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Abstract
Disinformation in the form of fake news, phoney press releases and hoaxes may be misleading, especially
when they are not from their original sources and this fake news can cause significant harm to the
people. In this paper, we report several machine learning classifiers on the CLEF2021 dataset for the
tasks of news claim and topic classification using 𝑛-grams. We achieve an F1 score of 38.92% on news
claim classification (task 3a) and an F1 score of 78.96% on topic classification (task 3b). In addition, we
augmented the dataset for news claim classification and we observed that insertion of alternative words
was not beneficial for the fake news classification task.
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1. Introduction

Increase in social media outlets has impacted many natural language problems such as emotion
detection [1, 2], human behavior detection [3] question answering [4], threat detection [5],
sexism detection [6], depression detection [7] etc. Easy and accessible dissemination of news
in social media has resulted in a dire need for fake news identification and checks online. To
ensure the credibility of news spreaders on social media, the research community needs to
play its part in developing automatic methods of identification of false claims, disinformation
and misinformation. Automatic detection of fake news aims to mitigate the time and human
resources spent on identifying fake news and spreaders from the stream of continuously created
data.

To tackle this problem, natural language processing (NLP) researchers have made many
sophisticated attempts by creating specific tasks for detecting rumor [8, 9], fact checking [10, 11],
deception [12, 13], article stance [14, 15, 16], satire [17, 18], check worthiness [10, 19, 20, 21,
22, 23], cherry picking [24, 25], clickbait [26, 27, 28] and hyperpartisan [29, 30] in English
language. The tasks have been attempted using rules crafted by humans, machine learning (ML)
models [31, 32] and deep learning (DL) methods [33, 34, 35].

In this paper, we have tackled two tasks of CLEF2021 fake news classification. The first task
required multi-class classification of articles to determine if the claim made in the article is
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true, false, partially false or other (lack of evidence to conclude). The second task required
the classification of the topic of an article. The fake news article was required to be classified
into five or more categories like election, health, conspiracy theory etc. The paper discusses
the difference in results with various machine learning methods. We attempted to gauge the
potential of machine learning methods on the described task. Both of these tasks were attempted
and the results were presented in the competition.

2. Related Work

Faking a piece of news has been part of all eras of technology in the form of yellow journalism.
However, since the advent of social media, the impact of the harm has grown many folds. It has
hence been one of the most challenging problems for researchers to solve since the last decade as
it is very difficult to distinguish fake text from real text. Theoretical fake news studies [12, 36, 37]
has seen classification of fake news in the form of misinformation, disinformation, hysteria,
falsehood, propaganda, clickbait and conspiracy theories. We have seen advances in the field in
the recent decade that had a real-life impact.

There are various methods to differentiate fake news from real news such as bag-of-words
(BOW) [38], 𝑛-grams [39], GloVe [40], term frequency—inverse document frequency (TF-
IDF) [39] and contextual embeddings. Methods like bag-of-words do not include context
and rely on word frequencies, albeit, researchers have also used semantic analyses [41] to
determine truthfulness in a topic. We have also seen a well deep syntax approach [39] using
probability context free grammar (PCFG) parsing trees. This approach uses rewritten uses of
sentences to study differences in syntax structures in real and fake news. Another linguistic
approach [14, 15, 16] is to consider the topic of the article and test its relevance with the content
of the article. This is done by using linguistic features such as the length of the headlines,
advertisements, text patterns, author attributes etc.

Various machine-learning methods have been used as well for fake news detection: support
vector machine (SVM) [42], naïve bayes (NB) [32], logistic regression (LR) [43], k-nearest
neighborhood (K-NN) [31], random forest (RF) [44] and decision trees (DT) [44]. These methods
have displayed strength in classifying misinformation using various features. Since feature
engineering is time-consuming, various neural network approaches such as long short-term
memory (LSTM) with linguistic inquiry and word count (LIWC) features [35], recurrent neural
networks (RNN) based models [45, 46, 34] for user engagement and convolutional neural network
(CNN) based model [33, 47] with local features were applied to detect fake news.

3. Dataset

Dataset for task 3a consisted of 900 articles with four labels. The claim in the article is detected
and classified as true, false, partially false or others. The “others” class identifies articles that
cannot be proven as false, true or partially true. While the partially false articles are those that
have weak evidence of the claim. In addition to this, task 3b uses the subset of task 3a articles
but classifies the article in six categories namely education, health, crime, election, climate and
economy. Table 1 and 2 show us the sample of the dataset for task 3a and 3b, while Table 3



shows the distribution of the dataset in both tasks according to their respective classes. The
ellipsis in the text demonstrates the omission of the complete article in the Table 1 and 2.

Table 1
Samples of Task 3a

Public Id Text Title Rating
5a228e0e Distracted driving causes more deaths in

Canada than impaired driving .It’s why
every province and territory has laws
against driving while operating a cell
phone. “Tell your passengers to stay off
their phones while you are driving...

You Can Be Fined $1,500
If Your Passenger Is Using
A Mobile Phone, Starting
Next Week

false

0a450bd4 Her name is Taylor Zundel, and it sounds
like she and her husband live in or near
Salt Lake City. And she witnessed quite
the irregularity when they showed up for
early voting: Not just her husband, but at
least one other voter, were told when they
got there that records showed they had al-
ready voted...

Instagram Testimony: Peo-
ple Are Showing Up to Vote
and Being Told They Al-
ready Voted

true

Table 2
Samples of Task 3b

Public Id Title Text Domain
f6e07bea Manchin Introduces Landmark Veterans

Mental Health And Suicide Prevention
Bill Washington, D.C. - U.S. Senator Joe
Manchin (D-WV) introduced a landmark,
bipartisan bill to improve Veterans’ access
to mental health care and make sure no
Veteran’s life is lost to suicide...

Manchin Introduces Land-
mark Veterans Mental
Health And Suicide Preven-
tion Bill

health

a3910250 Self-harm and violent attacks have hit
record levels in prisons across England
and Wales for the second time in a year,
despite repeated warnings that jails are at
crisis point and in desperate need of re-
form...

Self-harm and violent at-
tacks hit record high in
prisons across England and
Wales for second time in a
year

crime

4. Methodology

We used several machine learning algorithms such as logistic regression, multilayer perceptron,
support vector machine and random forest. For RF and MLP classifiers, default parameters were
used for all the experiments. We assign class weight parameter to “balance” for SVM and LR. In
addition, “saga” kernel was used for LR. Stratified 5-fold validation is applied for the evaluation



Table 3
Data distribution of tasks

Classes Size
false 461
true 135

partially false 216
other 76

(a) Task 3a

Classes Size
education 28

health 126
crime 37

election 32
climate 46

economy 42

(b) Task 3b

of the results. While accuracy, precision, recall and F1 are given for a thorough understanding
of the results, the competition ranked the teams using F1-macro. In NLP and opinion mining
tasks [48] these classifiers performed best. We also considered the limitations of the task
including an imbalanced dataset, especially for task 3a. The article contains grammatical errors,
spelling errors and repetition of keywords. Repetition of keywords for fake news negatively
influence the results of term frequency.

4.1. Pre-Processing

All pre-processing tasks were attempted using Ekphrasis [49] library. The normalization process
included removing “url”, “email” , “percent”, “money”, “phone”, “user”, “time”, “date”, and
“number” instances from the text. The contraction was also unpacked for better context i.e.
hasn’t changed into has not. Since we often encounter elongated words in informal news
articles, the elongated words were spell corrected to their base words.

4.2. Augmented Dataset

The data was augmented using word2vec embeddings adding a substitute of sentences. We used
nlpaug library [50] in python, setting action type as insert and type as word2vec. Augmentation
was done by inserting or replacing words in a sentence randomly leveraged by word2vec
similarity search. For example, the sentence “The quick brown fox jumps over the lazy dog”
was augmented to “The quick brown fox jumps Alzeari over the lazy Superintendents dog”. The
augmented dataset was used only for task 3a because the classes of task 3a were not balanced.
As shown in Table 3 the “false” class has a significantly higher number of instances, hence, we
applied augmentation for other classes. Table 5 shows the dataset statistics before and after
augmentation.

Table 5
Dataset statistics before and after augmentation

Augmentation Size Train set Development set Test set
Before 900 80% 10% 10%
After 1335 80% 10% 10%



4.3. Features Extraction

The setup for all the algorithms is consistent throughout, with the only difference being the
augmented dataset for task 3a. The logistic regression, multi-layer perceptron, random forest
and support vector machine performed well in the experiments. For all the machine learning
algorithms, word 𝑛-gram features including uni-gram, bi-gram and tri-gram were used. Final
results were concluded using tri-gram features and term frequency—inverse document frequency
for all experiments.

5. Results

The best performing results were submitted for both tasks. For task 3a the logistic regression
model and for task 3b multi-layer perceptron model was submitted in the competition. Table 6
shows the results of the development set which shows logistic regression outperforming in task
3a with the support vector machine being the close second. Multi-layer perceptron performed
the best in task 3a while support vector machine has the second best results. Table 7 shows
how the machine learning model performed in comparison to the top 5 results presented in
the competition. Our model achieved 5th place in the challenge in task 3b while in task 3a we
ranked 10th. The best performing model in task 3a achieved the F1-macro of 83.70 and had
a significant difference compared to our scores. While on task 3b machine learning models
showed noteworthy results with 78.96 F1-macro.

Table 6
Results for task 3a and task 3b on the development set with n-gram features

Task Model Accuracy Precision Recall F1

Task 3a

LR 52.77 42.93 43.52 41.96
MLP 53.88 41.07 37.30 37.17
RF 56.44 42.24 32.86 31.30

SVM 58.33 45.77 40.45 40.02

Task 3b

LR 79.22 78.35 71.96 72.97
MLP 83.02 86.08 75.74 78.35
RF 69.17 85.07 55.01 59.40

SVM 77.96 87.56 69.03 73.64

6. Conclusion

In this paper, we analysed various machine learning algorithms to obtain the best F1 for fake
news claim classification and topic classification. Our results show that machine learning models
with 𝑛-gram features are capable of competing albeit with limitations. The augmented dataset
used for task 3a could not improve the results as the insertion of alternative words was not
beneficial. Our model for task 3b achieved noteworthy results and we were placed fifth in the
ranks for task 3b with 78.96 F1-macro.



Table 7
Comparison with top 5 results in the competition

Team name F1-macro
sushmakumari 83.76

Saud 51.42
kannanrrk 50.34

jmartinez595 46.80
hariharanrl 44.88

CIC 38.92

(a) Task 3a

Team name F1-macro
hariharanrl 88.13

sushmakumari 85.52
ninko 84.10

kannanrrk 81.78
CIC (5th ranked) 78.96

(b) Task 3b
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