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Abstract
This notebook documents our participation in the Argument Retrieval for Controversial Questions subtask
of Touché 2021. We submit five runs tackling argument retrieval with four different methodological
paradigms: (1) a Dirichlet-smoothed language-model with filtering of low-quality arguments, (2) two
learning to rank approaches using argumentative features, (3) a reranking approach that casts argument-
retrieval as a question-answering (QA) task, and (4) a transformer-based query expansion method that
enriches the query with topically relevant keywords.
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1. Introduction

The web has evolved into a participatory resource, where sharing one’s opinion is as easy as
the click of a button [1]. Retrieval systems, traditionally optimized for ad hoc retrieval, must
increasingly deal with very subjective and nuanced user-generated content while providing
users with deliberative information needs with the best arguments supporting or refuting their
controversial questions. The args.me dataset [2] forms the testbed of the first Touché subtask on
argument retrieval [3] helping researchers explore retrieval systems for controversial questions.
The args.me corpus consists of more than 300,000 arguments mined from online debate portals,
and ours is the task of retrieving the best—both in relevance and in quality—arguments pertinent
to a given controversial question.

The current search landscape is not especially attuned to nuances such as those afforded by
argument retrieval, usually preferring to let ”the stakeholders compete for what opinion ranks
higher” [4]. In this argumentative setting, a single document can no longer satisfy one query, just
as surely as debates typically cannot be reduced to one morsel of text [5], but typically oscillate
in a dialectical back-and-forth across orthogonal dimensions of quality: logical, rhetorical, and
dialectical [6]. A deliberative information need can therefore only be satisfied by a diverse set of
documents. The ability to specifically handle the arguments embedded within those documents
is an attempt to address that problem using computational argumentation analysis [4, 7, 8].

Having recognized the non-trivial nature of the task and being allowed a maximum of five
runs to be submitted for human judgment, we deemed it prudent to diversify our solutions. In
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so doing, we can judge and compare the merits of each method and better understand where
future efforts ought to be invested.

The first run we submit uses Elasticsearch’s LM Dirichlet1 similarity module with default
parameter values, that is a language model with Dirichlet smoothing [9] with an additional
filtering step that removes low-quality documents from the set of results. Our second and third
runs rerank the top-100 results of Elasticsearch’s LM Dirichlet similarity with LambdaMART [10]
using 4 respectively 9 features. The fourth run we submit relies on the hypothesis that the
tasks of question answering and argument retrieval are close enough for a solution of the
latter to be based on methods developed for the former. To that end, we rerank the documents
retrieved by the first run using the question-answering variant of Google’s Universal Sentence
Encoder [11, 12]. As fifth and final run, we submit a template-based—in Schick and Schütze’s [13]
usage—query expansion method that enriches the original topic with a list of thematically related
keywords.

2. Learning-based Reranking of Arguments

The five approaches to argument retrieval we study start from first principles. We develop an
approach close the baseline DirchletLM model, but filtering low-quality arguments first, employ
the well-known learning to rank approach LambdaMART with and without feature selection,
and attempt to improve upon our previous approach based on neural query expansion.

2.1. Baseline: Multi-field Dirichlet-LM with Quality Filter

The surprising competitiveness of the baseline argument retrieval system [4] of last year’s
workshop [14] makes this approach a natural choice for our most basic run. We index both the
text field as well as the conclusion field of the args.me corpus using Elasticsearch’s probabilistic
DirichletLM similarity module [9]. At retrieval time, we rely on the default behavior of the
multi_match query2 to retrieve the top-1000 most relevant documents to every topic query.

However, from our last year’s experience, we recall that the args.me dataset it comparably
noisy. To filter out noise from the retrieved documents, we begin by embedding the corpus
using the transformer-encoder-based3 variant Google’s Universal Sentence Encoder [11] to
embed each of the 387,740 arguments into a 512-dimensional space. Sharing only architectural
similarities with BERT [15], the Universal Sentence Encoder uses the rule-based Penn Treebank
Tokenizer as well as more explicitly semantically-aware pretraining tasks:4

• Skip-thought is a self-supervised pretraining task, originally devised to use LSTMs to pro-
vide high-quality sentence vectors by training on a large amount of contiguous text [16].

• Natural language response suggestion imparts conversational awareness to the sentence
encoder, which fits quite well to the task at hand. The goal of this supervised task is to
predict the best short reply among millions of options in response to an email [17].

1https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-similarity.html#lm_dirichlet
2https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-multi-match-query.html
3https://tfhub.dev/google/universal-sentence-encoder-large/5
4Both in contrast to BERT’s learned subword tokenizer and solely self-supervised pretraining signal
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Table 1
Overview of the 31 learning to rank features used in our feature selection.

Argument Text Discussion Argument Query Other

Description Count Description Count Description Count Description Count Description Count

BM25 3 Discussion length 1 Premise length 1 Word count 1 Garbage 1
DirichletLM 3 Number of premises 1 Argument position (abs.) 1 Concept count 1
JelinekMercer 3 Premise length (mean) 1 Argument position (rel.) 1 Entity count 1
IB 3
DFI 3
DFR 3
Baseline 1
USE_QA_T_C 1
USE_QA_T_T 1

• Stanford natural language inference is a labeled dataset [18] of 570,000 sentence pairs.
This can be seen as a supervised variant of BERT’s next sentence prediction pre-training
task. In this instance however, entailment, contradiction, and irrelevance are explicitly
labeled in the data itself, rather than implied by the relative position of two sentences in
an unlabeled corpus of contiguous text.

We then cluster these 387,740 dense vectors using the scikit-learn [19] implementation
of k-means with default arguments and number of clusters set to a heuristically chosen value
of 100. Proceeding to manually labeling each of the clusters, we observe they carry both
syntactic as well as semantic coherence. For this approach, we are interested in those clusters
that correspond to noise. They tend to exhibit syntactic coherence, like, for instance, a cluster
that consists of YouTube links, or another that consists solely of repeated short idiosyncratic
phrases one tends to find on online debate websites (e.g., “I agree.”). Any argument belonging
to a cluster that was identified as noise is filtered out of this and subsequent runs.

2.2. Learning to Rank: LambdaMART

We submit two learning to rank runs with LambdaMART [10] trained on subsets of 31 features
belonging to 5 different feature classes. Table 1 provides an overview of the 31 features grouped
by the 5 feature classes. Overall, we implement 21 features that calculate the similarity between
(parts of) an argument and the query (labeled as argument text features in Table 1). These
21 argument text features consist of 6 retrieval models implemented in Elasticsearch, for which
we produce 3 seperate features per text field available in the args.me corpus (the premise, the
conclusion, and the argument’s topic), plus the retrieval scores of our 3 remaining runs (our
DirichletLM baseline, USE_QA_T_C, and USE_QA_T_T). Additionally, we have 3 discussion
features: (1) the length of a discussion, (2) the number of premises in a discussion, and (3) the
mean length of premises of the discussion. While these discussion features are independent of
the query, they can help build different rankers for different kinds of queries [21] (as determined
by our query features) by dedicating different subtrees to different queries or discussions.
Similarly, we have 3 query independent argument features: (1) the length of the premise, and
(2) two features that specify the absolute, respectively the relative position of the argument in
the discussion. Both discussion and argument features become only useful through our three



query features: (1) the number of words in a query, (2) the number of concepts, and (3) the
number of entities (concepts and entities as determined with babelfy [22]). LambdaMART can
dedicate different subtrees to different kinds of queries using the query features, e.g., for highly
ambiguous queries (e.g., many entities), LambdaMART could learn that arguments from long
discussions (many arguments) may be better suited than short discussions. As the last and
lonely feature in our other category, we have the Boolean feature of whether an argument is in
the garbage cluster as determined by our argument clustering or not.

We use the 31 features in a traditional learning-to-rank pipeline, reranking the top-100 results
of our Multi-field Dirichlet-LM with LambdaMART. We train our model on the Task 1 relevance
labels from Touché 2020 [14], discarding relevance labels that are not retrieved by our first-stage
retrieval. The removal of relevance labels not occurring in our first-stage retrieval reduces the
available training data from 2,298 labels to only 996 labels, but is necessary since we otherwise
risk to introduce the selection bias found in the classical LETOR dataset [23] to our models (by
showing the model many documents outside of the first-stage retrieval that it would never see
during testing). We train all our LambdaMART models with RankLib [24] leaving all settings to
their defaults.

Since we only have 996 labels to train and validate our model, we run a greedy feature
selection algorithm on our 31 features to reduce the risk that our trained LambdaMART mod-
els overfit. In a 5 fold cross-validation setup (using the topics 1–10, 11–20, 21–30, 31–40,
and 41–50 as folds), we start by selecting the feature with the highest nDCG@5 on our 996
labels. Afterwards, we select the next features by comparing the validation score of a Lamb-
daMART model trained on the already selected feature(s) with remaining feature candidates,
choosing always the feature with the highest mean nDCG@5 overall validation partitions of
our 996 labels. During the execution of this greedy feature selection, we find that a set of
4 features (premise.dirichlet, is_garbage, conclusion.dfi, baseline) and a set of 9 features (the
aforementioned 4 plus conclusion.bm25, premise.bm25, discussion_length, topic_string.dfi,
num_premises) obtain the best validation scores in our experiments. For these two feature
sets, we train two LambdaMART models without cross-validation using the first 40 topics for
training and the remaining 10 topics for validation, yielding to our two LambdaMART runs:
(1) lambdamart_small and (2) lambdamart_medium.

2.3. Reranking: Universal Sentence Encoder for Question-Answer Retrieval

This approach assumes argument retrieval to be sufficiently similar to question-answering (QA)
to warrant the instrumentalization of off-the-shelf QA technology to retrieve arguments. We
specifically use a retrieval question-answering variant of the Universal Sentence Encoder [12]
used in Section 2.1. That model5 consists of two separate encoders, one meant to encode a
question and the other meant to encode a candidate response. Both question and candidate
response are then projected into a 512-dimensional space where Euclidean distance is inversely
proportional to how well the candidate response answers the question. We use the result set
from Section 2.1 to embed every retrieved document using the response embedder. We then
encode every topic query with the question embedder and compute the dot product of every
document with every topic that retrieved it, then re-rank the arguments using this score.

5https://tfhub.dev/google/universal-sentence-encoder-qa/3
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2.4. Query Expansion: Pattern-based RoBERTa Keyword-Generation

This approach is a refined version of the method we employed in the previous iteration of the
workshop, as described in Section 3.2 in [25]. This approach employs a pattern (in that sense
introduced by Schick and Schütze [13]) that embeds the topic into an argumentative dialectical
context. We employ the list of patterns listed in Table 2. For every masked token of every
template, we retrieve the top-20 most likely tokens returned by the masked-language-model
head of RoBERTa [26]. This leaves us with 26 such top-20 lists of keywords which we combine
into a single count dictionary indexed by keyword. We then concatenate all keywords into a
single string, boosting6 each one by its count from the dictionary, concatenate that result with
the original topic query to form a new query which is then submitted to the retrieval system
from Section 2.1. Consider the example topic “Should professors get tenure?” and a truncated list
of the keyword dictionary this method generates:

education: 7, tenure: 7, accountability: 4, students: 4, teaching: 4, discipline: 4, chil-
dren: 4, safety: 3, time: 3, security: 3, parents: 3, teachers: 3, benefits: 2, diversity: 2,
retention: 2, experience: 2, compensation: 2, research: 2, term: 2, duration: 2, stigma: 2,
retirement: 2, teacher: 2, math: 2, longevity: 1, flexibility: 1

Table 2
Masked language model templates for query expansion. The masks (<mask>) indicate where the
language model is tasked with guessing the most likely word out of its vocabulary.

Stance Template

Positive

- <query>
- Yes, because of <mask> and the benefits of <mask> <mask>

- <query>
- Absolutely, I think <mask> <mask> is <mask>
- <query>
- Yes, <mask> is associated with <mask> during <mask>.

Negative

- <query>
- No, because of <mask> and the risk of <mask> <mask>.
- <query>
- Absolutely not, I think <mask> is <mask> <mask>

- <query>
- No, <mask> is associated with <mask> during <mask>.

Neutral

- <query>
- What about <mask> or <mask> <mask>

- <query>
- Don’t forget about <mask> and <mask> <mask>

- <query>
- This brings <mask> and <mask> to mind

¸

6https://www.elastic.co/guide/en/elasticsearch/reference/7.4/query-dsl-query-string-query.html#_boosting
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Table 3
Overview of the retrieval effectiveness in terms of relevance measured with nDCG@5. On the left, we
report the mean nDCG@5 and confidence intervals of our 5 runs and two baselines and the winning
run. On the right, we show violin plots for our 5 submitted runs with the median nDCG@5 highlighted.

Run nDCG@5 CI95%
Best team (Elrond) 0.720 [0.654, 0.782]
LambdaMART (small) 0.678 [0.607, 0.746]
LambdaMART (medium) 0.647 [0.573, 0.714]
DirichletLM filtered 0.626 [0.557, 0.696]
Baseline DirichletLM 0.626 [0.550, 0.691]
Baseline args.me 0.607 [0.536, 0.679]
Query expansion 0.577 [0.497, 0.646]
Question answering 0.557 [0.498, 0.615]
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3. Evaluation

We evaluate our five submitted runs and two official baselines using the official human judgments
provided by the Touché organizers [3]. The official judgments provide quality and relevance
labels for arguments using a top-5 pooling strategy. Hence, we follow the official evaluation
and report the normalized discounted cumulative gain at a depth of 5 (nDCG@5) for the quality
and relevance dimension. We include the two official baselines (one using a Dirichlet-based
probabilistic similarity and the other using the args.me search engine API)7 into our evaluations.

Table 3 provides an overview of how well each of our runs performed in terms of relevance
measured at nDCG@5. Both LambdaMART runs improve upon the baseline DirichletLM
which re-ranks the top-100 results. We observe that the LambdaMART (small) model with
only 4 features is our best run in terms of relevance, obtaining substantially better nDCG@5
scores than baseline DirichletLM, and the LambdaMART (medium) model with 9 features.
The substantial improvement in nDCG@5 (0.031 in the mean and 0.029 in the median) of the
LambdaMART (small) model over the LambdaMART (medium) model indicates that 9 features
already yield some overfitting in our cross-validation setup (which is plausible given only a few
relevance labels were available). Still, we find that the DirichletLM implementation of the best
team (obtaining an nDCG@5 of 0.720) substantially outperforms our LambdaMART models,
indicating that improving the LambdaMART models using better features and more training
data (which become available next year) is still possible. On the other side of the spectrum are
template-based query expansion and re-ranking based on question answering, both of which
exhibit worse effectiveness—respectively 0.577 and 0.557—in relation to the baseline which they
both rely on. A satisfactory explanation lies in the unsupervised nature of both approaches and
the absence of any fine-tuning on the argumentation domain. We expect both these approaches
to improve by using human relevance judgments as a training signal.

Table 4 provides an overview of how well each of our runs performed in terms of quality
measured at nDCG@5. We observe a correlation between quality and relevance: the ranking of
our solutions along either dimension only differs in that the LambdaMART models exchange
places. The LambdaMART (medium) model retrieves higher-quality arguments than its coun-
terpart with 4 features—respectively 0.810 and 0.804 (mean nDCG@5). This correlation seems
to imply a relation between the quality of an argument and its relevance to a particular topic.

7https://www.args.me/api-en.html
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Table 4
Overview of the retrieval effectiveness in terms of quality measured with nDCG@5. On the left, we
report the mean nDCG@5 and confidence intervals of our 5 runs and two baselines and the winning
run. On the right, we show violin plots for our 5 submitted runs with the median nDCG@5 highlighted.

Run nDCG@5 CI95%
Best team (Heimdall) 0.841 [0.803, 0.876]
LambdaMART (medium) 0.810 [0.771, 0.847]
LambdaMART (small) 0.804 [0.765, 0.842]
Baseline DirichletLM 0.796 [0.755, 0.838]
DirichletLM filtered 0.796 [0.756, 0.833]
Query expansion 0.779 [0.735, 0.817]
Baseline args.me 0.717 [0.657, 0.768]
Question answering 0.624 [0.566, 0.685]
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4. Summary

Our participation in the first subtask of Touché 2021 consisted of five runs spanning four
categories. First, we rely on the robustness of a multi-field retrieval DirichletLM index to return
arguments from the args.me corpus, which we additionally sanitize using embeddings from
Google’s Universal Sentence Encoder, clustered using k-means. Second, we submit two runs
generated with the feature-based learning to rank model LambdaMART, leveraging 4 respectively
9 features trained on Touché Topics 1 through 50 published in 2020. Third, we re-rank the
results of the first method, using a score returned by a question-answering expert model, with
the assumption that argument retrieval is close enough to the modality of that model to warrant
such a use. Fourth, we leverage RoBERTa’s masked language modeling ability to generate a
weighted list of topical keywords that can be used to augment the original query. Altogether, the
LambaMART models outperform the baseline, yet there is still room for improvement compared
to the effectiveness of the respective best-performing approaches submitted.

References

[1] G. Blank, B. C. Reisdorf, The participatory web: A user perspective on web 2.0, Information,
Communication & Society 15 (2012) 537–554.

[2] Y. Ajjour, H. Wachsmuth, J. Kiesel, M. Potthast, M. Hagen, B. Stein, Data Acquisition for
Argument Search: The args.me corpus, in: C. Benzmüller, H. Stuckenschmidt (Eds.), 42nd
German Conference on Artificial Intelligence (KI 2019), Springer, Berlin Heidelberg New
York, 2019, pp. 48–59. doi:10.1007/978-3-030-30179-8\_4.

[3] A. Bondarenko, L. Gienapp, M. Fröbe, M. Beloucif, Y. Ajjour, A. Panchenko, C. Biemann,
B. Stein, H. Wachsmuth, M. Potthast, M. Hagen, Overview of Touché 2021: Argument
Retrieval, in: D. Hiemstra, M.-F. Moens, J. Mothe, R. Perego, M. Potthast, F. Sebastiani (Eds.),
Advances in Information Retrieval. 43rd European Conference on IR Research (ECIR 2021),
volume 12036 of Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York,
2021, pp. 574–582. URL: https://link.springer.com/chapter/10.1007/978-3-030-72240-1_67.
doi:10.1007/978-3-030-72240-1\_67.

[4] M. Potthast, L. Gienapp, F. Euchner, N. Heilenkötter, N. Weidmann, H. Wachsmuth,

http://dx.doi.org/10.1007/978-3-030-30179-8_4
https://link.springer.com/chapter/10.1007/978-3-030-72240-1_67
http://dx.doi.org/10.1007/978-3-030-72240-1_67


B. Stein, M. Hagen, Argument search: Assessing argument relevance, in: B. Piwowarski,
M. Chevalier, É. Gaussier, Y. Maarek, J. Nie, F. Scholer (Eds.), Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR 2019, Paris, France, July 21-25, 2019, ACM, 2019, pp. 1117–1120. URL:
https://doi.org/10.1145/3331184.3331327. doi:10.1145/3331184.3331327.

[5] M. Potthast, M. Hagen, B. Stein, The Dilemma of the Direct Answer, SIGIR Forum 54
(2020). URL: http://sigir.org/forum/issues/june-2020/.

[6] H. Wachsmuth, N. Naderi, Y. Hou, Y. Bilu, V. Prabhakaran, T. A. Thijm, G. Hirst, B. Stein,
Computational Argumentation Quality Assessment in Natural Language, in: P. Blunsom,
A. Koller, M. Lapata (Eds.), 15th Conference of the European Chapter of the Association
for Computational Linguistics (EACL 2017), 2017, pp. 176–187. URL: http://aclweb.org/
anthology/E17-1017.

[7] H. Wachsmuth, M. Potthast, K. Al-Khatib, Y. Ajjour, J. Puschmann, J. Qu, J. Dorsch,
V. Morari, J. Bevendorff, B. Stein, Building an Argument Search Engine for the Web, in:
K. Ashley, C. Cardie, N. Green, I. Gurevych, I. Habernal, D. Litman, G. Petasis, C. Reed,
N. Slonim, V. Walker (Eds.), 4th Workshop on Argument Mining (ArgMining 2017) at
EMNLP, Association for Computational Linguistics, 2017, pp. 49–59. URL: https://www.
aclweb.org/anthology/W17-5106.

[8] L. Ein-Dor, E. Shnarch, L. Dankin, A. Halfon, B. Sznajder, A. Gera, C. Alzate, M. Gleize,
L. Choshen, Y. Hou, Y. Bilu, R. Aharonov, N. Slonim, Corpus wide argument mining - A
working solution, in: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, AAAI Press, 2020, pp. 7683–7691.
URL: https://aaai.org/ojs/index.php/AAAI/article/view/6270.

[9] C. Zhai, J. Lafferty, A study of smoothing methods for language models applied to
ad hoc information retrieval, in: Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’01,
Association for Computing Machinery, New York, NY, USA, 2001, pp. 334–342. URL:
https://doi.org/10.1145/383952.384019. doi:10.1145/383952.384019.

[10] C. J. C. Burges, K. M. Svore, Q. Wu, J. Gao, Ranking, Boosting, and Model Adaptation, Tech-
nical Report MSR-TR-2008-109, 2008. URL: https://www.microsoft.com/en-us/research/
publication/ranking-boosting-and-model-adaptation/.

[11] D. Cer, Y. Yang, S. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant, M. Guajardo-
Cespedes, S. Yuan, C. Tar, Y. Sung, B. Strope, R. Kurzweil, Universal sentence encoder,
CoRR abs/1803.11175 (2018). URL: http://arxiv.org/abs/1803.11175. arXiv:1803.11175.

[12] Y. Yang, D. Cer, A. Ahmad, M. Guo, J. Law, N. Constant, G. Hernandez Abrego, S. Yuan,
C. Tar, Y.-h. Sung, B. Strope, R. Kurzweil, Multilingual universal sentence encoder for
semantic retrieval, in: Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics: System Demonstrations, Association for Computational Linguis-
tics, Online, 2020, pp. 87–94. URL: https://www.aclweb.org/anthology/2020.acl-demos.12.
doi:10.18653/v1/2020.acl-demos.12.

[13] T. Schick, H. Schütze, Exploiting cloze-questions for few-shot text classification and
natural language inference, in: Proceedings of the 16th Conference of the European

https://doi.org/10.1145/3331184.3331327
http://dx.doi.org/10.1145/3331184.3331327
http://sigir.org/forum/issues/june-2020/
http://aclweb.org/anthology/E17-1017
http://aclweb.org/anthology/E17-1017
https://www.aclweb.org/anthology/W17-5106
https://www.aclweb.org/anthology/W17-5106
https://aaai.org/ojs/index.php/AAAI/article/view/6270
https://doi.org/10.1145/383952.384019
http://dx.doi.org/10.1145/383952.384019
https://www.microsoft.com/en-us/research/publication/ranking-boosting-and-model-adaptation/
https://www.microsoft.com/en-us/research/publication/ranking-boosting-and-model-adaptation/
http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/1803.11175
https://www.aclweb.org/anthology/2020.acl-demos.12
http://dx.doi.org/10.18653/v1/2020.acl-demos.12


Chapter of the Association for Computational Linguistics: Main Volume, Association
for Computational Linguistics, Online, 2021, pp. 255–269. URL: https://www.aclweb.org/
anthology/2021.eacl-main.20.

[14] A. Bondarenko, M. Fröbe, M. Beloucif, L. Gienapp, Y. Ajjour, A. Panchenko, C. Biemann,
B. Stein, H. Wachsmuth, M. Potthast, M. Hagen, Overview of Touché 2020: Argument
Retrieval, in: Working Notes Papers of the CLEF 2020 Evaluation Labs, 2020.

[15] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidirectional
transformers for language understanding, CoRR abs/1810.04805 (2018). URL: http://arxiv.
org/abs/1810.04805. arXiv:1810.04805.

[16] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, R. Urtasun, A. Torralba, S. Fidler, Skip-
thought vectors, in: C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett (Eds.),
Advances in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada,
2015, pp. 3294–3302. URL: http://papers.nips.cc/paper/5950-skip-thought-vectors.

[17] M. L. Henderson, R. Al-Rfou, B. Strope, Y. Sung, L. Lukács, R. Guo, S. Kumar, B. Miklos,
R. Kurzweil, Efficient natural language response suggestion for smart reply, CoRR
abs/1705.00652 (2017). URL: http://arxiv.org/abs/1705.00652. arXiv:1705.00652.

[18] S. R. Bowman, G. Angeli, C. Potts, C. D. Manning, A large annotated corpus for learning
natural language inference, in: L. Màrquez, C. Callison-Burch, J. Su, D. Pighin, Y. Marton
(Eds.), Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, The Association for
Computational Linguistics, 2015, pp. 632–642. URL: https://doi.org/10.18653/v1/d15-1075.
doi:10.18653/v1/d15-1075.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine
Learning Research 12 (2011) 2825–2830.

[20] S. Clinchant, É. Gaussier, Information-based models for ad hoc IR, in: F. Crestani,
S. Marchand-Maillet, H. Chen, E. N. Efthimiadis, J. Savoy (Eds.), Proceeding of the 33rd
International ACM SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR 2010, Geneva, Switzerland, July 19-23, 2010, ACM, 2010, pp. 234–241. URL:
https://doi.org/10.1145/1835449.1835490. doi:10.1145/1835449.1835490.

[21] C. Macdonald, R. L. T. Santos, I. Ounis, On the usefulness of query features for learning
to rank, in: X. Chen, G. Lebanon, H. Wang, M. J. Zaki (Eds.), 21st ACM International
Conference on Information and Knowledge Management, CIKM’12, Maui, HI, USA, October
29 - November 02, 2012, ACM, 2012, pp. 2559–2562. URL: https://doi.org/10.1145/2396761.
2398691. doi:10.1145/2396761.2398691.

[22] A. Moro, A. Raganato, R. Navigli, Entity linking meets word sense disambiguation:
a unified approach, Trans. Assoc. Comput. Linguistics 2 (2014) 231–244. URL: https:
//tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/291.

[23] T. Minka, S. Robertson, Selection bias in the letor datasets, in: SIGIR Workshop on
Learning to Rank for Information Retrieval, ACM, Singapore, 2008, pp. 48–51.

[24] V. Dang, The lemur project-wiki-ranklib, Lemur Project (2013). Available: https:
//sourceforge.net/p/lemur/wiki/RankLib.

https://www.aclweb.org/anthology/2021.eacl-main.20
https://www.aclweb.org/anthology/2021.eacl-main.20
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://papers.nips.cc/paper/5950-skip-thought-vectors
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
https://doi.org/10.18653/v1/d15-1075
http://dx.doi.org/10.18653/v1/d15-1075
https://doi.org/10.1145/1835449.1835490
http://dx.doi.org/10.1145/1835449.1835490
https://doi.org/10.1145/2396761.2398691
https://doi.org/10.1145/2396761.2398691
http://dx.doi.org/10.1145/2396761.2398691
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/291
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/291
https://sourceforge.net/p/lemur/wiki/RankLib
https://sourceforge.net/p/lemur/wiki/RankLib


[25] C. Akiki, M. Potthast, Exploring Argument Retrieval with Transformers, in: L. Cappellato,
C. Eickhoff, N. Ferro, A. Névéol (Eds.), Working Notes Papers of the CLEF 2020 Evaluation
Labs, volume 2696, 2020. URL: http://ceur-ws.org/Vol-2696/.

[26] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoy-
anov, Roberta: A robustly optimized BERT pretraining approach, CoRR abs/1907.11692
(2019). URL: http://arxiv.org/abs/1907.11692. arXiv:1907.11692.

http://ceur-ws.org/Vol-2696/
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692

	1 Introduction
	2 Learning-based Reranking of Arguments
	2.1 Baseline: Multi-field Dirichlet-LM with Quality Filter
	2.2 Learning to Rank: LambdaMART
	2.3 Reranking: Universal Sentence Encoder for Question-Answer Retrieval
	2.4 Query Expansion: Pattern-based RoBERTa Keyword-Generation

	3 Evaluation
	4 Summary

