
Development of an IR System for Argument Search
Notebook for the Touché Lab on Argument Retrieval at CLEF 2021

Marco Alecci
1
, Tommaso Baldo

1
, Luca Martinelli

1
and Elia Ziroldo

1

1University of Padua, Italy

Abstract
Search engines are the easiest way to find the information that we need in our daily life, and they

have became more and more powerful in the last years. Anyway, they are still far from perfection, and

some problems afflict also the more advanced search engines. In this paper we discuss our approach to

the problem of argument retrieval documenting our participation to the CLEF 2021 Touché Task 1. In

particular, we present our IR system for the args.me corpus, a collection of documents extracted from

web debate portals. After a pre-processing phase of the documents, we tried to use different methods

like query expansion and re-ranking based on sentiment analysis. In the final part we report the results

of our experiments and discuss about them and about other possible strategies that can be applied in

the future.
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1. Introduction

In the last decade, our everyday life has became more and more strictly connected to the web

and the use of search engines is one of the most common tasks in our daily routine. Indeed

they are the easiest and most reliable way to get information about anything we need, but

unfortunately they are still far from perfection. One of the problems that afflict search engines

concerns the retrieval of arguments, that according to previous existing works, could be defined

as a single conclusion supported by one or more premises [1].

To give our contribution to the resolution of this problem, we decided to participate to

the Touché 2021 Lab [2] on argument retrieval
1

proposed by CLEF
2

because we believe that

argument retrieval is a crucial feature , especially in these days, when the web sources such as

social media community and blogs are growing faster and faster. Among two different Tasks

proposed from Touchè Lab we decided to take part to Task 1 that regards argument retrieval

from debates on controversial topics. The dataset is the one used by the argument search engine
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args.me [3] and we chose to use the downloadable corpus
3
.

The paper is organized as follows: in Sec. 2 we describe some related works concerning

argument retrieval. Then, in Sec. 3 we examine our approach to solve the task. After the

pre-processing of the documents we tried to implement three different strategies : different

weights for the fields of a document, query expansion with synonyms from WordNet
4

and

re-ranking with sentiment analysis. To select the parameters and the weights used by our

methods, we relied on the scores obtained from our system using the topics from Touché 2020

Lab. Going further, in Sec. 4 we describe the experimental setup we used during our works,

meanwhile Sec. 5 is for result analysis. Finally, Sec. 6 is about our final considerations and

discussions for possible future works.

2. Related Work

Different previous studies has been carried out to try to resolve the problem of argument

search, but our starting point was the overview of the last years edition of the Touché Lab [4].

The common approach followed by the participating teams was constituted by three main parts:

(1) a retrieval strategy; (2) an augmentation component like query expansion (3) a re-ranking

component which modifies the score of the initially retrieved documents.

The most two used model were BM25 and LMDirichlet, while other few teams used DPH or

TFIDF. The argument search engine args.me [5], from which the corpus was extracted, is based

on the retrieval model BM25. Anyway, previous studies compared different retrieval models

and demonstrated how LMDirichlet and DPH are better suited for argument retrieval [6].

2.1. Pre-processing

A fundamental step for argument retrieval is the pre-processing of the documents. One

possible approach is the one followed by Staudte et al. [7] that regards primarily the pre-

processing of the words instead of the whole documents. They started with basic things such as

removing punctuation, URL and square brackets, but then they also introduced more specific

rules such replacing a repetition (>2) of the same letter with a single one. Indeed, in blogs and

social media users frequently write in colloquial language repeating the same letter more than

once. They also deleted arguments smaller than 26 words since users make short arguments to

express agreement or disagreement with a previous argument rather than to express their own

reasons.

2.2. Query expansion

A query represents the information need by a user, but usually they are a bit too short to

find the most relevant documents. For example, due to a vocabulary mismatch the Information
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Retrieval (IR) system can discard a document that in reality was relevant. To avoid this problem

query are often expanded with more terms to reduce the gap between the query and concepts

that users wanted to express. The approach was followed by Akiki et al. [8] make use of GPT-2

model [9] to add argumentative text to the original query. Then a new set of queries is built

from the generated sentences. Another possible solution is the use of lexical properties to add

new terms to the original query. Bundesmann et al. [10] implement this strategy by adding

synonyms taken from WordNet database.

2.3. Re-ranking

After the retrieval of the most relevant documents, an IR system can re-rank the candidates

to consider additional criteria that can involve different features of the documents. In the

paper provided by Shahshahani et al. [11], they described how their final ranking is produced

using the learning-to-rank library RankLib
5

to incorporate argument quality and Named Entity

Recognition. Their assumption is that recognized entities mean that the premises are more

persuasive and effective. Another approach presented by Dumani et al. [12] is to group premises

that support the same conclusion. After this is possible to calculate a score that indicate

how much a premise is convincing in comparison to other premises of the same claim. The

solution provided by Bundesmann et al. [10] uses a machine learning approach to process the

initial documents and assign them a score indicating their argumentative quality. According

to Wachsmuth et al. [13] they annotated a score for each one of these three aspects: Logical

quality, Rhetorical quality and Dialectical quality. Another possible strategy to follow is the

use of sentiment analysis to determine the sentiment of a document, and so how much its

author is emotionally involved. Indeed to deal with argument retrieval, it is crucial to be able to

understand the emotions and the writer’s frame of mind. Since several studies [3] underline

that an emotional argument is more powerful than a neutral or impassive one, Staude et al.

[7] decided to encourage the emotional documents combining their DPH score with the one

calculated with sentiment analysis. By contrast, another team from the previous edition of

Touché, decided to assign an higher score to the neutral arguments, assuming that a neutral

sentiment coincides with higher relevance of a document.

3. Methodology

As a starting point, we pre-processed all the documents contained in the args.me corpus,

removing stop words and applying different filters. To create the index and to perform the

search we relied on Apache Lucene
6
. Since BM25 and LMDirichlet were the most used models

in the previous edition of Touché Lab, and since also args.me search engine relies on BM25 we

decided to use the Lucene’s implementation of these two models. Then we tried three different

methods to improve the performance of our IR system:

• Assigning different weights to different fields of the documents.

• Query expansion using synonyms extracted from WordNet.
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• Re-ranking using the score obtained by performing sentiment analysis on the documents.

First, we followed each one of these strategies separately to find the best parameters/weights to

use with them. After, we tried to combine all the three techniques at the same time to see the

effects with respect to the base implementation.

3.1. Pre Processing

Our approach in creating Lucene Documents
7

was to store different information in indepen-

dent fields, in order to assign distinct weights to each field. Additionally to the field that store

the identification number of the document and the field that store the stance of the document,

we decided to create three other fields for the premises, the conclusion and the body. The

body field, in particular, contains both premises and conclusion, and extra information about

the document. These information are, in order, acquisition time, source URL, topic, author,

author role and author organization, source domain and discussion title. We decided to not keep

the source text because we noticed that it contains too much useless terms, such as copyright

information, navigation menus, site map etc. . . .

We decided to adopt the ClassicTokenizer8
provided by Apache Lucene. This is a simple

grammar-based tokenizer constructed with the lexical analyzer generator JFlex. It’s designed

to be a good tokenizer for most European-language documents: it splits words at punctuation

characters, removing them. However, a dot that’s not followed by a whitespace is considered

part of a token. As a result it splits words at hyphens, unless there’s a number in the token, in

which case the whole token is interpreted as a product number and is not split. It recognizes

email addresses and internet hostnames as one token.

Beyond this we implemented the LowerCaseFilter9
, in order to normalize all tokens to

lower case. This also allows terms of the query to match with terms in the documents written, for

example, in upper case. The next filter we used is the LengthFilter10
. This filter keeps tokens

with a length between 3 and 20 characters, removing the others. A significant improvement on

the score has been noted, due to the exclusion of many words not informative, such as I, be,
me, a, etc. The last filter we applied is a custom filter that excludes equal consecutive letters if

they’re more than three. This filter is useful to remove typos or words emphasized e.g. helllo or

yesssss becames relatively hello and yess.

3.1.1. StopLists

Stopword filtering is a common step in preprocessing text because it removes lots of not

informative words. We realized that stoplists have a considerable impact on the nDCG@5 score.

So we tried different lists, as reported in Tab. 1 and Tab. 2. The nDCG@5 was computed using

only Lucene’s LMDirichlet implementation with no pre processing and without following

7
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any of the techniques previously described, in order to take into account only the stoplists.

The max score were obtanied with the stoplist EBSCOhost
11

: it is a list of 24 words used in

EBSCOhost medical databases MEDLINE and CINAHL. In general we saw that lists with more

words generally decrease the score. In fact using an empty stoplist the score was overall on the

average. After that we tried to create a stoplist with the 150 most frequent terms in the index

(150 custom). We found that it has an average score, too. Then we have integrated EBSCOhost

with the ten, twenty and thirty most frequent terms not yet present in the stoplist. The score

with the first two attempts was just a little lower than stock EBSCOhost, and it decreases

significantly adding more words (e.g. EBSCOhost+30), confirming that in this situation a small

stoplist is the best solution.

Stock stoplists Number of words nDCG@5
tent1 400 0.5599

Air3z4 1298 0.5757

zettair 469 0.5790

smart 571 0.5895

terrier 733 0.5919

cook1988 221 0.6043

taporwave 485 0.6068

postgre 127 0.6078

nltk 153 0.6078

lexisnexis 100 0.6131

NO STOPLIST 0 0.6189

corenlp 28 0.6211

okapi 108 0.6224

ranksnl 32 0.6249

lucene_elastic 33 0.6256

ovid 39 0.6259

lingpipe 76 0.6260

EBSCOhost 24 0.6265

Table 1: nDCG@5 scores obtained with different stock stoplists.

Custom stoplists Number of words nDCG@5
150_custom 150 0.6066

ebsco+10 34 0.6258

ebsco+20 44 0.6258

ebsco+30 54 0.6123

Table 2: nDCG@5 scores obtained with custom stoplists.
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3.1.2. Stemmers

Stemming is the reduction of a word into its base form, called stem. In particular we tried

in four different ways, synthesized in Tab. 3. The nDCG@5 was computed using only Lucene’s

LMDirichlet implementation with no pre processing and without following any of the tech-

niques previously described, in order to take into account only the stemmers. First of all we

didn’t use any form of stemming. After that we tried to implement three different stemmers

included in Lucene package. We started with the EnglishMinimalStemFilter12
, that sim-

ply stems plural English words to their singular form. Then, in the second way we used the

KStemFilter13
. This filter implements the Krovetz stemmer, an hybrid algorithmic-dictionary

that produces words. For the last, we tried the most used filter in IR, the Porter stemmer,

implemented in Lucene as PorterStemFilter14
, that eliminates the longest suffix possibile,

working in steps and trying to delete each suffix every time, until it reaches the base form

for generate stems. As already seen in Sec. 3.1.1, adding complexity to the system, the score

obtained decreases, this probably due to limitations of stemmers used [14].

Stem Filter nDCG@5
No Stem 0.6265

English Minimal Stem 0.6184

Krovetz Stem 0.5747

Porter Stem 0.5401

Table 3: nDCG@5 scores obtained using different stemmers.

3.2. Different fields’ weights

Since documents have more than one field to search in, at query time it is possible to assign

different weights to each field. In this way, a term found in a field with an higher weight, will

also have an higher impact on the final score of the document. As already explained in Sec. 3.1,

we decided to have three different fields containing respectively the body, the premises and the

conclusion. We noticed that premises are the most informative field, instead the conclusions

are often composed by one single term, and very rarely this is relevant. According to these

considerations, the best score would be obtained assigning an higher weight to the premises,

and a lower one to the body and the conclusions.

To choose the best values, we wrote a Python program that automatically calculates, using

trec_eval, the nDCG@5 among all possibilities of weights (to each field) from 0 to 1, with a step

of 0.25. The best five combinations of weights are in the Tab. 4, using BM25 as similarity, and

in the Tab. 5, using LMDirichlet similarity. In both cases we pre-processed the documents

using the best options obtained in Sec. 3.1.1 and Sec. 3.1.2: no stemmers and EBSCO stoplist. In

12
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the Tab. 9 in Sec. 7 are listed all the tried combinations for both similarities. These results are in

agreement with the previous considerations and they confirm our theories.

Body Premises Conclusions nDCG@5
0.0 1.0 0.25 0.4150
0.25 1.0 0.25 0.4143

0.5 1.0 0.25 0.4032

0.5 0.75 0.25 0.4029

0.25 0.75 0.25 0.4023

Table 4: nDCG@5 scores obtained with different fieds’ weights and BM25.

Body Premises Conclusions nDCG@5
0.25 1 0 0.7379

0 1 0 0.7345

0.25 0.75 0 0.7331

0.5 1 0 0.7239

0.5 0.75 0 0.7123

Table 5: nDCG@5 scores obtained with different fields’ weights and LMDirichlet.

3.3. Query Expansion

Query expansion is a technique used to match more relevant documents, by expanding or

reformulating the basic search query. To improve the retrieval performances of our model we

tried to integrate query expansion in our IR system by adding to a query all the synonyms of

the terms that are left after the pre-processing phase. In particular, we decided to use WordNet:

a lexical database of semantic relations between words. In fact the SynonymMap15
object of the

WordNet package allows to load the file downloaded from WordNet
16

into an hash map that can

be used for fast high-frequency lookups of synonyms. We decided to assign a different weight

to the synonyms added at query time to give them more or less importance in the search. We

tried different values and the results are reported in Tab. 6. We pre-processed the documents

using the best options obtained in Sec. 3.1.1 and Sec. 3.1.2: no stemmers and EBSCO stoplist. As

can be noticed, using BM25 similarity with a weight of 0.4 to the synonyms there is an increase

of the evaluated score. On the contrary, using LMDirichlet similarity adding synonyms brings

no improvement. This probably is caused by an increment of noise that causes matches with

non relevant documents, decreasing the final score.
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nDCG@5
Synonyms Weight BM25 LMDirichlet

No synoynms 0.3938 0.7345
0.1 0.4113 0.6986

0.2 0.4159 0.6483

0.3 0.3973 0.5913

0.4 0.3898 0.5267

0.5 0.3764 0.4731

0.6 0.3596 0.4273

0.7 0.3304 0.3847

0.8 0.2931 0.3406

0.9 0.2584 0.2892

1.0 0.2253 0.2564

Table 6: nDCG@5 scores obtained with different weight to synonyms in query expansion.

3.4. Re-ranking

In the last step, we re-ranked the top 30 documents retrieved from the previous phase

performing a sentiment analysis on the arguments. To perform the analysis we used the VADER

tool [15] and in particular the Java port provided by Animesh Pandey on Github
17

. This tool

allows to compute a value between -1 and 1 for each argument. Values greater than 0 represent

a positive sentiment from the author, while values lower than 0 indicate negativity. The values

that are closer to 0 express neutral sentiment.

We decided to try two different approaches to do the re-ranking:

1. Promote emotional documents combining the score from the previous phase with the

sentiment analysis score, using Eq. 1

1

3
* 𝑆𝑐𝑜𝑟𝑒+ 2

3
* |𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡| * 𝑆𝑐𝑜𝑟𝑒 (1)

2. Promote neutral documents instead of emotional ones, using Eq. 2

1

3
* 𝑆𝑐𝑜𝑟𝑒− 2

3
* |𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡| * 𝑆𝑐𝑜𝑟𝑒 (2)

We decided to give more importance to the sentiment score, using an higher value in Eq. 1

and Eq. 2, since using lower values we could not observe any improvements. We tried to re-rank

both with sentiment score computed on premises and on conclusions to see which strategy

could be the right one. The results are provided in Tab. 7. We pre-processed the documents

using the best options obtained in Sec. 3.1.1 and Sec. 3.1.2: no stemmers and EBSCO stoplist.
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As we can see, with the sentiment scores computed on the conclusion the scores decrease

drastically with both approaches and with both models. This is probably due to the fact that

conclusions are often composed by few words (sometimes only one) and so the sentiment score

doesn’t perfectly express the true sentiment of the author. Using the sentiment scores computed

on the premises, the scores drops almost to zero when we give more importance to neutral

documents, while we can see a little improvement of the score (BM25) and almost the same

value (LMDirichlet) when we promote emotional documents. Hence we can affirm that an

higher absolute value of the sentiment score leads to better argumentation and so to a general

high relevance of the retrieved documents.

nDCG@5
Sentiment on premises Sentiment on conclusions
BM25 LMDirichlet BM25 LMDirichlet

No sentiment 0.3938 0.7345 0.3938 0.7345
Neutral is better 0.0811 0.0569 0.0811 0.0569

Emotional is better 0.4362 0.6952 0.1423 0.1414

Table 7: nDCG@5 scores obtained with BM25 and LMDirichlet similarities and different con-

figurations of sentiment analysis.

4. Experimental Setup

Touchè Task 1 offers us the possibilities to access the args.me corpus via the API of args.me

search engine or downloading the file containing all the documents. We decided to download

the entire corpus and in the particular the version updated to 2020-04-01. For the Touchè

Task 1 we also used TIRA platform [16] to submit and evaluate our model. Indeed, a working

implementation of your approach is available in TIRA.

4.1. Data Description

The updated version of the args.me corpus contains 387,740 arguments crawled from four

debate portals (debatewise.org, idebate.org, debatepedia.org, and debate.org), and 48 arguments

from Canadian parliament discussions. The arguments were extracted using heuristics that

are designed for each debate portal. Each argument is identified by an ID an it is constituted

by a conclusion and one or more premises. For each document there are also present some

information about the context like the source URL, the title of the discussion and many others.

For what concern the topics, Touché Lab provided us 50 controversial topics (the query

potentially issued by a user), Each topic has both pro and con relevant arguments present in the

document collection.



4.2. Evaluation measures

We used the Normalized Discounted Cumulated Gain (nDCG) [17] score with an evaluation

depth of 5 since this is the same evaluation measure used by Touché Lab to evaluate our runs.

In particular, we used the implementation provided by the trec_eval library
18

, to measure the

performance of our IR system. The nDCG is the result of Eq. 3. Parameter 𝑏 indicates the

patience of the user in scanning the result lists, and usually it is a value of 2 for an impatient user,

or 10 for a patient user. To compute the Discounted Cumulated Gain (DCG) score, trec_eval uses

as parameter 𝑏 the value of 2. Since the result is not bounded in [0,1], it is necessary normalize

the score dividing nDCG by the Ideal Discounted Cumulated Gain (iDCG), provided by Touché

Lab, as can be seen in Eq. 4. The iDCG can be obtained sorting all relevant documents in the

corpus by their relative relevance, and producing the maximum possible DCG through position

5.

𝐷𝐶𝐺@5 =
5∑︁

𝑛=1

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑛
max (1, log𝑏(𝑖+ 1))

(3)

𝑛𝐷𝐶𝐺@5 =
𝐷𝐶𝐺@5

𝑖𝐷𝐶𝐺@5
(4)

5. Results and Discussion

5.1. Results

As previously mentioned, we first tried all the different techniques separately to choose the best

parameters/weights for each method, then we merged all together using the three strategies at

the same time. In all cases we pre-processed the documents using the best options obtained

in Sec. 3.1.1 and Sec. 3.1.2: no stemmers and EBSCO stoplist. In Tab. 8 we reported the best

score achieved for each method and in the last line we show the score obtained by using all the

techniques.

nCDG@5
BM25 LMDirchlet

Base 0.3938 0.7345

Best different fields weights 0.4698 0.8026
Best query expansion with synonyms 0.4159 0.6986

Best re-ranking with sentiment analysis 0.4362 0.6952

Merging all three strategies 0.4521 0.6661

Table 8: nDCG@5 final scores obtained with the different presented strategies.

Looking at Tab. 8 we can notice that with the BM25 similarity all the three methods worked

well increasing the score of the base case, but the score achieved with the combination of all the

three techniques is not the best one. For what concerns the LMDirichlet model we can see

18
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that the final score is lower than the base one, while the best is the one that doesn’t use query

expansion and sentiment analysis. Hence, these two techniques have not worked well with the

LMDirichlet model and so they leads to lower performance when merging all the techniques.

The score achieved with the query expansion is very low and it’s almost half of the base one.

One possible explanation to this phenomenon is the fact that there are too many synonyms

for each word and this introduces noise that degrades the performance of the search. In fact

according to previous studies [18] there is no way using only WordNet to select an appropriate

subset of synonyms.

The sentiment analysis leads to a very small improvement for BM25 but for LMDirichlet

the score is almost the same. Looking manually at the documents retrieved after the first phase,

we discovered that almost all the documents in the top positions have an high sentiment value.

According to this, the re-ranking probably doesn’t work very well because the documents with

an higher sentiment value are already marked as the most relevant ones. Hence it isn’t possible

to improve the nDCG@5 score because the top ranked documents are also the ones with the

higher sentiment score.

Finally, we can affirm that the LMDirichlet model is better than BM25 for argument retrieval

confirming the results obtained by the teams of the previous edition of Touché Argument

Retrieval Lab [4].

6. Conclusions and Future Work

We implemented our IR system to retrieve the most relevant arguments to the given queries

provided in the Touché shared task. We used both BM25 and LMDirichlet models, but we

demonstrate that LMDirichlet is much better for what concern argument retrieval. We also

show how much important is to give the right weight to the different parts of a document,

since a lot of information can be useless during the search. Anyway there are some aspects that

can be improved to reach better performances. For example, instead of expanding the queries

simply adding all the synonyms of a specific word, it would be better to associate a score to

each synonym to indicate how much the two word are similar, and then use it to weight the

different synonyms while performing the query. Another improvement can be done by using a

better formula to re-rank the documents or maybe using a different score instead of the one

retrieved with sentiment analysis. For example, with a machine learning approach it would be

possible to train a model to assign a quality score to each argument and then use this value to

re-rank the top retrieved documents.

To conclude, we presented our approach to the problem of argument retrieval and we think

that in the future always better solutions will be presented, especially with the help of machine

learning.
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7. APPENDIX A : Table with all combinations of field’s weights
with BM25 and LMDirichlet

Body Premises Conclusions nDCG@5 BM25 nDCG@5 LMDirichlet
0 0 0 0.0024 0.0024

0 0 0.25 0.153 0.1618

0 0 0.5 0.153 0.1618

0 0 0.75 0.153 0.1618

0 0 1 0.153 0.1618

0 0.25 0 0.3938 0.7345

0 0.25 0.25 0.3191 0.6147

0 0.25 0.5 0.2954 0.5228

0 0.25 0.75 0.2835 0.4491

0 0.25 1 0.2631 0.414

0 0.5 0 0.3938 0.7345

0 0.5 0.25 0.3827 0.6606

0 0.5 0.5 0.3191 0.6147

0 0.5 0.75 0.3035 0.5709

0 0.5 1 0.2954 0.5228

0 0.75 0 0.3938 0.7345

0 0.75 0.25 0.3996 0.6829

0 0.75 0.5 0.3516 0.6524

0 0.75 0.75 0.3191 0.6147

0 0.75 1 0.3061 0.5947

0 1 0 0.3938 0.7345

0 1 0.25 0.415 0.6849

0 1 0.5 0.3827 0.6606

0 1 0.75 0.3438 0.6455

0 1 1 0.3191 0.6147

0.25 0 0 0.3309 0.6513

0.25 0 0.25 0.2562 0.5294

0.25 0 0.5 0.2397 0.4395

0.25 0 0.75 0.2326 0.4001

0.25 0 1 0.233 0.3596

0.25 0.25 0 0.3875 0.7095

0.25 0.25 0.25 0.351 0.6345

0.25 0.25 0.5 0.3036 0.585

0.25 0.25 0.75 0.2902 0.5395

0.25 0.25 1 0.2757 0.4881

0.25 0.5 0 0.3817 0.7239

0.25 0.5 0.25 0.3773 0.6605

0.25 0.5 0.5 0.3362 0.6278



Table continued from previous page
Body Premises Conclusions nDCG@5 BM25 nDCG@5 LMDirichlet
0.25 0.5 0.75 0.3094 0.5938

0.25 0.5 1 0.2992 0.5648

0.25 0.75 0 0.3955 0.7331

0.25 0.75 0.25 0.4023 0.685

0.25 0.75 0.5 0.3672 0.6445

0.25 0.75 0.75 0.3363 0.6269

0.25 0.75 1 0.313 0.6002

0.25 1 0 0.3959 0.7379
0.25 1 0.25 0.4143 0.6903

0.25 1 0.5 0.3741 0.6603

0.25 1 0.75 0.3524 0.6411

0.25 1 1 0.3308 0.6271

0.5 0 0 0.3309 0.6513

0.5 0 0.25 0.2793 0.5823

0.5 0 0.5 0.2562 0.5294

0.5 0 0.75 0.2444 0.4877

0.5 0 1 0.2397 0.4395

0.5 0.25 0 0.3878 0.6962

0.5 0.25 0.25 0.3548 0.6423

0.5 0.25 0.5 0.3228 0.6058

0.5 0.25 0.75 0.2969 0.5631

0.5 0.25 1 0.2853 0.5292

0.5 0.5 0 0.3875 0.7095

0.5 0.5 0.25 0.3841 0.6624

0.5 0.5 0.5 0.351 0.6345

0.5 0.5 0.75 0.3266 0.6094

0.5 0.5 1 0.3036 0.585

0.5 0.75 0 0.3827 0.7123

0.5 0.75 0.25 0.4029 0.6698

0.5 0.75 0.5 0.3654 0.6462

0.5 0.75 0.75 0.34 0.6314

0.5 0.75 1 0.3239 0.608

0.5 1 0 0.3817 0.7239

0.5 1 0.25 0.4032 0.6896

0.5 1 0.5 0.3773 0.6605

0.5 1 0.75 0.3658 0.6384

0.5 1 1 0.3362 0.6278

0.75 0 0 0.3309 0.6513

0.75 0 0.25 0.2881 0.6014

0.75 0 0.5 0.2776 0.5608



Table continued from previous page
Body Premises Conclusions nDCG@5 BM25 nDCG@5 LMDirichlet
0.75 0 0.75 0.2562 0.5294

0.75 0 1 0.2467 0.5082

0.75 0.25 0 0.3783 0.6887

0.75 0.25 0.25 0.3569 0.6451

0.75 0.25 0.5 0.3355 0.6095

0.75 0.25 0.75 0.3121 0.5785

0.75 0.25 1 0.2876 0.5584

0.75 0.5 0 0.3874 0.6989

0.75 0.5 0.25 0.384 0.6645

0.75 0.5 0.5 0.359 0.6273

0.75 0.5 0.75 0.3335 0.6187

0.75 0.5 1 0.3122 0.5941

0.75 0.75 0 0.3875 0.7095

0.75 0.75 0.25 0.3999 0.6766

0.75 0.75 0.5 0.3685 0.6531

0.75 0.75 0.75 0.351 0.6345

0.75 0.75 1 0.3302 0.6186

0.75 1 0 0.3833 0.7108

0.75 1 0.25 0.4022 0.6913

0.75 1 0.5 0.3796 0.6622

0.75 1 0.75 0.3698 0.637

0.75 1 1 0.3461 0.6316

1 0 0 0.3309 0.6513

1 0 0.25 0.2982 0.6131

1 0 0.5 0.2793 0.5823

1 0 0.75 0.2689 0.5492

1 0 1 0.2562 0.5294

1 0.25 0 0.3758 0.6804

1 0.25 0.25 0.3531 0.6529

1 0.25 0.5 0.3425 0.6171

1 0.25 0.75 0.312 0.6001

1 0.25 1 0.3046 0.5734

1 0.5 0 0.3878 0.6962

1 0.5 0.25 0.3812 0.6661

1 0.5 0.5 0.3548 0.6423

1 0.5 0.75 0.3465 0.6204

1 0.5 1 0.3228 0.6058

1 0.75 0 0.3894 0.7093

1 0.75 0.25 0.3986 0.673

1 0.75 0.5 0.3656 0.6548



Table continued from previous page
Body Premises Conclusions nDCG@5 BM25 nDCG@5 LMDirichlet

1 0.75 0.75 0.3625 0.6281

1 0.75 1 0.3377 0.619

1 1 0 0.3875 0.7095

1 1 0.25 0.3995 0.687

1 1 0.5 0.3841 0.6624

1 1 0.75 0.3657 0.644

1 1 1 0.351 0.6345

Table 9: nDCG@5 scores obtained with all combinations of field’s weights both for BM25 and

LMDirichlet.
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