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Abstract
Hate speech on social media has led to feelings of concern and distrust among individuals and communities.
This has aggravated over time because spreading hate speech is often inconsequential to its authors. Hate
speech detection can help organizations identify, monitor and manage hate speech spreaders. This paper
describes the systems submitted to hate speech profiling task at PAN-2021 using tweets provided by
its organizers. This task aims to identify whether the author of the tweets spreads hate speech. We
investigated two popular embeddings; namely TF-IDF and BERT (Bidirectional Encoder Representations
from Transformers) for converting tweets into vectors. The systems using TF-IDF features with Support
Vector Machine (SVM) obtained the best results of 67% and 81% for both English and Spanish tweets
(test datasets), respectively. We also used Convolutional Neural Network (CNN) on features generated
using BERTweet (a pre-trained language model for English tweet) and it obtained an accuracy of 66% on
English tweets.
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1. Introduction

Social media has become an important communication medium. Social media platforms such
as Facebook, Twitter, LinkedIn, and WhatsApp enable users to interact with each other by both
sharing and consuming information. Information can spread widely and even viral on social media
very quickly. Unfortunately, hate speech can also spread easily that not only harm individual
victims but also create an adverse impact on society.

Hate speech is commonly defined as any communication that uses offensive and threatening
language that targets specific groups of people basis on some characteristics such as religion,
ethnicity, nationality, race, color, gender, or some other characteristics. A huge amount of user-
generated content on the web and social media has given rise to a variety of challenges including
the spreading and sharing of hate speech messages. Advances in Natural language processing
(NLP) and text analysis techniques provide an automated way to identify the hate speech posts by
analyzing social medias’ posts. However, classifying users as haters or not from their posts is a
challenging task.
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In this paper, we perform hate speech spreader identification from Twitter data, provided by
the organizers of PAN-2021 [1]. The organizers provided tweets of users for both languages
namely English, and Spanish. The training dataset consists of data obtained from 200 users
of each of English and Spanish languages, while the test dataset contains only 100 users of
both languages. We used term frequency-inverse document frequency (TF-IDF) to convert both
English and Spanish tweets into vectors. Support vector machine (SVM) was used for classifying
the hate speech spreaders. For the English dataset, we also used a pre-trained model BERT with
Convolutional neural network (CNN) for classification.

The rest of the paper is organized in the following manner. Section 2 discusses related work
briefly. Section 3 describes data and provides the detailed implementation of our hate speech
spreader identification system. Section 4 describes results and detailed analysis of the results.
Finally, conclusions and future directions are listed in Section 5.

2. Related work

The PAN-2021 task on profiling hate speech spreaders targets on identifying such users who
spread hate speech in Twitter [1, 2]. In recent years, hate speech in social media has become a
complex phenomenon, whose detection has recently gained a lot of attention in the domain of NLP.
There have been many research performed on identifying hate speech in English, Spanish [3] and
Indonesian language [4]. “Multilingual detection of hate speech against immigrants and women
in twitter” task in SemEval 2019 [3] focuses on the detection of hate speech against immigrants
and women in Spanish and English tweets extracted from Twitter.

Tah et al. [5] attempted to explore the use of profane words for the identification of hate speech.
The authors classified 500 YouTube comments into 8 different categories of hate speech based
on profane words. In another similar work, Malmasi et al. [6] discriminated hate speech and
profanity. Many other similar experiments were conducted on identifying cyberbullying [7],
abusive language on social media [8, 9], fake news in Twitter [10], and profane words in hate
speech [5]. Multiple publications and shared tasks are available on profiling authors based on their
tweets [10, 11, 12, 13]. Profiling Fake News Spreaders on Twitter shared task in PAN-2020 [10]
was organized to identify whether the author of a Twitter feed is keen to spread fake news or not.

Different feature extraction techniques that had been used for hate speech detection such as
lexicons [14, 15], bag-of-words [16], N-grams [9], TFIDF [17, 18], and word embedding [19].

Different machine learning [6, 18, 20] and deep learning-based [17, 21, 22] models have been
used for classification of hate speech. Gaydhani et al [23] employed different machine learning
algorithms on TF-IDF features for detecting hate speech and offensive language on Twitter. In
another similar work, the authors investigated the application of n-gram representation for web
content classification using a machine learning algorithm [18].

The above survey reveals that a variety of features extraction and classification models have
been used for hate speech identification. The combination of lexicons and ML approaches
obtained better results for classifying hate speech detection [24]. It was observed that the word
embedding with deep learning-based model performed well for large datasets whereas language
independent features like TF-IDF provides good result also for small datasets [19].



3. Data and Methods

Fig. 1 describes the architecture of our proposed system of profiling hate speech spreader in
Twitter data. As shown in this figure, our system has five key components (data pre-processing,
feature extraction, data splitting, model development on train data, and classification model
evaluation on test data). Each of the step is discussed in detail in the subsequent sections.

Figure 1: System Overview

3.1. Dataset

The organizers provided training datasets for both English and Spanish languages annotated with
hate speech spreader or not at the user level. Both English and Spanish datasets contain tweets
from 200 users and each user has 200 tweets. The organizers also provided test datasets that
contain tweets from 100 users for both English and Spanish languages.

3.2. Preprocessing

We applied different preprocessing techniques to remove noisy and non-informative words from
the tweets. We removed emoji from every tweet and converted it into lower case. We removed all
stop words, punctuations, and junk words. We also performed tokenization and stemming. Porter
stemmer was used to convert words into their root forms.

3.3. Feature Extraction

This section describes several features used in our experiments. We used several embedding tech-
niques such as GloVe, Google News word2vec, latent semantic analysis, TF-IDF, Bidirectional
Encoder Representations from Transformers (BERT) and BERTweet for our initial experiments
on training data. However, we found TF-IDF and BERTweet performed better compared to
others.

TF-IDF reduces the effect of less informative words that appear very frequently in data and
helps to determine how relevant a given word is in a particular document. TF-IDF works by



determining the relative frequency of a word in a specific document compared to the inverse
proportion of that word over the entire document corpus. We used TF-IDF for both English and
Spanish datasets. We performed several experiment on unigram, bigram, and trigram features,
however, the system using unigram obtained the best result on training dataset.

We used BERTweet [25], a pre-trained language model for English tweets. It is trained on 850M
English tweets. Due to the limitation of the max length limit of tokens in BERT (Bidirectional
Encoder Representations from Transformer), we performed fine-tuning in BERTweet in order
to fit 200 tweets to a single vector. Figure 2 provides word counts of every user in English data.
In fact, the minimum word count was 1500 for a single user with 200 tweets. Thus, we divided
the input tweets into smaller text and feed each of them into BERTweet. We experimented with
different chunk sizes and the system obtained better results on training dataset when we splited
200 tweets of each user into a chunk of eight tweets (maximum of 200 word), with one tweet
overlapped. For every eight tweets (200-length chunk), we extracted a representation vector from
BERT of size 768 each. For each user, we obtained 29 vectors of dimension 768 each. To increase
the number of instances for CNN, we treated these 29 vectors as separate user and labelled with
users class. Further, we implemented the majority class voting to decide the final label.

Figure 2: Wordcount statistics of the English dataset

3.4. Classifiers and Parameters

For tunning the performance of our developed systems, we divided the training data into training
(60%) and validation sets (40%). A series of experiments were conducted using different machine
learning and deep learning frameworks such as Naïve Bayes, Decision Tree, Random Forest,
SVM, Logistic Regression, Adaboost, Long short-term memory (LSTM), Bidirectional-LSTM,
and CNN. However, SVM and CNN classifier outperformed all others and we used these two
classifiers for the final submission.

We used linear kernel in SVM for all our experiments. All the systems are evaluated based
on accuracies. In our experiments, the CNN model was applied to BERTweet features. Hence
different types of filters, padding, maxpooling, and dropouts were used according to the feature
size. The best result was observed on the combined feature set where the input vector size was



768. For CNN, padding was used to convert the feature space into 28×28. Then maxpooling over
2×2 grid and a dropout of 0.5 were inputted to a ReLU activation function. Finally, softmax was
performed in the output layer for classification. The deep learning models were implemented
using Keras. We submitted SVM model for both English and Spanish datasets and CNN model
only for the English language.

4. Results and Discussion

4.1. Results

SVM outperforms other classifiers and obtained a maximum accuracy of 67% and 81% for the
English and Spanish datasets respectively. BERTweet pre-trained model and CNN classifier based
system obtained an accuracy of 66% for only English dataset.

4.2. Discussion

The TF-IDF based model with SVM outperformed BERTweet based CNN model for the English
dataset. Dataset provided by the PAN organizer contains only 200 users’ tweet this may be the
main reason for the low accuracy of the CNN based system. Deep learning systems are known
as data hungry systems. For the Spanish dataset, TF-IDF based model with SVM classifier
performed well as compared to other classifiers.

A total of 74 teams have participated in this task. Our system ranked 15th among 74 participants
in this task at PAN with the average accuracy of 74% for both English and Spanish languages.
The highest average accuracy of 79% was obtained by SiinoDiNuovo team across both languages.
The maximum accuracies of 78% and 85% were obtained for identifying hate speech spreader in
English and Spanish by dukic and SiinoDiNuovo teams, respectively.

5. Conclusion and Future Work

We presented classification systems to identify hate speech spreaders from the content of their
tweets in English and Spanish languages. Among two languages, the TF-IDF with SVM based
system for Spanish obtained better result than the English language.

In the future, lexicons for hate speech can be developed and can be used as features to improve
the classification accuracies. It would be interesting to implement a fine grained tweet level
classifier and then combine the results using majority voting. Further, external annotated data can
be used to improve the accuracies. For Spanish data, pre-trained embeddings can be used in the
future.
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