefore, horizontal and
vertical flipping and other transformations would occur independently of each other, impacting
the overall correspondence of the image patches due to not having the same orientation. There-
fore, all transformations other than normalization (using ImageNet statistics) were removed
from the dataloaders.

4. Results

Several methods (including a random-forest based approach) were compared using prior work
in this area. More details around low-level implementation details of these benchmarks can
be found in [21]. The multimodal approach is able to beat existing supervised techniques by a
considerable margin, while the unimodal implementation shows equivalent performance to
the existing state of the art. In the results featured in table 3, public leaderboard and private
leaderboard performance is indicated, with a 10% vs 90% data split respectively.

Table 3
Results of Top-30 error rate across compared models

Method Public leaderboard Private leaderboard

Random Forest 0.78325 0.79711
Supervised CNN(multimodal) 0.75283 0.76680
Mine (unimodal) 0.75726 0.75188
Mine (multimodal) 0.73679 0.74838

5. Future Work

While initial analysis on this problem is promising, there are many research directions still open
to exploration.

The impact of transformations was not fully explored in this work. For multi-modal analysis,
a better implementation may be to ensure all transformations are consistently applied across all
data sources, so that the image patches propagated through the neural network correspond to
the exact same geographic region (which is not the case when the transformations are applied
independently across data sources). While the consistency metric introduced in this work was
useful for model selection, further comparison with standard validation splits would be useful
in further evaluating its utility on this problem. Due to the absence of key ablations, it is unclear
where some of the performance gains are being derived, and future work could shed further
light on this issue. Additionally, for the consistency function introduced in this work, it is
possible that certain species may inhabit nearly identical habitats across both geographies,
which may affect the broader usability of this function in different situations.



6. Conclusion

In this paper, I have presented a workflow for achieving state of the art results on computer
vision based SDM. I have introduced a consistency-based model selection function that relies on
the strategy of withholding information from the models during the training process in order
to improve performance. Additionally, this work pushes the boundaries of using contrastive
visual representation learning on remote sensing imagery: an area which is currently under-
represented in research literature. This paper makes a significant contribution to the area of
finely grained visual categorization. My methods are able to surpass the current state of the
art using only a quarter of the data used by the current state of the art supervised work in
this area, using only a single data modality whereas the current state of the art uses 4. I have
also presented initial work on future research directions and provide a methodology and initial
results for including further image modalities to drive increased model performance.
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