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Abstract

This paper describes the participation of the Vicomtech NLP team in the MESINESP2 shared task. The
challenge consists in the development of systems for the automatic indexing with DeCS codes of health-
related documents in Spanish. The systems submitted by Vicomtech are multilabel classifiers based on
pre-trained BERT models. We have experimented with multiple ways of representing the documents,
such as encoding DeCS term glosses along with the input text. According to the official evaluation
results, our systems are surpassed by other competing teams—despite being fast and achieving good
precision, we fall behind especially in recall metrics. Overall, the task remains challenging even for the
best performing systems and there is ample room to advance the state of the art for this particular task.
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1. Introduction

The MESINESP2 shared task [1], similar to the first MESINESP edition [2], is an open BioASQ
[3] competition to develop automatic systems for the semantic indexing of Spanish documents
with DeCS', a structured medical vocabulary derived from the Medical Subject Headings (MeSH)
[4]. DeCS comprises 34,294 descriptors and qualifiers.

The shared task is divided into three subtracks, each targeted to a different type of health-
related document: scientific literature, clinical trials and patents, respectively. We have par-
ticipated in all the subtracks implementing variations of a Transformers-based [5] multi-label
classification model. In particular, our models feature a pre-trained BERT model [6] to encode
the input text and, in some versions, inject external knowledge (i.e. DeCS term glosses) to the
model. Despite our scores lagging behind the best competing systems, our team ranks third in
Subtrack 1 and second in Subtrack 2. Still, the overall challenge results show that there is room
for improvement and future work.

The rest of the document is structured as follows. Section 2 introduces the data provided by
the organizers of the challenge, with a special focus on the DeCS code imbalance and how we
tackle this problem. Sections 3 and 4 describe our submitted systems and the training setup,
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Table 1
Size of the shared task corpus in terms of number of documents per subtrack and split

Training Development Background Testing

Subtrack 1 237,574 1,065 10,174 500
Scientific literature

Subtrack 2

P 3,560 147 8,919 250
Subtrack 3 0 115 6,000 150
Patents

respectively. Section 5 presents the official results. In Section 6, we discuss some decisions
taken during the development and training phases, inherent flaws of our systems, and potential
improvements. Finally, Section 7 provides some concluding remarks and future work hints.

2. Data description

MESINESP? is organized into three subtracks, each focused on health-related documents of a
different genre [7]. The sizes of the datasets per subtrack and split are shown in Table 1. The
information available for each document of the corpus is the following:

« Document ID: a unique identifier for the document.
Title: the title of the document.
« Abstract: the abstract of the document, which is the main source of text for the task.

« Metadata: journal, year and database.
« DeCS codes: the DeCS codes that characterize the content of the document.

The objective of the MESINESP competition is to develop a system capable of predicting the
correct set of DeCS codes for any new document. From the total of 34,294 codes of the DeCS
terminology, only around 22,000 are present in the training data. Furthermore, the frequency in
which the codes occur is highly unbalanced: a minority of codes occur in more than 80% of the
training documents, while the majority of codes are way more sparse, with less than a hundred
examples in the whole dataset. This problem is exacerbated by the fact that we use a multi-label
classification approach, so the codes cannot be easily balanced.

A naive sub-sampling or over-sampling approach would sample the codes grouped by docu-
ments, and the imbalance would persist. Further, the codes that barely appear in a few tens of
documents in the whole corpus are very unlikely to be learnt by the model, due to the lack of
representation. We have addressed this problem by applying a minimum support cut-off. That
is, the codes with a frequency lower than a certain preset value are not taken into account for
training. A large minimum support cut-off would lead to discard too many codes, while too
small a cut-off value would keep many underrepresented labels in the output vocabulary.

In order to maintain an equilibrium between these too extremes, we have calculated a cut-off
value that minimizes the number of codes in the resulting vocabulary while keeping as many
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Figure 1: Representation of a MESINESP document title and abstract using a BERT model.

codes as possible from those that occur in the development set. The resulting cut-off value
calculated thus over the Subtrack 1 dataset is 80. That is, we have ignored all the codes that
appear fewer than 80 times in the training set documents. This reduces the size of the output
vocabulary from more than 22,000 codes to 3,274, which still represent 82% of the codes present
in the development set.

3. System description

3.1. Input representation

We use the titles and abstracts of the documents to be indexed as the main sources of infor-
mation. In order to feed these fields to the BERT models that will generate the contextual
word embeddings, we concatenate them using the usual BERT representation for two texts:
the special [cLs] token, followed by the tokenised title, the special [SEP] token, the tokenised
abstract, and a second [SEP] token (see Figure 1).

BERT-base models have a hard limit of 512 tokens, including special characters. The average
length of the abstracts in the training set after tokenisation with the corresponding BERT
tokeniser is around 300 tokens, with a standard deviation of about 120 tokens. That is, a large
percentage of the documents fit in the model. The few ones that do not are simply truncated.
We assume that even in those cases in which the last words of the abstract are omitted, the
amount of information encoded in the first few hundreds of words is enough to predict the
most salient DeCS codes for a given document. This assumption is supported by the fact that,
during some preliminary experiments, we did not observe major differences in the development
set scores when varying the maximum allowed document length between 300 and 500 BERT
tokens.

3.2. Architectures

We have experimented with two different architectures. We henceforth refer to these systems as
CSS and LABELGLOSSES. Both systems are multi-label classifiers built on top of a Transformers
model. Given a document, they can predict any number of labels, from 0 to C, C being the size
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Figure 2: Architecture of the CSS model for multi-label classification of the documents.
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of the output vocabulary, i.e., 3,274 (in practice, each document is associated to a small number
of labels—usually less than 10). The difference between the architectures lies in how they use
the contextual word embeddings obtained from the Transformer model.

Figure 2 shows a diagram of the CSS model. The token contextual-embeddings obtained
from the BERT model need to be gathered or processed in a way that provides a fixed length
representation, usually called document embedding, that serves as input to a classification head.
There are different ways to obtain such a representation.

The most direct and straightforward approach is to use the special [cLs] token to act as the
document summary. For a model built on a BERT-base architecture, the [cLS] token is a vector
of 768 values. After some experimentation, the use of just this token led to poor results. Our
hypothesis is that summarizing the whole document into 768 values aiming at discriminating
several thousands of possible classes (i.e. DeCS codes) leads to a choke point. That is, the
information represented in the [cLs] token alone is too compressed to serve as the input for a
classifier with such a high number of output classes.

To overcome this problem, we draw on other tokens that are always present in every document
due to the way we represent them: the [SEP] tokens. For each document, we concatenate the
[cLs] token and the two [SEP] tokens into a single vector of 3 x 768 values (hence the name
of the model). This larger document embedding is then used as input for the classification head.

The classification head is composed of a dense layer, followed by a nonlinear function, a
dropout layer and a linear layer that maps the document-embedding size into a label space.

3.2.1. LABELGLOSSES model

The initial components of the LABELGLOSSES model are very similar to the CSS model, the
difference between the thow architectures being that the LABELGLOSSEs model contains an
encoded representation of the glosses that describe the DeCS codes (see Figure 3). Table 2 shows
some examples of such glosses.

Prior to the training phase, the DeCS glosses are encoded using the same pre-trained BERT
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Figure 3: Architecture of LABELGLOSSES model. DeCS codes’ glosses are encoded into embeddings and
paired to each document-embedding as the input for the classification head.

Table 2
Examples of glosses for several DeCS terms, together with their code and name
Code Term Gloss
D003970 Diastema Espacio entre dos dientes adyacentes en el mismo arco dental. (Dor-
land, 27th ed)
D007962 Leucocitos ~ Células sanguineas blancas. Estas incluyen a los leucocitos granu-

lares (BASOFILOS, EOSINOFILOS y NEUTROFILOS) asi como a los
leucocitos no granulares (LINFOCITOS y MONOCITOS).
DDCS034870 Mareodgrafo Instrumento para registrar y medir las oscilaciones de las mareas.
(Material 1V - Glosario de Proteccién Civil, OPS, 1992)
D011203 Pobreza Accién y efecto de empobrecer o empobrecerse. (Fuente: Diccionario
de la lengua esparfiola. Real Academia Espafiola. Disponible en:
https://dle.rae.es/?id=ErpRftz)

model that will be used for training. First, we strip all parenthetical content from the glosses,
because such content is often a citation or other irrelevant boilerplate. The gloss encoding
process consists in summing the contextual embeddings obtained from the tokens of each
gloss, ignoring padding positions. The resulting vectors are used to initialize the DeCS gloss
embeddings layer inside the model. This layer is of size C' X H, C begin the number of codes in
the output vocabulary and H the size of BERT embeddings (i.e. 768 for a BERT-base architecture).
These embeddings are fine-tuned during training.

During training, the document embedding is obtained by averaging the contextual token
embeddings from the BERT model. Then, this document embedding is combined with every gloss
embedding, forming pairs: (document, glossy ), (document, glosss), ..., (document, glossc).
Each pair consists of two vectors of size H that are concatenated to obtain a single vector of



size H x 2. This combined vector is the input to a classification head.
The classification head of the LABELGLOSSES model is the same as the CSS model: a dense
layer followed by a nonlinear function, a dropout layer and a linear layer.

3.3. Output handling

The output of the model (be it CSS or LABELGLOSSES) is an individual score ranging between
0 and 1 for each DeCS code in the output vocabulary. When the model is confident about
predicting a certain code, its corresponding score gets closer to 1, and vice versa. A threshold
needs to be chosen to decide when a given score must be interpreted as the model predicting
the corresponding code for the given input.

With a threshold of 0, the model would predict all the codes regardless of the input, maximizing
the recall but minimizing the precision. A threshold of 1 would mean that the model would
never predict any code at all. In the absence of further information, a threshold of 0.5 is a
reasonable default, but could be suboptimal.

In this work, we have used the development sets provided for each subtrack to find out the
decision threshold that better balances the precision and recall, thus achieving the best possible
F1-score for each trained model. The actual thresholds are reported in the next section.

4. Training setup and submitted systems

We have participated in all the task subtracks with several variations of the CSS and LABEL-
GrossEs models, listed in Table 3.

For Subtrack 1, we used IXAmBERT [8] as the pre-trained core model, a BERT-base model
pre-trained for Spanish, Basque and English. The runs of Subtracks 2 and 3 use the fine-tuned
model resulting from Subtrack 1 as starting point for their own fine-tuning. The reason for
this is that the training dataset for Subtrack 2 is small, while there is no training data at all for
Subtrack 3 (see Table 1). To measure the impact these choices might have, Subtrack 2 includes a
submission that parts from IXAmBERT, and we submit to Subtrack 3 a run that has not been
fine-tuned on the subtrack data.

The models have been trained using a GPU NVIDIA 2080ti of 11GB. The training run for a
maximum of 200 epochs, with an early-stopping patience of 50 epochs. Under these conditions,
the training of the CSS model required 3-4 days, while the training of the LABELGLOSSES model
required around a week to get to the best result validated in the development set. Other training
hyperparameters for the described systems are shown in Table 4.

The resulting systems process the background sets (6,000 to 10,000 documents) in 2-3 minutes
at a speed of ~80 documents per second using 1 NVIDIA RTX 1080ti GPU.

5. Results

Table 5 shows the official results of the competition, including the results of all our runs and
the results of the winner system per subtrack. Internal evaluations with the development set
showed scores around 44 micro-averaged F1-score for Subtrack 1. However, in the test set our



Table 3
Runs submitted to the competition, characterized by model architecture, pre-training of the encoder
model, data split used for fine-tuning and inference threshold value

Run Architecture Pre-train Fine-tuned on Threshold
Subtrack 1 1.1 CSS IXAMBERT  Subtrack 1 trainset 0.25
Scientific literature 1.2 CSS IXAMBERT  Subtrack 1 trainset 0.30
1.3 CSS IXAmBERT  Subtrack 1 trainset 0.35
1.4  LAaBELGLoOsses IXAmBERT Subtrack 1 trainset 0.10
1.5 LABELGLOSSES IXAmBERT  Subtrack 1 trainset 0.20
Subtrack 2 2.1 CSS IXAmBERT  Subtrack 2 trainset 0.25
Clinical trials 2.2 CSS Run 1 CSS  Subtrack 2 trainset 0.20
2.3 CSS Run 1 CSS  Subtrack 2 trainset 0.25
2.4 CSS Run 1 CSS  Subtrack 2 trainset 0.30
Subtrack 3 3.1 CSS Run 1 CSS none 0.05
Patents 3.2 CSS Run 1 CSS  Subtrack 3 devset 0.05
3.3 CSS Run 1 CSS Subtrack 3 devset 0.10
3.4 CSS Run 1 CSS Subtrack 3 devset 0.15
35 CSS Run 1 CSS Subtrack 3 devset 0.20
Table 4
Training hyperparameters
Hyperparameter  Value Hyperparameter  Value
Max. sequence length 300 Max training epochs 200 epochs
Batch size 16 Early stopping patience 50 epochs
Optimiser AdamW [9] Dropout rate 0.1
Learning rate  4E-5 Monitored metric  micro F1-score
Learning rate warm-up linear, 2 epochs Min. support cutoff 80

Non-linearity ~ Mish [10]

best system scores 38 points, 10 points below the best competing system in Subtrack 1, and
8 points in Subtrack 2. We achieve a reasonable level of precision, only 3 points below the
winning system, but recall scores fall behind. This places us in the third and second position for
Subtracks 1 and 2, respectively, after the groups of systems by two other teams.

Unsurprisingly, the results in Subtrack 3 are lower than in the other two, as the runs submitted
to this subtrack have seen very little to no in-domain training data, and do not exploit any other
source of domain knowledge. It is noteworthy that having fine-tuned the model on just 115
examples—i.e. the development examples available for this subtrack—has had a remarkable
positive impact, increasing recall by 12 points (compare Run 3.1 and 3.2).

Using the LABELGLOSSES architecture in Subtrack 3 might have helped mitigate the lack of
training data, although it seems unlikely given the difference between CSS and LABELGLOSSES in
Subtrack 1. Our attempts to include expert knowledge in the system by encoding DeCS glosses
have not had a beneficial impact on the results. In fact, the results obtained by the LABEL-
GrossEs runs are slightly lower for all the metrics.



Table 5
Official results per subtrack and run (the subscript numbers next to the architecture names indicate
the inference threshold values), including the best competing system per subtrack

Run F1 P R Acc
Subtrack 1 1.1 CSSq.25 w/ IXAMBERT 38.23 45.09 3318 2399
Scientific literature 1.2 CSSg.30 w/ IXAmMBERT 38.25 46.22 32.62 24.05
1.3 CSSg.35 w/ IXAMBERT 38.01  47.10 31.86  23.90
1.4 LABELGLOSSES(.190 W/ IXAMBERT 37.04  45.26 31.34 23.13
1.5 LABELGLOSSES(. 29 W/ IXAMBERT 37.46 4560 31.79 23.23
Best System (BERTDeCS version 4) 48.37 50.77 46.18 32.61
Subtrack 2 2.1 CSSg.25 w/ IXAMBERT 24.85 2721 2287 13.84
Clinical trials 2.2 CSSg.20 w/ Run 1 CSS 28.10 28.88 27.36 16.31
2.3 CSSp.25 w/ Run 1 CSS 2819  29.33 27.15 16.36
2.4 CSSg.30 w/ Run 1 CSS 28.07 29.24 26.78 16.29
Best System (BERTDeCS version 2) 36.40 36.66 36.14 22.42
Subtrack 3 3.1 CSSp.05 W/ Run 1 CSS (no fine-tuning)  19.68  27.00 15.48 10.76
Patents 3.2 CSSg.05 w/ Run 1 CSS 26.51 2547 27.64 15.72
3.3 CSSg.10 W/ Run 1 CSS 28.34  31.88  25.51 16.89
3.4 CSSg.15 w/ Run 1 CSS 29.08 3596 2440 17.29
3.5 CSSp.20 w/ Run 1 CSS 29.21 3890 23.28 17.25
Best System (BERTDeCS version 2) 45.14 44.87 4541 30.05

A final observation can be made for Runs 2.1 and 2.3, were the former’s fine-tuning starts
with IXAmBERT while the latter uses the CSS model resulting from Run 1. The knowledge
captured from the Subtrack 1 data has helped raise all metrics, particularly recall (+4 points).

6. Discussion

During the training of our systems and their variations, we have made several noteworthy
observations. First, the validation scores for all the systems progressed at different paces, some
faster than others, towards a plateau of around 45-50 F1-score points in the development sets.
Models and hyperparameter variations made little difference. We assume that this plateau is the
limit of what the proposed models can learn to generalize from the training data, in particular
for the least frequent DeCS codes. For this reason, we tried to inject external knowledge to the
model by encoding DeCS term glosses. The proposed approach has not helped in this regard.

Second, our systems show a clear imbalance between precision and recall. We hypothesise
that the imbalance is related, among others, to the exclusion of DeCS codes from the training
data when applying the minimum support cut-off value, although further research would be
necessary to confirm this or to uncover interactions between other elements of the systems
that might be having this effect.

One such relevant element is the decision threshold, which we use to interpret the output of
our models. For each model, we have computed the global threshold that maximises the F1-score
in the corresponding development set. That is, the same threshold applies to all the modeled



DeCS codes, regardless of the degree of confidence the model might have with respect to each
individual code. Given the imbalance of code frequencies in the training data, the confidence
is bound to vary greatly. Thus, a decision threshold better tailored to each DeCS code could
benefit the precision-recall balance of the results.

It will be interesting to learn how the winning systems have addressed all these problems. For
instance, the official results show that the group of systems that obtained the second position in
Subtrack 1, surpassing our models, rank in third position in Subtrack 2, just behind our models.
It would be interesting to study the cause for this variation and assess whether the difference
lies in the approaches implemented or just in the training procedure.

Overall, the systems we have submitted, in particular the CSS model, are not complex, and
the scores achieved are lower than expected given the results obtained on the development
sets. However, our systems are lightweight and fast, being able to process about 80 documents
per second in a commodity GPU, consuming less than 4GB of GPU memory, which enables
real-time processing scenarios.

7. Conclusions

In these working notes we describe our participation in the MESINESP2 shared task, focused
on the medical document indexing in Spanish. We have presented two systems based on
Transformers, in particular using BERT-base pre-trained models to encode the text information
and to perform a multi-label classification over the large DeCS codes vocabulary.

The simpler approach relies on combining special BERT-encoded tokens as input for a
classification head. In this sense, it is a straightforward model that works fast. The second
proposed approach shares key components, namely, the BERT-base model and the multi-
label classification nature of the model. The main difference is that it adds an extra layer of
DeCS code embeddings, which are meant to encode the meaning of each modelled DeCS code.
The embeddings are initialized from the BERT-encoded glosses that provide human-readable
definitions of the DeCS codes.

Despite our experiments on the development set having yielded scores around 44 F1-score
points, our best results in the test set reach only around 38, falling 10 points behind the best
competing system. Even with these lower results, our team achieves the third position among
the competing teams in Subtrack 1, and the second position in Subtrack 2.

As future work, we have come across several issues that need to be addressed in order to
better understand the performance of our systems and improve their results. Most interestingly,
we have observed that regardless of the approach and hyperparameter variations, the models
reached a similar plateau in the validation score in all our experiments. This suggests that our
approaches meet their limit there, and that additional external knowledge is needed to cross it.
Thus, we will focus on better and more efficient representations of the DeCS codes, for instance
including their hierarchical nature. It would also be interesting to explore approaches related to
semantic information retrieval.

In conclusion, the task remains challenging regardless of the model and approach, with the
winning system having achieved scores lower than 50 F1-score points. Further research will be
necessary to improve the state of the art of the task proposed by MESINESP2.
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