
UAICS at CheckThat! 2021: Fake news detection

Ciprian G. Cusmuliuc, Matei A. Amarandei, Ioana Pelin, Vlad I. Cociorva and Adrian Iftene

“Alexandru Ioan Cuza” University, Faculty of Computer Science, Iasi, Romania

Abstract
Social media growth in recent years has facilitated an enhancement in human communication.

Platforms such as Facebook and Twitter are now ever-present in our lives, influencing how we

speak, think and act. The growth of fake news greatly impacts this phenomenon as it lowers

one’s trust in the content presented. One such example is related to the 2016 U.S. presidential

election campaign where fake news was a deciding factor in tipping the balance of power. It is

hence of critical importance to develop tools that detect and combat such destructive content.

CLEF 2021 CheckThat! Task 3 tries to address the problem of fake news, posing a challenge

to develop systems that could detect if the main claim made in an article is true, partially true,

false, or other. Our team participated in this task with 5 models, ranking 6th place with an F1-

macro of 0.44 and a model based on Gradient Boosting; in this paper we will present our

methods, runs and results but also discuss future work.

Keywords 1
Fake news detection, LSTM, Bi-LSTM, BERT, RoBERTa, Random Forest, Gradient

Boosting, Naïve Bayes, KNN.

1. Introduction

Recent advances in computing, that date at the beginning of the millennium, have drastically

changed human interaction, people no longer tend to meet in real life to maintain contact with friends;

furthermore, the COVID-19 pandemic has accelerated this movement by forcing everybody to dialogue

via digital means for months at a time. The main facilitators of this movement are social media

platforms, that have seen massive usage spikes in the past decade, radically changing how we speak,

read news, watch videos and so on, this freedom however comes at a cost. Allowing everybody almost

unlimited reachability and free hand to post however they please is a big advantage, but it is also very

dangerous; the classical example is related to the 2016 U.S. presidential election campaign where a

mixture of social profiling and fake news have led to surprising electoral results (this result contrasts

with the 2020 U.S. elections where social media platforms have banned many ads2). Considering the

previous argument, it is obvious that we need automated methods that analyze the posts and flag them

for fake or misleading content.

CLEF CheckThat! 2021 Task 3a [1] [2] [17] [18] has exactly the goal expressed in the previous

section; the task definition been that: “given the text of a news article, determine whether the main

claim made in the article is true, partially true, false, or other (e.g., claims in dispute) and also detect
the topical domain of the article”. In the competition we submitted 5 different models and overall ranked

6th.

This paper describes the participation of team UAICS, from the Faculty of Computer Science,

“Alexandru Ioan Cuza” University of Iasi, in Task 3a at CLEF 2021. The remaining of this paper was

organized as follows: Section 2 details the models we developed and the submitted runs and then

1
CLEF 2021 – Conference and Labs of the Evaluation Forum, September 21–24, 2021, Bucharest, Romania

EMAIL: gabriel.cusmuliuc@info.uaic.ro (Ciprian G. Cusmuliuc)

ORCID: 0000-0003-0758-3061 (Ciprian G. Cusmuliuc)

©️ 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

2 https://www.bbc.com/news/technology-54369303

Section 3 details the results we obtained and finally Section 4 concludes this paper and presents future

work.

2. Methods and runs

In this section we will detail the submitted models; 5 models have been developed in the search of

finding the best one, we relied on state-of-the-art methods such as LSTM, Bi-LSTM, BERT, RoBERTa

but also experimented with a few novel methods based on more traditional techniques such as Gradient

Boosting, Naïve Bayes, KNN and Random Forest. In future sections we will take a look at state-of-the-

art techniques, analyze the dataset as well as discuss our models and preprocessing.

2.1. State of the art

Research interest in fake news classification has grown exponentially in just a few years.

Identification efforts have been very diverse but they all can be summarized in 3 big categories as [3]

outlines: creator and user analysis, social context analysis and news content analysis.

Creator and user analysis focuses on extensive analysis of user accounts in order to identify

malicious behaviors. Malicious user accounts behave differently from authentic users; thus,

identification is possible. Different user categorization can be achieved using different techniques: user

profiling analysis [4][5], temporal and posting behavior analysis [6], credibility-related analysis [7],
and sentiment-related analysis [8]. Considering user information was not available in the CheckThat!

dataset, these techniques would not have been possible to apply.

Social context analysis tries to study how the news disseminates in the social environment, meaning

how quick and wide the data is share/distributed and how users interact with each other, having 2 big

research areas: user network analysis (users with high interaction with the news creator can be used to

predict the truthfulness of the news) [9] and distribution pattern analysis (analysis of the information

spread in the network) [10]. Just like creator and user analysis, social analysis is not feasible on this

task, not to mention that this technique is not used often. Many approaches choose to analyze the news

itself.

News content analysis in contrast to creator and user analysis does not focus on who posts rather on

what they post. In [11] they used a multitude of neural networks in combination with GloVE embedding

to predict the label of a news article; the best result was with a Bi-LSTM, accuracy of 0.91, but notable

results were obtained with CNN (0.90) and vanilla RNN (0.78). [12] takes a different approach based

on machine learning, implying Naïve Bayes, Gradient Boosting and Random Forest in order to identify

a series of 10000 tweets collected in August 2012, concluding that Random Forest is the best algorithm

with an accuracy of 96%. Finally [13] uses the most novel techniques at this time, BERT [14]; they

start off by tokenizing the input string, then padding after which feeding it to a pre-trained large cased

BERT model to perform the classification which yields an accuracy of 0.69 on a test dataset.

Knowing thus what the best models are but also what their limitations were we proceeded with

training them in order to see a result.

2.2. Training and test dataset analysis

The training and test dataset have been provided by the organizers and examples can be seen in

Table 1 and 2. The training dataset consisted of 945 labeled articles and the test dataset had 365

unlabeled articles. This small number of articles proved to be a disadvantage to neural network models

as we did not use any other additional datasets.

Table 1
Training dataset example

public_id text title our rating

c7ea6a6e New evidence ties
COVID-19 creation to
research funded by

Fauci?

Flooding of Coast,
Caused by Global

Warming, Has Already
Begun.

False

Table 2
Training dataset example

public_id text title

58bea1db Second patient cured
of HIV, say doctors.

Lisa Page Squeals: DNC
Server Was Not

Hacked By Russia.

In Figure 1 a dataset analysis is done; taking the Task 3a batches we plot them in order to gain

some insight in the collection. In the left size of the figure a word cloud view of most frequent words

in the dataset has been build, with the biggest topics being related to politics and COVID-19. The

right part of the figure also confirms the latter assumption as there we can see the most frequent

words, such as “trump”, “covid19” and so on (the plots have been done with tokenized data).

A problem that was identified early on and will greatly impact the results is relat-ed to label

imbalance. Figure 2 shows in different representations how many articles are available with a certain

label, unfortunately since False is the most common one, automatically the algorithms will be biased

in that direction (0-False, 1-Other, 2-Partially False, 3-True).

Figure 1: Left – word cloud view of most frequent words in the dataset; Right – Bar Plot of most
frequent words in the dataset.

Figure 2: Label distribution in the dataset (0 - False, 1 - Other, 2 - Partially False, 3 - True).

2.3. Models
2.3.1. 3Layer Model

The first model, and the one which proven to be the most performant, has been named “3Layer

Model” because of its use of 3 different preprocessing methods and 3 different Machine Learning

algorithms used.

In the data preparation phase, there have been a series of alterations over the dataset. The public_id

field has been removed, the two training batches have been combined as well as the title field and text,
punctuation signs have been removed as well as stop-words, dashed and underscores and lastly the text

has been lowercased and lemmatized.

The feature extraction phase consisted of three approaches:

• Clean text is a bigram (a contiguous sequence of n items, where n is 2), the training column will be called

clean_text;

• POS Tagging on text column using spaCY3 to obtain the POS form), the training column will be called

POS_text;

• Semantic Analysis is done using Stanford’s Empath Tool4 [15] to categorize the words in the articles by

their lexicon and approximate which articles that are fake predominantly use a certain lexicon (this column

was named semantics_text). An example can be seen in appendix A.

Besides the three aforementioned techniques we created a fourth one by weighting them as follows: clean_text:

0.5, POST_tagging: 0.15 and semantic_text: 0.35 (these values have been determined experimentally).

On the columns mentioned earlier, clean_text, POS_text and semantics_text, in order to feed the data to the

M.L. algorithms we applied TF-IDF.

As for the models used, they consisted of Naïve Bayes, KNN, Random Forest and Gradient

Boosting. In the results section we will discuss the hyperparameter tuning in relationship to the result;

in the end the most performant variant consisted of Gradient Boosting combined with the weighted

representation of clean text, POS tagging and semantic analysis.

2.3.2. BERT

Another model developed is based on BERT which yielded great results in many state of the art

systems [13].

Data preparations for this method consisted of shuffling the training articles, concatenation of the

batches, merging the title and text columns and eliminating public_id (it was redundant to training).

Other operations have consisted of punctuation signs removal, lemmatization, mandatory text padding

and a special BERT tokenizing process.

As for the model, we used bert-large-uncased (24-layer, 1024 hidden dimensions, 16 attention

heads, 336M parameters) from HuggingFace5 and begun the fine-tuning process. A problem

immediately apparent was the size of the dataset as BERT requires many training entities. We used

AdamW Optimizer (fine-tuned the learning rate as well as possible, 6e-6 yielding the best results), 3
epochs and a batch size of 3.

Figure 2 presents the Training and Validation loss over the epochs; training set contained 70% of

the data, 20% for testing and 10% for validation. Apendix B shows a snippet of the BERT classifier.

3 https://spacy.io/
4 https://github.com/Ejhfast/empath-client
5 https://huggingface.co/transformers/model_doc/bert.html

Figure 3: Training and Validation loss of BERT.

2.3.3. RoBERTa

Since RoBERTa [16] proves to be better than BERT in some scenarios, we were eager to use it and

compare the results. The pre-trained RoBERTa has been taken from HuggingFace as well, we used the

model ‘roberta-base’6.

The data processing is similar to BERT. The dataset has been split as follows: 70% of data is for

training, 20% testing and 10% validation. Hyperparameters used are: text sequence is 256, batches are

of 32 elements. Code samples are available in appendix C.

2.3.4. LSTM

The fourth implemented model is LSTM. Training and testing have been done on an 80-20 split.

The data processing involves combining the title and text columns and then applying

SnowballStemmer7 from NTLK8 to stem the text. The text has also been tokenized using Keras’s

Tokenizer.

Feature extraction uses Word2Vec as it preserves semantic meaning of words in documents, using

the embedding matrix resulted we fed it to the model.

The model is built with Tensorflow and it’s a combination of the following layers:

• Embedding layer;

• Dropout layer with a dropout rate of 0.3;

• LSTM layer with 100 units with a recurrent dropout (fraction of the units to drop for the linear transformation

of the recurrent state) of 0.2 and a dropout of 0.2 (fraction of the units to drop for the linear transformation

of the inputs);

• Dense layer with 4 units (because we predict 4 labels) and using SoftMax activation function.

The loss function used was sparse categorical cross entropy with Adam optimizer. The total params of the

model were 2,648,304. The optimum number of epochs found were 8 and the batch size 16. We used callback

functions such as ReduceLROnPlateau9 to reduce the learning rate if the accuracy does not improve and early

stopping to halt training if the model does not improve.

2.3.5. Bi-LSTM

The fifth and final implemented model is an improvement effort on the previous LSTM network.

The dataset split was: 90% training and 10% validation.

6 https://huggingface.co/roberta-base
7 https://www.nltk.org/_modules/nltk/stem/snowball.html
8 https://www.nltk.org/
9 https://keras.io/api/callbacks/reduce_lr_on_plateau/

The title and text columns were merged in a single column, just like all the models. The newly

formed total column was then processed by removing every stop word and lemmatizing it using NLTK.

Finally, the sentences were converted to lowercase and had their whitespaces removed.

The text was tokenized using the Keras Tokenizer. The word index generated length was 27401. For

extracting the features, we used GloVe embedding (Global Vectors for Word Representation) with 100

dimensions. Training is performed on aggregated global word-word co-occurrence statistics from a

corpus, and the resulting representations show case interesting linear substructures of the word vector

space.

For building the model we used Tensorflow. The model was build using the Bidirectional LSTM

architecture. We experimented with a lot of combinations of layers but the one that gave the best results

during the validation stage was the following (in order):

• Embedding layer with the input dimension equaling the word index length (27401), output dimension

equaling the number of embedding dimensions (100) and the input length equaling the maximum sentence

length from the training test.

• Bidirectional LSTM layer with 64 units and return sequences set to true.

• Bidirectional LSTM layer with 32 units.

• Dropout layer with dropout rate equaling 0.25 to better handle the overfitting due to the small dataset.

• Dense layer with 4 units (because it predicts 4 labels) and softmax.

The loss function we used was sparse categorical cross entropy with Adam optimizer. The total params of the

model was 2,866,156. We experimented with many variations of values for the number of epochs and batch sizes,

but the best performing was setting the number of epochs to 5 and the batch size to 32.

3. Results
3.1. 3Layer Model

In this section we will discuss the results of the 3Layer model as well as parameter tuning on the models.

Throughout Table 3 to 6 there have been experiments with each of the 3 feature extraction methods (clean text,

POS tagging and semantic tags) as well as a weighted approach of the three; what worked best in the end is the

weighed approach combined with Gradient Boosting, this combination earned us 6th place with a F1-macro of

0.44.

Table 3
TF-IDF Vectorization on Cleaned Text

Classifier Parameters Accuracy Macro Average

Multinomial Naive-

Bayes
alpha = 0.0 0.57 0.48

K-Nearest Neighbors p=2, n_neighbors = 29,

leaf_size = 45
0.61 0.41

Random Forest n_estimators = 1000,

max_features = 'sqrt',

max_depth = 50,

min_samples_split = 2,

min_samples_leaf = 2

0.47 0.25

Gradient Boosting n_estimators = 200 0.57 0.43

Table 4
TF-IDF Vectorization on POS Tags

Classifier Parameters Accuracy Macro Average

Multinomial Naive-

Bayes
alpha = 0.0 0.48 0.23

K-Nearest Neighbors p=2, n_neighbors = 29,

leaf_size = 45
0.52 0.37

Random Forest n_estimators = 400,

max_features = 'sqrt',

max_depth = 30,

min_samples_split =

10, min_samples_leaf

= 2

0.54 0.35

Gradient Boosting n_estimators = 200 0.58 0.44

Table 5
TF-IDF Vectorization on Semantic Tags

Classifier Parameters Accuracy Macro Average

Multinomial Naive-

Bayes
alpha = 0.1 0.49 0.29

K-Nearest Neighbors p=2, n_neighbors = 27,

leaf_size = 12
0.35 0.24

Random Forest n_estimators = 200,

max_features = 'sqrt',

max_depth = 30,

min_samples_split =

10, min_samples_leaf

= 1

0.52 0.32

Gradient Boosting n_estimators = 200 0.52 0.42

Table 6
TF-IDF Vectorization on All Three Representations, using a sparse matrix form

Classifier Parameters Accuracy Macro Average

Multinomial Naive-

Bayes
alpha = 0.0 0.62 0.45

K-Nearest Neighbors p=2, n_neighbors = 19,

leaf_size = 6
0.51 0.34

Random Forest n_estimators = 1000,

max_features = auto,

max_depth = 30,

min_samples_split =

10, min_samples_leaf

= 2

0.57 0.39

Gradient Boosting n_estimators = 200 0.59 0.48

3.2. BERT

 Table 6 highlight the performance of BERT; it is clear from this table that the best setup is with

3 epochs, yielding an F1 of 0.5 on the training dataset split.

Table 7
Validation accuracy of BERT on the training dataset split.

Epoch Training

loss
Validation

loss
Validation

accuracy
Validation

F1
Training

Time
Validation

Time

1 1.31 1.26 0.50 0.50 0:00:44 0:00:02

2 1.29 1.25 0.48 0.48 0:00:47 0:00:03

3 1.25 1.24 0.50 0.50 0:00:50 0:00:03

3.3. RoBERTa

 RoBERTa accuracy is very different, depending on the label; the F1-macro is 0.37. In Table 9

we can see a confusion matrix of the model, unfortunately the imbalance of label has left the system

unable to predict ‘other’ label, it is only good at ‘false’ and ‘partially false’.

Table 8
Classification report for RoBERTa on training data

RoBERTa Precision Recall F1 Support

False 0.65 0.85 0.74 97

True 0.35 0.20 0.26 30

Partially

false
0.50 0.49 0.49 47

Other 0.00 0.00 0.00 15

Accuracy 0.59 189

Macro avg 0.38 0.38 0.37 189

Weighted

avg

0.51 0.59 0.54 189

Table 9
Confusion matrix for RoBERTa on training data.

Other 0 3 2 10

Partially

False
0 23 4 20

True 0 10 6 14

False 0 10 5 82

 Partially

False

False True Other

3.4. LSTM

The accuracy and loss measured for this model are 0.563157 and 1.405469.

Table 10
Confusion matrix for LSTM on training data.

Partially

false
23 25 5 0

False 10 78 4 0

True 9 12 6 0

Other 3 14 1 0

 Partially

False

False True Other

3.5. Bi-LSTM

The results were not the best, mainly to the fact that, the dataset was small, the F1-macro for this model

has been measured at 0.33.

Table 11
Classification report for Bi-LSTM on training data.

Bi-LSTM Precision Recall F1 Support

False 0.58 0.73 0.64 92

True 0.43 0.11 0.18 27

Partially

false
0.46 0.58 0.52 53

Other 0.00 0.00 0.00 18

Macro avg 0.37 0.36 0.33 190

Weighted

avg

0.47 0.53 0.48 190

Table 12
Confusion matrix for Bi-LSTM on training data.

False 67 1 24 0

True 14 3 10 0

Partially

false
21 1 31 0

Other 14 2 2 0

 False True Partially
False

Other

3.6. Results conclusions

To conclude the results section, we had 5 models, the best approach seems to be the 3Layer

weighted method that officially has an F1-macro of 0.44. We were unable to calculate the other

scores with the gold label and the organizers did not provide a ranking. Mostly the results seem to

revolve around a score of 0.5 which is in part related to the small dimension of the dataset and the fact

that many of our models relied on neural network which require large training sets.

4. Conclusions

To conclude, in this paper we presented our run at the CLEF 2021 Task 3a; our best method had a

F1-macro of 0.44 ranking us 6th. We proposed multiple mod-els based on different methods, for future

work we plan on increasing the dataset as well as create a system based on inference so that the article

content will be verified using different ontologies.

5. Acknowledgements

Special thanks go to: Smau Adrian-Constantin, Mosor Andre, Radu Rares-Aurelian, Gramescu

George-Rares, Filipescu Iustina-Andreea without whom this work would not have been possible. This

work was supported by project REVERT (taRgeted thErapy for adVanced colorEctal canceR paTients),

Grant Agreement number: 848098, H2020-SC1-BHC-2018-2020/H2020-SC1-2019-Two-Stage-RTD.

6. References

[1] Preslav Nakov and Giovanni Da San Martino and Tamer Elsayed and Alberto Barr'on- Cedeño

and Rubén M'iguez and Shaden Shaar and Firoj Alam and Fatima Haouari and Maram Hasanain and

Nikolay Babulkov and Alex Nikolov and Gautam Kishore Shahi and Julia Maria Struss and Thomas

Mandl (2021). The CLEF-2021 CheckThat! Lab on Detecting Check-Worthy Claims, Previously

Fact-Checked Claims, and Fake News. In Advances in Information Retrieval - 43rd European

Conference on IR Research, ECIR 2021, Virtual Event, March 28 - April 1, 2021, Proceedings, Part

II (pp. 639–649). Springer.

[2] Shahi, G., Dirkson, A., & Majchrzak, T. (2021). An exploratory study of covid-19

misinformation on twitter. Online Social Networks and Media, 22, 100104.

[3] X. Zhang, and A.A. Ghorbani, “An overview of online fake news: Characterization, detection,

and discussion.” In Information Processing & Management, vol. 57 (2), 2020, 102025, ISSN 0306-

4573, https://doi.org/10.1016/j.ipm.2019.03.004.

[4] Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and Alessandro Flammini. 2016.

The rise of social bots. Commun. ACM 59, 7 (July 2016), 96–104.

DOI:https://doi.org/10.1145/2818717

[5] J. Zhao, N. Cao, Z. Wen, Y. Song, Y. Lin and C. Collins, "#FluxFlow: Visual Analysis of

Anomalous Information Spreading on Social Media," in IEEE Transactions on Visualization and

Computer Graphics, vol. 20, no. 12, pp. 1773-1782, 31 Dec. 2014, doi:

10.1109/TVCG.2014.2346922.

[6] Ghosh, Rumi, Tawan Surachawala, and Kristina Lerman. "Entropy-based classification

of'retweeting'activity on twitter." arXiv preprint arXiv:1106.0346 (2011).

[7] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and Bobby

Bhattacharjee. 2007. Measurement and analysis of online social networks. In Proceedings of the 7th
ACM SIGCOMM conference on Internet measurement (IMC '07). Association for Computing

Machinery, New York, NY, USA, 29–42. DOI:https://doi.org/10.1145/1298306.1298311

[8] J. P. Dickerson, V. Kagan and V. S. Subrahmanian, "Using sentiment to detect bots on Twitter:

Are humans more opinionated than bots?," 2014 IEEE/ACM International Conference on Advances

in Social Networks Analysis and Mining (ASONAM 2014), 2014, pp. 620-627, doi:

10.1109/ASONAM.2014.6921650.

[9] Carlos Castillo, Marcelo Mendoza, and Barbara Poblete. 2011. Information credibility on

twitter. In Proceedings of the 20th international conference on World wide web (WWW '11).

Association for Computing Machinery, New York, NY, USA, 675–684.

DOI:https://doi.org/10.1145/1963405.1963500

[10] Diakopoulos, N., Naaman, M., Kivran-Swaine, F. 2010. Diamonds in the rough: Social media

visual analytics for journalistic inquiry. In VAST 10 - IEEE Conference on Visual Analytics Science

and Technology 2010, Proceedings, art. no. 5652922, pp. 115-122. DOI:

10.1109/VAST.2010.5652922

[11] Pritika Bahad, Preeti Saxena, Raj Kamal, Pritika Bahad, Preeti Saxena, Raj Kamal, Fake News

Detection using Bi-directional LSTM-Recurrent Neural Network, Procedia Computer Science,

Volume 165, 2019, Pages 74-82, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2020.01.072.

[12] C.G. Cusmuliuc, L.G. Coca, and A. Iftene, “Identifying Fake News on Twitter using Naive

Bayes, SVM and Random Forest Distributed Algorithms.” In Proceedings of The 13th Edition of

the International Conference on Linguistic Resources and Tools for Processing Romanian Language

(ConsILR-2018), 2018, pp. 177-188.

[13] Jwa, H., Oh, D., Park, K., Kang, J. M., & Lim, H. (2019). exBAKE: automatic fake news

detection model based on bidirectional encoder representations from transformers (bert). Applied

Sciences, 9(19), 4062.

[14] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language

understanding." arXiv preprint arXiv:1810.04805 (2018).

[15] Fast, Ethan, Binbin Chen, and Michael S. Bernstein. "Empath: Understanding topic signals in

large-scale text." Proceedings of the 2016 CHI conference on human factors in computing systems.

2016.

[16] Liu, Yinhan, et al. "Roberta: A robustly optimized bert pretraining approach." arXiv preprint
arXiv:1907.11692 (2019).

[17] Shahi, Julia Maria and Thomas Mandl. "Overview of the CLEF-2021 CheckThat! Lab Task 3

on Fake News Detection." Working Notes of CLEF 2021–-Conference and Labs of the Evaluation

Forum.

[18] P. Nakov, G. Da San Martino, T. Elsayed, A. Barrón-Cedeño, R. Míguez, S. Shaar, F. Alam,F.

Haouari, M. Hasanain, N. Babulkov, A. Nikolov, G. K. Shahi, J. M. Struß, T. Mandl, S. Modha, M.

Kutlu, Y. S. Kartal, Overview of the CLEF-2021 CheckThat! Lab on Detecting Check-Worthy

Claims, Previously Fact-Checked Claims, and Fake News, in: Proceedings of the 12th International

Conference of the CLEF Association: Information Access Evaluation Meets Multiliguality,

Multimodality, and Visualization, CLEF ’2021, Bucharest, Romania(online), 2021

Apendix A

lexicon.analyze("he hit the other person", normalize=True)

=> {'help': 0.0, 'office': 0.0, 'violence': 0.2, 'dance': 0.0, 'money': 0.0, 'wedding': 0.0, 'valuable': 0.0,

'domestic_work': 0.0, 'sleep': 0.0, 'medical_emergency': 0.0, 'cold': 0.0, 'hate': 0.0, 'cheerfulness': 0.0,

'aggression': 0.0, 'occupation': 0.0, 'envy': 0.0, 'anticipation': 0.0, 'family': 0.0, 'crime': 0.0, 'attractive': 0.0,

'masculine': 0.0, 'prison': 0.0, 'health': 0.0, 'pride': 0.0, 'dispute': 0.0, 'nervousness': 0.0, 'government': 0.0,

'weakness': 0.0, 'horror': 0.0, 'swearing_terms': 0.0, 'leisure': 0.0, 'suffering': 0.0, 'royalty': 0.0, 'wealthy': 0.0,

'white_collar_job': 0.0, 'tourism': 0.0, 'furniture': 0.0, 'school': 0.0, 'magic': 0.0, 'beach': 0.0, 'journalism': 0.0,

'morning': 0.0, 'banking': 0.0, 'social_media': 0.0, 'exercise': 0.0, 'night': 0.0, 'kill': 0.0, 'art': 0.0, 'play': 0.0,

'computer': 0.0, 'college': 0.0, 'traveling': 0.0, 'stealing': 0.0, 'real_estate': 0.0, 'home': 0.0, 'divine': 0.0, 'sexual':

0.0, 'fear': 0.0, 'monster': 0.0, 'irritability': 0.0, 'superhero': 0.0, 'business': 0.0, 'driving': 0.0, 'pet': 0.0, 'childish':

0.0, 'cooking': 0.0, 'exasperation': 0.0, 'religion': 0.0, 'hipster': 0.0, 'internet': 0.0, 'surprise': 0.0, 'reading': 0.0,

'worship': 0.0, 'leader': 0.0, 'independence': 0.0, 'movement': 0.2, 'body': 0.0, 'noise': 0.0, 'eating': 0.0, 'medieval':

0.0, 'zest': 0.0, 'confusion': 0.0, 'water': 0.0, 'sports': 0.0, 'death': 0.0, 'healing': 0.0, 'legend': 0.0, 'heroic': 0.0,

'celebration': 0.0, 'restaurant': 0.0, 'ridicule': 0.0, 'programming': 0.0, 'dominant_heirarchical': 0.0, 'military': 0.0,

'neglect': 0.0, 'swimming': 0.0, 'exotic': 0.0, 'love': 0.0, 'hiking': 0.0, 'communication': 0.0, 'hearing': 0.0, 'order':

0.0, 'sympathy': 0.0, 'hygiene': 0.0, 'weather': 0.0, 'anonymity': 0.0, 'trust': 0.0, 'ancient': 0.0, 'deception': 0.0,

'fabric': 0.0, 'air_travel': 0.0, 'fight': 0.0, 'dominant_personality': 0.0, 'music': 0.0, 'vehicle': 0.0, 'politeness': 0.0,

'toy': 0.0, 'farming': 0.0, 'meeting': 0.0, 'war': 0.0, 'speaking': 0.0, 'listen': 0.0, 'urban': 0.0, 'shopping': 0.0,

'disgust': 0.0, 'fire': 0.0, 'tool': 0.0, 'phone': 0.0, 'gain': 0.0, 'sound': 0.0, 'injury': 0.0, 'sailing': 0.0, 'rage': 0.0,

'science': 0.0, 'work': 0.0, 'appearance': 0.0, 'optimism': 0.0, 'warmth': 0.0, 'youth': 0.0, 'sadness': 0.0, 'fun': 0.0,

'emotional': 0.0, 'joy': 0.0, 'affection': 0.0, 'fashion': 0.0, 'lust': 0.0, 'shame': 0.0, 'torment': 0.0, 'economics': 0.0,

'anger': 0.0, 'politics': 0.0, 'ship': 0.0, 'clothing': 0.0, 'car': 0.0, 'strength': 0.0, 'technology': 0.0, 'breaking': 0.0,

'shape_and_size': 0.0, 'power': 0.0, 'vacation': 0.0, 'animal': 0.0, 'ugliness': 0.0, 'party': 0.0, 'terrorism': 0.0,

'smell': 0.0, 'blue_collar_job': 0.0, 'poor': 0.0, 'plant': 0.0, 'pain': 0.2, 'beauty': 0.0, 'timidity': 0.0, 'philosophy':

0.0, 'negotiate': 0.0, 'negative_emotion': 0.0, 'cleaning': 0.0, 'messaging': 0.0, 'competing': 0.0, 'law': 0.0, 'friends':

0.0, 'payment': 0.0, 'achievement': 0.0, 'alcohol': 0.0, 'disappointment': 0.0, 'liquid': 0.0, 'feminine': 0.0, 'weapon':

0.0, 'children': 0.0, 'ocean': 0.0, 'giving': 0.0, 'contentment': 0.0, 'writing': 0.0, 'rural': 0.0, 'positive_emotion': 0.0,

'musical': 0.0}

Apendix B

class BertClassifier(nn.Module):

 def __init__(self, dropout=0.1):

 super(BertClassifier, self).__init__()

 self.bert = BertModel.from_pretrained('bert-base-uncased')

 self.dropout = nn.Dropout(dropout)

 self.linear = nn.Linear(768, 1)

 self.sigmoid = nn.Sigmoid()

 def forward(self, tokens, masks=None):

 _, pooled_output = self.bert(tokens, attention_mask=masks, output_all_encoded_layers=False)

 dropout_output = self.dropout(pooled_output)

 linear_output = self.linear(dropout_output)

 proba = self.sigmoid(linear_output)

 return proba

Apendix C

class ROBERTA(torch.nn.Module, Model):

 def __init__(self, text, dropout_rate=0.4):

 super(ROBERTA, self).__init__()

 # Model.__init__(text)

 self.text = text

 self.tokenizer = RobertaTokenizer.from_pretrained("roberta-base")

 self.roberta = RobertaModel.from_pretrained('roberta-base',return_dict=False, num_labels = 4)

 self.d1 = torch.nn.Dropout(dropout_rate)

 self.l1 = torch.nn.Linear(768, 64)

 self.bn1 = torch.nn.LayerNorm(64)

 self.d2 = torch.nn.Dropout(dropout_rate)

 self.l2 = torch.nn.Linear(64, 4)

	1. Introduction
	2. Methods and runs
	2.1. State of the art
	2.2. Training and test dataset analysis
	2.3. Models
	2.3.1. 3Layer Model
	2.3.2. BERT
	2.3.3. RoBERTa
	2.3.4. LSTM
	2.3.5. Bi-LSTM

	3. Results
	3.1. 3Layer Model
	3.2. BERT
	3.3. RoBERTa
	3.4. LSTM
	3.5. Bi-LSTM
	3.6. Results conclusions
	4. Conclusions
	5. Acknowledgements
	6. References

