CEUR-WS.org/Vol-2936/paper-185.pdf

Local Classification with Recurrent Neural Network for
Profiling Hate Speech Spreaders on Twitter. Notebook for
PAN at CLEF 2021

Pablo Pallarés ! and Carlos Herrero ’

I Universitat Politécnica de Valéncia, Camino de Vera, s/n, Valencia, 46022, Spain

Abstract

The general purpose of this work is the study, implementation, and development of a
system that, given a Twitter feed, determines if its author spreads Hate Speech (HS). The
corpus used was provided in the 9th International Author Profiling Contest. This data set
consists of 200 Twitter profiles: 100 in Spanish and 100 in English. There is one XML
file per author with 200 tweets. The name of the XML file corresponds to the unique
identification of the author. Finally, there is a truth.txt file with the list of authors (author
id) and the ground truth (Class to which the author [0 or 1] belongs). First, we will
partition the data set into Train, Development and Test, to carry out a supervised training
of a classifier (x = sample, y = label) with the training set. Second, we proceed to make
a parameter adjustment using the development set to minimize the classification error.
This work intends to approach this task from a Deep Learning (DL) perspective,
introducing some peculiarity that allows us to obtain good classification results. The
developed system must input the absolute path to a decompressed data set and generate
an XML file for each document in the data set, as described in the task. In the last section
we will evaluate the accuracy obtained.

Keywords
Author profiling, hate speech, twitter, tweet preprocessing, profiling haters.

1. Introduction

Hate Speech (HS) is commonly defined as any communication that discredits a person or
group based on some characteristic such as race, colour, ethnicity, gender, sexual orientation,
national origin, religion or other characteristics. Given the enormous amount of content generated
by users on Twitter, the problem of detecting and possibly contrasting HS spread becomes
fundamental, for example, to fight against misogyny and xenophobia. To this end, this task aims
to identify potential propagators of hate speech on Twitter as a first step in preventing hate speech
from spreading among online users. It is about investigating whether it is possible to discriminate
authors who have shared hate speech in the past from those who have never done so, as far as we
know.

1CLEF 2021 — Conference and Labs of the Evaluation Forum, September 21-24, 2021, Bucharest, Romania
EMAIL: pabpalfo@upv.es (A. 1); carherb2@upv.es (A. 2)
ORCID: 0000-0002-0120-3251 (A. 1); 0000-0003-1985-3452 (A. 2)

© 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

This report includes all the development of the HS system, the results obtained with the
classifier used, and the strategy followed from a Deep Learning approach. As we mentioned, we
partition the data set into Train, Development and Test to evaluate the model. Finally, if we
achieve results in test similar to those of development, we will carry out the training with the
entire data set. In addition, we used a series of resources obtained from the network (Dictionary
of Emojis, Word Embbedings [Glove twitter es/ en]).

From here, the report is structured in the following sections: in the second section, we will
expose the theoretical foundations of the proposed solution to tackle this task. The third section
details the process of obtaining and pre-processing the data from the files provided. The fourth
describes the processing and experimentation based on deep machine learning and an analysis of
the results obtained to adjust parameters. We briefly review tokenization, data preparation, and
generation of a model based on Recurrent Neural Networks. This section uses a Long Short-Term
Memory (LSTM) [6] as a Decoder. Finally, the best model obtained to generate the results file
with the test set is determined, and we conclude the study carried out in this task.

We made the different implementations of this work using Python language. On the one hand,
we used the open-source library TensorFlow to train deep machine learning models and the high-
level framework for deep learning, Keras. On the other hand, we also used the open-source library
for machine learning sklearn.

2. Theoretical fundaments

As previously stated, we would try to introduce some innovative element to approach this task.
The first idea is to treat each tweet as a local feature of the author, and instead of coding the
author's 200 tweets as a single sample, we aim to obtain a tweet-level classifier. In the training
phase of this local classifier, we labelled each tweet with the associated tag of the author:

Avuthor-level Global Classifier Tweet-level Local Classifier
Author X Author X
Tweet1 = C=l
Tweet2 > C=l
Tweet3 > C=l
> C=l

List: n Tweets > Tweet 4

Tweetn > C=1
Cc=1
Figurel: Transformation of the data for training the local classifier

This can be a problem because all the author's tweets labelled as class "1" (which means this
author disseminates hate speech) are not disseminating hate speech. However, we start from the
premise that every author labelled as class “1” has a list of tweets where a certain percentage of
them disseminate hate speech. Based on this approach, in the inference phase, we established a
voting system, where each Tweet (local characteristic) in the list of tweets of an author (global
sample) votes for a class. Finally, we tagged the author's list of tweets and the author's profile
with the most voted class label. See the theoretical reasoning:

With this reasoning we assume that we have local class decisions:

¢ = argmax p(C | tweet;) c{0,1}

1<cisC

A summary of the reasoning of the probabilistic model followed is the following: we can
estimate the posterior probability of class C given the entire set of tweets of an author. We can
formulate it as follows, making the appropriate marginalizations of the class tags associated with
each Tweet:

p(CItweetSauthor) = 221:1 252:1 Zgn=1 p(C: C1,€2p-0 Cnltweetsauthor) (1)

Regarding the internal probability of the marginalization in expression (1), we can decompose
it into the product of 2 terms: the probability that given the list of an author's tweets gets the
classification of each tweet, and the posterior of class C given the class of each tweet and the list
of tweets of the author to determine its label:

p(C’ C1,C2 e CanSautor) =
= p(c1, €2+ s CnlTSautor) * P(CITSautors C1)C20- - » Cn) (2)

Here, we made a series of approximations to simplify the calculations, approximating the two
terms obtained in expression (2):

e Approaches:

1. For the first term of expression (2), we can assume that the author's Tweets ranking is
statistically independent of the ranking of the other author's Tweets. On the one hand,
this assumption is consistent because not all of an author's Tweets have to spread hate
speech or vice versa, but, on the other hand, we can consider that there is some
relationship between an author's different Tweets. Once this consideration has been made
at the conceptual level, this facilitates operability, we also made the Naive Bayes
assumption incorporating the statistical independence between Tweets:

n(n® Tweetsquthor)

p(c1, €2 s CulTSqutnor) = Hi:1 p(ci|Tweet;) (3)

2. Inthe second term of expression (2), we can make two approximations. First, we assume
the statistical independence of class C concerning the author's list of Tweets, given the
class labels of each of the tweets in the list. Conceptually, if one has the classification of
each tweet (local classification), the author's list of tweets is not required to determine the
posterior probability of the C class:

p(ClTSauthor'Cl'Cz: Y p(C|C1, C2) - ,Cn) (4)

In the second place, we can approximate the probability that the author belongs to
class C by counting many times we classified a Tweet as class C, divided by the total
number of Tweets:

1
p(C|C1, CZ! ey Cn) = n (ng Tweetsauthor) * Z?:O 5(Ci: C) (5)
Finally, substituting expressions (3) and (5) with the approximations, in the original expression

(1), we have:

C C n 1 n
p(Cltweetsaynor) ~ Z Z Z (]_[p(ci'wweetif))*;z 5(ci,C) =

C1=1¢C r=1 i=0
1 n C C C n 1 n
== i) s@of > > [el = pcelm
i=0 C;=1 Ci=1 Cp=1i'=1,i"#i i=1

— (6)

Therefore, we approximate the posterior probability of class C given the list of tweets of an
author, as the average of the posterior probabilities of the class C, given each of the tweets in the
list. Moreover, we estimated the a posteriori probability of class C given a Tweet through the best
model obtained in the experimentation phase: P(C|Tweet_author;)

1
p(cltweetsauthor) =~ ; ?:1p(C|Ti) (7)

Finally, we select the most voted class ¢ at the tweet level from the same author. The voting
system consists of inferring with the local classifier trained on each of the Tweets to obtain a list
with the class labels of each Tweet. Finally, we classify the author with the most voted class of
the 200 Tweets that the author has. This justifies that this type of technique is known as a "voting
scheme". Therefore, once we have the list with all the class labels associated with each of the
author's tweets (list of 200 labels in this particular task), we select ¢:

¢ = argmax p(C | tweetSayihor) = argmax — Z 00(c;, 0) (8)
1<ci<C 1=cisC

Author X

-

Tweet 1
Tweet 2
Tweet 3
Tweet 4
Tweet 5
Tweet 6
Tweet 7
Tweet 8
Tweet 9
Tweet 10
Tweet 11
Tweet 12
Tweet 13
Tweet 14

AuthorX > C=0

— 0000 —~00 00O —~00 —
\ 4

N2 20 20 N N N N A N N R A N 2
O0000000000O00O0

—

Figure 2: Example voting system in the inference phase

This approach ignores the posterior probabilities of the classes for each tweet and only
considers the class label. We could set up a more complex system in several ways:

e accumulating the posterior probabilities of each tweet and obtaining the average
e or establishing a second classifier with the class labels obtained and the samples to have

a different weight and importance.

However, from experience in other tasks, we decided to simplify as much as possible.

3. Data processing

Once we have theoretically contextualized the procedure to follow, the first step is to tackle
the formatting problem to convert the files (.xml) to plain text and select the relevant information
to the task. Each author file has different fields such as the language ("es" or "en"), but for this
training and development phase, we are only interested in the 200 tweets of content and the label
contained in the truth.txt file, which as we recall contains a list of authors and the associated class
label (0 or 1).

With this first proposal, we went from having 100 samples of Spanish and 100 samples of
English to having 10,000 samples per language, which already gives us more guarantees to tackle
the task with Deep Learning.

The first step is to design a Python function, open_data(), which receives the absolute path to
an uncompressed dataset with the XML files and the Spanish and English truth.txt files and
generates a Python dictionary with the following structure:

“es”: “[{id”: “id”, “value™: “class label”, “data”™: “tweets”} ... {}]”,
“en”: “[{“id”: “id”, “value™: “class_label”, “data”: “tweets”} ... {}1”}

dict: data

tr: path data fil
str: path data files open_data()

Figure 3: function open_data()

The next step is to pre-process the tweets. To do this, on the one hand, we use an external
resource. An Emoji dictionary, found on the web, which we converted it into a Python dictionary
with the following format = {"Key = Emoji": "Value = word/set_of words", ...}. See an example
of performing an Emoji 8 Word/Word_Set substitution process:

-Example Dictionary Emojis:

V4

Iwon © in /4% > [won 1st_place_medal in cricket
In addition, we generated a tokenizer function to:

® separate punctuation symbols

e handle all mentions to users of type @user as a single token: <user>.
e handle all hashtags of type #hashtag as a single token: <hashtag>

e handle all urls in different formats as a single token: <url>

e keep all emails as a single token.

e keep English words ending with “'s” as a single token.
e keep all dates in different formats as a single token.

e keep all times in different formats as a single token.

e keep all whole numbers and decimals as a single token.
e keep all acronyms together as one token.

Using these two tools: tokenizer and Emoji dictionary, plus the lower() method to convert
everything to lowercase, we also implement a Python function, define_dataset(). This function
receives the list of data of a language (internal lists to the data dictionary: data["es"], and

5

data["en"]), and will return two lists: a list of Strings with the tokenized and cleaned tweets with
the Emojis replaced by their associated word, a list with the class label of each tweet, and another
list with the author of each tweet. For each of the tweets from the same author, we repeated the
same class label and the same author 200 times.

dict: Emojis
—

list: twgels_lang
list: data["lang"] define_dataset(), list: labels_lang
list: authors_lang

Figure 4: function define_dataset()

Of the 100 English authors (10,000 tweets) and the 100 Spanish authors (10,000 tweets), we
reserve 10 English authors 10% (1,000 tweets) and 10 Spanish authors 10% (1,000 tweets) for
the Test. To partition the data set, we must do it at the author level, leaving all the tweets of the
selected authors in the test set. In this way, we inferred all their tweets, and through the established
voting system (the most voted class), determined the author's class label. If we had trained on any
of the author's tweets, the evaluation would be unrealistic.

In this way, we again extended the training data, in this case, by twice as much. Therefore, we
unified the lists of tweets, labels, and authors separated by language into a single list and shuffled
the entire corpus.

4. Experimentation Based on Deep Learning

The next task is to perform the Text2Sequences conversion using some tools from the keras
processing package:

1. We applied the Keras tokenizer on the list of tweets.

2. We performed the Text2Sequences conversion by applying padding afterwards to
generate 82 values (length of the most extended tweet). In these lists, we replaced the
words by their index in the vocabulary generated with the tokenizer. In this way, the list
of tweets becomes a list of sequences, and each of these sublists is the input parameter of
our neural network.

3. We loaded the embeddings obtained from the network: "glove.twitter.27B.100d.txt".
These are 100-dimensional embeddings pre-trained with a Twitter task in English and
Spanish [7].

4. With these Embeddings and the tokenizer, we generated an embeddings matrix, with the
words of our vocabulary, which we loaded later as weights of our model in the
embeddings layer.

Next, we need to adapt the class labels to work with our neural model. Recall that our set of
labels was C = {0, 1}. Considering that our model had as output layer a dense layer of 2 neurons
and a softmax as an activation function, the interesting thing is to make a new conversion with
keras.utils.to_categorical. In this way, we represented our set of labels as follows:

- 0=[10]
- 1=[01]

Model based on Recurrent Neural Networks (1 input). This model has as a single input the
sequence (coded tweet). This sequence enters element by element in an LSTM [6] to generate the
activation with a ReLU as an activation function connected to a dense layer with four neurons
and a softmax as activation.

. ¢ 21 (L input: | [(None, 82)] R
fnput_s: nputtayer output: | [(None, 82)] Softmax layer
i t: None, 82
embedding_1: Embedding Py (None, 82)
output: | (None, 82, 100) Output layer
input: | (None, 82, 100)

d t 1: D t 3 . -
ropout_1: Uropow output: | (None, 82, 100) Hidden layer | LSTM }—bl LSTM —PI LSTM |

lstm 1. LSTM input: | (None, 82, 100) .
stm_t output: (None, 256) Embedding layer

input: | (None, 256
batch_normalization_1: BatchNormalization mpu (None) Inputlayer | Sequence[0] sequence[1] [n]
output: | (None, 256)

input: | (None, 256)
output: (None, 2) |

dense_1: Dense

Tweet_Sequence ‘

Figure 5: RNN based Model

We earlier experimented with initial network topology and modified using some techniques
to avoid, as far as possible, overfitting using regularizers.11_12 (regularization L1, L2), BN (Batch
Norm), and dropout. Let us take a closer look at them:

e Regularization L1, L2: Regularization consists of applying a penalty to the optimization
criterion used to avoid extreme values of the network's weights to obtain high
probabilities with moderate values of the weights (overfitting correction). L1 and L2 are
the most common, and we can obtain them by calculating the norm in r of the vector of
weights. It consists of raising to a term r (in this case 1 and 2) the absolute value of each
of the weights, and apply the square root of r of the sum of all these terms. In this way,
L1 (r=1) will be the sum of the absolute values of the weights, and L2 (=2) the square
root of the sum of the square of the weights. These terms (L1, L2) are multiplied by a
scaling factor with values in the order of 10-2 to 10-5. We apply the regularization on the
dense layers:

model.add(Dense(1024, kernel regularizer= regularizers.l1 12(11=1e-5, 12=1e-4))) [8]

o Batch Norm [9]: It is one of the solutions to solve the different problems presented by
networks. It manages to improve the results by increasing the convergence capacity and
providing numerical stability. It is not easily classifiable; it is halfway between
optimization and generalization. Example in keras:

model.add(BatchNormalization()) [10]

Each neuron follows a normal distribution mean 0 standard deviation 1 for the input
Batch population. It does not have a single activation, and if the Batch is 128, 128 values

follow this distribution. In addition, it can be scaled and shifted. It does not have to be
centered at the origin.

y=yx+p

As we have not modified any parameter, by default, it initializes the displacement and
scaling to 0 and 1 and learns them with Back-Propagation. For this reason, if placing a
dense layer before the batch normalization, it would be ideal not to put Bias because batch
normalization already introduces Bias and, in this way, we save calculations.

¢ Dropout [11]: is another possible solution to achieve better generalization. It eliminates
neurons randomly, forcing the neurons that have not been eliminated to have the same
representation capacity as all of them would have. Similar to Sparsity but less aggressive,
in this case, the deactivated neurons are around 50%.

(a) Standard Neural Net

b) After applying dropout.

Figure 6: Dropout [11]

We can train it using different combinations, but since there is an infinite number of
combinations, once we trained the network, in the inference process, the original network
is used (all active) with the corresponding weights learned by turning off neurons. We
multiply all the weights by [1-p] [probability of having survived] in the activation phase.

model.add(Dropout(0.5)) [12]

Once we defined the model, we proceed to the experimentation and development phase.
During the development, we carried out a total of 3 experiments to test the influence of the
different parameters studied. The first experiment consisted of testing with different sizes of the
LSTM: 32, 64, 128, 256 and 512. In the second experiment, we experimented with different
optimization algorithms like Adam, Adadelta and Adagrad. Finally, we loaded the Embeddings
from an external file and performed a Fine-tuning of its weights' matrix. With this, we intended
to adapt the Embeddings of the words to the specific task. Notice that we calculated the average
results obtained from 3 different executions to obtain each of the values. For each of the runs, we
shuffled and randomly partitioned the data set reserved for training and Development, always
reserving 15% of this set (2700 tweets out of 18,000) for Development. In this way, the tests are
more realistic, as we extracted the development set randomly for each training. For this purpose,
we used the resource train_test_split from the sklearn.model_selection package. [13].

4.1. Experiment 1: RNN (LSTM) size

The first proposed exercise consisted of modifying the number of neurons present in the
LSTMs [2] of the Encoder and Decoder. We tested its effect with 32, 64, 128, and 256 neurons.
The results obtained on the validation set are as follows:

Table 1:
Size Comparison LSTM

WE RNN size Opt. Algorithm Val_Accuracy
frozen 32 Adam 0.6439
frozen 64 Adam 0.6492
frozen 128 Adam 0.6489
frozen 256 Adam 0.6495
frozen 512 Adam 0.6487

In the table, we can see that using the Adam optimizer, varying the size of the LSTM with
froze pre-loaded Embeddings. We obtained the best results with an LSTM size of 256 and 64.
Interestingly, we obtained better results in those than with 128 neurons which is the intermediate
value. This is probably because the number of experiments should be higher. For that reason, we
decided to use the LSTM with 256 neurons in the following experiments so the model has a
greater representation capacity.

4.2. Experiment 2: Optimization Algorithms

The second experiment consists of modifying the optimization algorithm. Initially we have
worked with Adam [14], to later test with Adagrad [14] and Adadelta [14]. In the following
paragraphs we will see a description of the 3 optimization algorithms.

All 3 are gradient descent optimization algorithms and adjust the learning rate as a function of
the gradient so that if the gradients are substantial, the learning factor decreases and in areas of
low gradient, valleys where the gradient is low, they adjust the gradient so that the weights are
more significant to transmit the improvement without dissipating.

In Adagrad (Adaptative Gradient), the variation of the weights depends on the gradient, but
unlike SGD, it is not a scalar product of the learning factor and the gradient but an element-wise
product. It is a helpful algorithm for the treatment of sparse data because, for the adaptation of

the learning rate discussed above, it is divided by,/ (m; (1) + e). This component accumulates the
gradients squared to eliminate the symbol so that if they are huge (parameters with more frequent
features), the learning factor decreases, and if it is minimal (parameters with infrequently
associated features), the learning factor will be more prominent.

Adadelta, is an extension of the previous one, but storing a fixed-size window of accumulated
gradients (previous) that allows having a view of how it evolves (the increments of the weights
of a specific range) so that if the increments are reasonable the learning factor increases (it has a
certain resemblance to momentum). This avoids that the reduction of the learning rate is
monotonous.

Lastly, and despite being used in the first exercise, Adam (Adaptative Moment Estimation) is
the most complex of the three methods. It combines all of the above and adds the previous weight
to the gradient so that, if the previous weight were relevant, it would have more influence on the
new one. See the results obtained on the validation in Table 2.

Table 2:
Comparison of Optimization Algorithms

Learning Rate WE RNN size Opt. Algorithm Val_Accuracy
0.002 frozen 64 Adam 0.659
0.1 frozen 64 Adagrad 0.564
1 frozen 64 Adadelta 0.502

First of all, note that this experiment has taken somewhat longer because it has been necessary
to adjust each algorithm's most appropriate learning rate. After adjusting the parameters for each
model, and as shown in Table 2, the best results have been obtained with Adam, and a learning
rate of 0.002 has reached an Accuracy = 67.9%. Adam usually obtains better results, but it is
necessary to carry out tests to certify i,

4.3. Experiment 3: Fine Tuning

The initial idea of this experiment was to perform a re-training starting from the weights of
the best model obtained in the experimental phase. This re-training consists of performing a fine-
tuning by unfreezing the weights of the embeddings' matrix and reducing the learning rate of the
optimizer. In this way, we intend to adapt the weights of the embeddings of the words, which we
have loaded and pre-trained from a Twitter task in English and Spanish, to the shared task, without
altering the network's parameters. However, the improvements obtained were much lower than
those achieved in a second experiment. For this one, again, the embedding layer is unfrozen from
the beginning of the training. We saw an improvement of 2 points with the parameters. A learning
rate scheduler has been introduced for the two experiments, applying annealing of this learning
rate, with some reheating,.

Learning rate

0.0010 train — |
0.0008 \
0.0006
0.0004 ‘

0.0002

0 0 4 e 8 100 120
epoch
Figure 7: Learning rate Annealing with reheating

Table 3:
Comparison with unfrozen WE weights
WE RNN size Opt. Algorithm Val_Accuracy

unfrozen 32 Adam 0.667
unfrozen 64 Adam 0.6732
unfrozen 128 Adam 0.6727
unfrozen 256 Adam 0.6725
unfrozen 512 Adam 0.67249

From Table 3, we can see that the results have improved considerably by training from scratch
with the weights of the unfrozen embeddings. Furthermore, we found that, in this case, the results

10

with 64 neurons in the LSTM are slightly better than the results with 128 and 256 neurons.
Unfortunately, we performed this experiment with the 256-neuron model before delivering the
competition results due to lack of time and because it was the best model so far at this time.
Therefore, we obtained the results used in the competition with a model trained from scratch with
a 256-neuron LSTM and using the Adam optimizer with the learning rate scheduler described
above. The truth is that the results are alike with the different LSTM sizes, but the main difference
lies in the training and inference time. The model with 64 neurons in the LSTM is approximately
four times faster than the model with 256 neurons.

5. Results Analysis

The comparative results obtained throughout the experimentation phase are at the tweet level
(local), training with the train set, and validating with the development set. However, the
competition proposes the presentation of ranking results at the author level (global). For this
purpose, we established a voting system, as described in Section 2 of this report. Essentially, it
assigns the author the most voted class label during the inference phase of his set of tweets, with
the neural classifier obtained at tweet level.

In this section, two results are going to be analyzed. On the one hand, those obtained in the
shared task, which is previous to this last comparison of experiment number 4 and, therefore,
were obtained with a recurrent neural model with 256 neurons in the output layer of the LSTM
and using Adam as optimizer. We trained this model with the whole dataset provided in the task,
shuffling all the authors' tweets in Spanish and English and applying some training techniques,
such as those already mentioned in Section 4 and others, such as others learning rate annealing
with reheating.

Table 4:
Competition Results
RNN size Epochs Aut. ES accuracy Aut. EN accuracy Average Accuracy
256 125 0.78 0.58 0.68
256 250 0.80 0.57 0.685

We presented the results obtained with two different training of the same model. The results
are indeed very similar. In both cases, the accuracy in Spanish is well above the accuracy in
English, despite having a well-balanced task at the language level 10,000 Tweets in Spanish and
10,000 tweets in English. The local classifier developed was bilingual, but the results tend to be
better in one language than the other for similar competitions. The result of the average of both
languages is very similar to that obtained in the tests before the presentation of the model.

Secondly, we analyze the results obtained after this second part of experiment 4, where
improvements have been achieved at tweet level, unfreezing the embeddings matrix, but with an
LSTM of 64 neurons. At the same time, the test and inference phase are considerably accelerated.
Notice that, in this case, the models have been trained, with 90% of the data provided (90% of
authors), belonging to the train and development set, and have been evaluated with the Tweets of
10% of the authors reserved for testing. Therefore, we compared both models: LSTM-256
(presented in the competition) and LSTM-64 (best model obtained at Tweet level) under the same
circumstances:

11

Table 5:
Post-competition comparison

Model WE RNN size Opt. Algorithm Test Accuracy
1 descongelados 64 Adam 0.64
1 descongelados 256 Adam 0.62

Table 5 shows the results obtained in the test evaluated with 200 tweets from 10 authors in
Spanish and 200 tweets from 10 authors in English (4,000 tweets in total). We can see that the
results have improved with an LSTM of 64 neurons achieving an accuracy improvement of almost
2 points and speed improvements of x4. The 256 LSTM model does not have the same weights
as the model used to obtain the competition results because we trained the competition model
with 100% of the data provided and the one used in this test with 90%. However, we used the
same parameters and training strategies. In both models, we obtain an accuracy near 68.5% with
the Tweet level validation set.

6. Conclusions

During the development of this work, we addressed the tasks of reformatting, filtering and
preprocessing important text, data preparation, vectorization, tokenization, model training and
fine-tuning. In addition, we used deep learning at the tweet level (Local approach). Once we have
done all the experimentation, we determined that the best classifier uses recurrent neural networks
with an LSTM of 256 neurons, Adam optimizer and fine-tuning by unfreezing the WE matrix.
With this model, we inferred the test set at the tweet level and set up the voting system to define
the output set in the format given in the Author Profiling task [5]. However, we found that we can
still propose different strategies to improve the speed and the accuracy of the classifier, e.g.,
reducing the LSTM to 64 Neurons. Some of the proposals we can think of for future work are
analyzing the Tweets' size in the task using a histogram and adjusting the string length input
parameter in the model. This will speed up the training, which is because LSTMs cannot
parallelize and take advantage of GPU capacity. In addition, the longer the string length, the
heavier it is. Another proposal would be introducing more state-of-the-art neural models, such as
Transformers: Bert, with attention models capable of selecting the most relevant information. In
short, we have achieved good results, taking into account state of art in similar tasks.

12

7. References

[1] J.Bevendorff, B. Chulvi, G. L. d. l. Pefia, M. Kestemont, E. Manjavacas, I. Markov,
M. Mayerl, M. Potthast, F. Rangel, P. Rosso, E. Stamatatos, B. Stein, M. Wiegmann
and M. Wolska. "Overview of PAN 2021: Authorship Verification, Profiling Hate
Speech Spreaders on Twitter, and Style Change Detection" in /2th International
Conference of the CLEF Association (CLEF 2021), Bucharest, Romania, 2021.

[2] M. Potthast, T. Gollub, M. Wiegmann and B. Stein. "Information Retrieval
Evaluation in a Changing World"; TIRA Integrated Research Architecture; series:
The Information Retrieval Series; ids. stein:2019r; isbn. 978-3-030-22948-1, N. F.
a. C. Peters, Ed., Berlin Heidelberg New York: Springer, sep. 2019. doi.
10.1007/978-3-030-22948-1\ 5

[3] F. Rangel, G. L. d. 1. Pefia, B. Chulvi, E. Fersini and P. Rosso. "Profiling Hate
Speech Spreaders on Twitter Task at PAN 2021"; CLEF 2021 Labs and Workshops,
Notebook Papers. In Conference and Labs of the Evaluation Forum (CLEF 2021),
2021.

[4] F. Rangel, G. L. d. . Pefia, B. Chulvi, E. Fersini and P. Rosso. "Profiling Hate
Speech Spreaders on Twitter"; In 9th International Competition on Author
Profiling; Symanto, 2021. Url: https://pan.webis.de/clef21/pan21-web/author-
profiling.html.

[5] "Profiling Hate Speech Spreaders on Twitter" Symanto, Mayo 2021. url:
https://pan.webis.de/clef2 1/pan2 1-web/author-profiling.html.

[6] e. Hochreiter and J. Schmidhuber. "Long Short Term Memory" in technical report
FKI-207-95, pp. 0-8, 21 Agosto 1995.

[7] R. S. C. D. M. Jeffrey Pennington. "GloVe: Global Vectors for Word
Representation". Url: https://nlp.stanford.edu/projects/glove/.
[8] K. Api, "keras layers regularizers". Url: https://keras.io/api/layers/regularizers/.

[9] C.S. Sergey loffe, "Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift," in 32nd International Conference on Machine
Learning, LILLE GRAND PALALIS, 2015.

[10] K. api, "Keras batch normalization". Url:
https://keras.io/api/layers/normalization layers/batch normalization/.

[11] G. H. A. K. I. S. R. S. Nitish Srivastava. "Dropout: A Simple Way to Prevent Neural
Networks from Overfitting," Journal of Machine Learning Research 15 (2014)
1929-1958, Mayo 2014.

[12] K. api, "keras dropout".

[13] "sklearn model selection,". Url: https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.train_test split.html.

[14] S. Ruder. "An overview of gradient descent optimization algorithms", insight
Centre for Data Analytics, Nui Galway Aylien Ltd., 2016.

13

