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Abstract
This paper presents a unified user profiling framework to identify hate speech spreaders by processing
their tweets regardless of the language. The framework encodes the tweets with sentence transformers
and applies an attention mechanism to select important tweets for learning user profiles. Furthermore,
the attention layer helps to explain why a user is a hate speech spreader by producing attention weights
at both token and post level. Our proposed model outperformed the state-of-the-art multilingual trans-
former models.
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1. Introduction

Hate speech is a type of online harm that expresses hostility toward individuals and social
groups based on race, beliefs, sexual orientation, etc. [1]. Hateful content is disseminated
faster and reaches wider users than non-hateful contents through social media [2, 3]. This
dissemination could trigger prejudices and violence. As a recent example of this, during
the COVID-19 pandemic, people of Chinese origin suffered from discrimination and hate
crimes [4, 5]. Policymakers and social media companies work hard on mitigating hate speech
and the other types of abusive language [6] while keeping balance of freedom of expression. AI
systems are encouraged for easing the process and understanding the rationales behind hate
speech dissemination [7, 8].

In natural language processing, hate speech has been widely studied in social media (e.g [9, 10])
or as a task of news comment moderation (e.g [11, 12]). However, majority of the prior studies
formulates the problem as a text classification [13, 7] that determines whether an individual
post is hate speech. This year, PAN 2021 organization [14] proposed to explore the task as an
author profiling problem [15]. In this case, the objective is to identify possible hate speech
spreaders on Twitter as an initial effort towards preventing hate speech from being propagated
among online users [15].

In a similar shared task on profiling fake news spreaders [16], many approaches rely on
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Figure 1: The Proposed Framework

appending tweets to one text for each user (e.g [17, 18, 19]) to encode the inputs. However, this
approach could be problematic if not all the tweets shared by hate speech spreaders convey
hatred messages, and a human moderator needs a detailed justification to ban users or delete
related tweets. Furthermore, the global issues such as COVID-19 attract heated discussions from
the users worldwide, thus there is a need for supporting multi-language systems to moderate
those discussions. With these motivations, we propose a unified framework which is scalable to
other languages and explains why a user receives a certain label based on the language used in
her tweets by using token level and post level attention mechanisms [20], as shown in Figure 1.
Our model outperformed multilingual DistillBERT [21] models. The source code is publicly
available1.

2. Methodology

Our proposed framework is shown in Figure 1. The input of the framework is a author profile
that posts n number tweets. Each post is encoded with a Sentence Transformer, and then the
encoded tweets pass through an attention layer. Finally, the output of the attention layer is fed
into a classification layer which decides whether the author is a hate speech spreader or not.
We give more details of each component in the subsequent sections.

2.1. Post Encodings

We encode the tweets with a Sentence-BERT (SBERT) [22], a modified BERT [23] network and
consists of Siamese and Triplet network structures. SBERTs are computationally more effective
than BERT models and could provide semantically more meaningful sentence representations.
Like BERT models, SBERTs also have variations [24] that are publicly available. Since we have
a limited resource to train our framework, and aim to use a language model that learns the

1https://github.com/isspek/Cross-Lingual-Cyberbullying
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usages of social language, we prefer the pre-trained SBERT that is trained on Quora corpus in
50 languages, and its knowledge is distilled [25]. The SBERT produces outputs with 768 hidden
layers. We set the maximum length of the post as 32, and apply zero padding on any texts
shorter than 32 tokens. The sentence embeddings are obtained by mean pooling operation on
the last hidden of the outputs.

2.2. Post-Level Attention Layer

We employ an attention layer in order to learn importance scores for determining author profile
vectors. First, the pooled tweets (Hp) are projected by feeding them to a linear layer which
produces a hidden representation of the author profile (Hap) as shown in Equation 1. Next, a
softmax layer is applied to get the similarity between the post and author profile (Hap). Lastly
the similarity scores are multiplied with the author profile to obtain the attended author profile
(𝐻𝑎𝑝𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑), as seen in Equation 2.

𝐻𝑎𝑝 = 𝐻𝑝𝑊𝑎𝑝+ 𝑏𝑇 (1)

𝐻𝑎𝑝𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐻𝑝 *𝐻𝑎𝑝𝑇 )𝐻𝑎𝑝 (2)

2.3. Classification Layer

The classification layer consists of two linear layers. The output of the first layer is activated
with the tanh function to learn the non-linearity in the features. The second layer outputs the
probabilities for each class. The input of the classification layer is the attended user profile
followed by a dropout layer which prevents the over-fitting. We use a cross entropy loss function
for the outputs of the classification layer and an Adam optimizer with a weight decay. During
training, the weights of the models are optimized by minimizing the loss, and the batches
contain mixed English and Spanish samples.

3. Experiments

3.1. Dataset

PAN Profiling Hate Speech Spreader Task [15] contains a dataset in English and Spanish, whose
samples were collected from Twitter. The total number of the profiles are 200 for each language,
and each profile is composed of a feed of 200 tweets. The class distribution of the dataset is
highly balanced. We observe a significant difference between the length of tweets by hate speech
spreaders and normal profiles in the Spanish set. The statistics of the dataset are summarized in
Table 1.

3.2. Preprocessing

The organizers have already cleaned the samples in the dataset. For example, certain patterns
have been replaced with special tags. We extend the vocabulary of the models’ tokenizers with
these tags as follows:



Table 1
The statistics of the training dataset

Stats En Es
#Total Profiles 200 200
#Hate Speech Spreaders 100 100
#Tweets per Profile 200 200
#Mean and Std of Tweets by hate speech Spreader 67.72 ± 30.34 75.32 ± 28.91
#Mean and Std of Tweets by Normal Profiles 67.42 ± 29.05 68.47 ± 28.99

• #URL# is replaced with [URL]

• #HASHTAG# is replaced with [HASHTAG]

• #USER# is replaced with [USER]

• RT is replaced with [RT]

3.3. Baselines and Ablation Models

We compare the performance of our model with a set of baselines and an ablation model as
follows:

• DistillBERT [21]: We use one of its version that is multilingual and cased sensitive. First
each tweets of an author is joined to obtain one text. Then the joined texts for each users
are fine-tuned with the DistillBERT by keeping their maximum length as 500 tokens.

• DistillBERT*: We additionally add [POSTSTART] and [POSTEND] tags, which indicate
the start and the end of the tweets, to the vocabulary of the extended DistillBERT tokenizer.

• SBERT-Mean: is an ablation model that replaces the attention layer with a mean pooling
layer which computes the mean values of the tweets’ hidden representations.

3.4. Training Settings

We train the models by applying 5-Fold Cross Validation2, with the epochs of 5, learning rate as
1e-5, batch size as 2. We use the GPU of the Google Colab3 as an environment for training the
models. We use a fixed random seed of 1234 to ensure reproducible results. The official results
are obtained by a TIRA machine [26].

4. Results and Discussion

We report the F1-Macro, F1-Weighted, accuracy, precision, and recall for each model. Table 2
presents the results of the 5-fold cross validation training. SBERT-Attn, the model that we
propose, outperformed the other models in all metrics. When we compare SBERT-Mean and
SBERT-Attn, we see that standard deviations of the SBERT-Attn are lower than the ablation

2We experiment also 10-Fold, but the models show worse performance in the test set.
3https://colab.research.google.com/
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model. This result indicates that the attention layer enables more generalized feature represen-
tations. It also shows that the tweets by the hate speech spreader are not necessarily hatred
tweets and vice versa for the non haters. For this reason, the DistillBERT models that joins the
all tweets by the user to one underperformed.

Table 2
The results of the 5 Fold Cross Validation Experiment

Models F1-Macro F1-Weighted Accuracy Precision Recall
DistillBERT 67.46 ± 5.28 67.58 ± 5.37 67.75 ± 5.15 67.04 ± 5.68 71.46 ± 1.63
DistillBERT* 61.90 ± 3.01 62.04 ± 3.22 62.25 ± 3.39 63.13 ± 4.40 59.86 ± 7.49

SBERT-Mean 69.55 ± 6.82 69.58 ± 6.71 69.75 ± 6.86 67.38 ± 3.61 77.10 ± 12.12
SBERT-Attn 73.62 ± 4.11 73.77 ± 4.12 74.0 ± 4.14 70.97 ± 5.39 81.23 ± 5.39

Table 3
Cross validation for each language and the PAN shared official result.

Mode Language Accuracy
Cross-Val En 67.09 ± 7.88

Es 80.54 ± 1.78

Official Result En 58
Es 77

For the submission to the PAN shared task, we leverage the 5-fold trained models to obtain
the predictions on official test set. The final predictions are the majority class. Table 3 shows
cross validation results for the English samples and the Spanish samples, and the official results
of the PAN shared task where the accuracy is the evaluation metric. Our model obtained a
result with similar range in cross-validation. The performance of the English set is worse than
the Spanish one. Cultural bias or the topical difference could be reasons for the performance.
We leave the detailed analysis of these issues as future work.

5. Visualizations

Our framework can provide explanations with tweet-level and token-level attention, as shown
in Figure 2. The token-level attentions are the average of the attentions in the last layer of the
SBERT and they are obtained through the self-attention mechanism. The tweet-level attentions
are obtained with the attention layer, which is connected to the classification layer. The examples
in the figure are the most hatred examples from the authors that are analysed. In the English
example, the model pays attention to feminism. In the Spanish example, vice presidencia is the
important entity.



Figure 2: Attention visualizations for English and Spanish. The original sentence in English is [USER]
[USER] Yes, you’re a part of feminism. And that’s because you aren’t a man; and the other in Spanish is
[USER] [USER] Le quedan grandes, como su vicepresidencia (Some emojis)



6. Conclusion

In this paper, we presented a unified framework for monitoring hate speech spreaders in
multilingualism. The framework leverages multilingual SBERT representations to encode texts
regardless of the language and uses an attention mechanism to determine the importance of
the tweets by the author in the task. Our methods outperformed multilingual DistillBERT and
SBERT that apply mean pooling on the tweets.

In the future, we plan to evaluate the method on the related user profiling tasks such as
profiling fake news spreaders [16] and investigate advanced method (e.g [27]) for effectively
transferring knowledge across the languages.
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