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Abstract
The following system description presents our approach to the estimation of check-worthiness of text
chunks. The given task has been framed as a regression problem. In order predict a numerical value
for a chunk we opted for RoBERTa (A Robustly Optimized BERT Pretraining Approach) as a neural
network architecture for sequence classification. Starting off with a pre-trained model for language
representation we fine-tuned this model on the given classification task with the provided annotated
data in supervised training steps.
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1. Introduction

The proliferation of disinformation online, has given rise to a lot of research on automatic fake
news detection. CLEF 2021 - CheckThat! Lab [1, 2] considers disinformation as a communication
phenomenon. Instead of categorizing posts into categories such as "fake" or "non-fake", the task
at hand is to evaluate and rank posts based on the credibility of the content. By detecting the use
of various linguistic features in communication, it takes into account not only the content but
also how a subject matter is communicated. The shared task [3] defines the following subtasks
given in English:

Subtask A Given a tweet, predict whether it is worth fact-checking.

Subtask B Given a political debate/speech, produce a ranked list of its sentences, ordered by
their check-worthiness.

The aim of any information retrieval (IR) system is to find relevant documents. A huge
amount of research has been spent on relevance estimation as a central concept of IR. In
addition, corresponding methods are widely used in particular for ranking search results. In this
work, we covered our approach on both relevance estimation tasks by framing it as a regression
problem, knowing that, this way, the overall problem is strongly approximated. To build our
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models, both subtasks assumes purely textual content as inputs. Below, we will describe the
system built for both two subtasks. At the core of our systems is RoBERTa [4], a pre-trained
model based on the Transformer architecture [5].

2. Related Work

The goal of the shared task is to investigate automatic techniques for identifying various
rhetorical and psychological features of disinformation campaigns. A comprehensive survey
on fake news has been presented by Zhou and Zafarani [6]. Based on the structure of data
reflecting different aspects of communication, they identified four different perspectives on fake
news: (1) the false knowledge it carries, (2) its writing style, (3) its propagation patterns, and (4)
the credibility of its creators and spreaders.

The shared task emphasizes communicative styles that systematically co-occur with per-
suasive intentions of (political) media actors. Similar to de Vreese et al. [7], propaganda and
persuasion is considered as an expression of political communication content and style. Hence,
beyond the actual subject of communication, the way it is communicated is gaining importance.

We build our work on top of this foundation by first investigating content-based approaches
for information discovery. Traditional information discovery methods are based on content:
documents, terms, and the relationships between them. They can be considered as a general
Information Extraction (IE) methods, automatically deriving structured information from un-
structured and/or semi-structured machine-readable documents. Communities of researchers
contributed various techniques from machine learning, information retrieval, and computational
linguistics to the different aspects of the information extraction problem. From a computer
science perspective, existing approaches can be roughly divided into the following categories:
rule-based, supervised, and semi-supervised. In our case, we followed the supervised approach
by reframing the complex language understanding task as a simple classification problem. Text
classification also known as text tagging or text categorization is the process of categorizing
text into organized groups. By using Natural Language Processing (NLP), text classifiers can
automatically analyze human language texts and then assign a set of predefined tags or cate-
gories based on their content. Historically, the evolution of text classifiers can be divided into
three stages: (1) simple lexicon- or keyword-based classifiers, (2) classifiers using distributed
semantics, and (3) deep learning classifiers with advanced linguistic features.

2.1. Deep Learning for Information Extraction

Recent work on text classification uses neural networks, particularly Deep Learning (DL).
Badjatiya et al. [8] demonstrated that these architectures, including variants of recurrent neural
networks (RNN) [9, 10, 11], convolutional neural networks (CNN) Zhang et al. [12], or their
combination (CharCNN, WordCNN, and HybridCNN), produce state-of-the-art results and
outperform baseline methods (character n-grams, TF-IDF or bag-of-words representations).



2.2. Deep Learning architectures

Until recently, the dominant paradigm in approaching NLP tasks has been focused on the
design of neural architectures, using only task-specific data and word embeddings such as
those mentioned above. This led to the development of models, such as Long Short Term
Memory (LSTM) networks or Convolution Neural Networks (CNN), that achieve significantly
better results in a range of NLP tasks than less complex classifiers, such as Support Vector
Machines, Logistic Regression or Decision Tree Models. Badjatiya et al. [8] demonstrated that
these approaches outperform models based on char and word n-gram representations. In the
same paradigm of pre-trained models, methods like BERT [13] and XLNet [14] have been shown
to achieve the state of the art in a variety of tasks.

2.3. Pre-trained Deep Language Representation Model

Indeed, the usage of a pre-trained word embedding layer to map the text into vector space which
is then passed through a neural network, marked a significant step forward in text classification.
The potential of pre-trained language models, as e.g. Word2Vec [15], GloVe [16], fastText [17],
or ELMo [18] to capture the local patterns of features to benefit text classification, has been
described by Castelle [19]. Modern pre-trained language models use unsupervised learning
techniques such as creating RNNs embeddings on large texts corpora to gain some primal
“knowledge” of the language structures before a more specific supervised training steps in.

2.4. About BERT and RoBERTa

BERT stands for Bidirectional Encoder Representations from Transformers. It is based on the
Transformer model architectures introduced by Vaswani et al. [5]. The general approach consists
of two stages: first, BERT is pre-trained on vast amounts of text, with an unsupervised objective
of masked language modeling and next-sentence prediction. Second, this pre-trained network is
then fine-tuned on task specific, labeled data. The Transformer architecture is composed of two
parts, an Encoder and a Decoder, for each of the two stages. The Encoder used in BERT is an
attention-based architecture for NLP. It works by performing a small, constant number of steps.
In each step, it applies an attention mechanism to understand relationships between all words
in a sentence, regardless of their respective position. By pre-training language representations,
the Encoder yields models that can either be used to extract high quality language features from
text data, or fine-tune these models on specific NLP tasks (classification, entity recognition,
question answering, etc.). We rely on RoBERTa [4], a pre-trained Encoder model which builds
on BERT’s language masking strategy. However, it modifies key hyperparameters in BERT such
as removing BERT’s next-sentence pre-training objective, and training with much larger mini-
batches and learning rates. Furthermore, RoBERTa was also trained on an order of magnitude
more data than BERT, for a longer amount of time. This allows RoBERTa representations to
generalize even better to downstream tasks compared to BERT. In this study, RoBERTa is at the
core of each solution of the given subtasks.



Table 1
Statistical summary of token counts on the training set.

Source Tweets (A) Debates/Speeches (B)
Label 0 1 Label 0 1

doc count 822 532 290 42033 41604 429
mean 31.68 28.67 37.20 12.55 12.48 19.87
std 14.23 15.06 10.54 10.65 10.59 13.27
min 3 3 11 1 1 1
25% 19 14 30 5 5 10
50% 34 28 40 9 9 17
75% 44 43 44 17 17 26
max 56 56 53 138 138 91

3. Dataset

The data for the task was developed during the CLEF-2021 CheckThat! campaign [1, 2, 3].
For subtask A, the organizers provided a training set of 822 tweets collected from a variety of
COVID-19- related topics. For subtask A, the organizers provided a training set of 822 tweets
collected from a variety of COVID-19- related topics. The provided validation set contains 140
tweets. For subtask B, the training set contain 42033 statements collected from a variety of
political debates/speeches. The provided validation set for this subtask contains 3586 records.
The individual statements from both sources are annotated and considered as check-worthy
if it contains a verifiable factual claim. Check-worthy statements are labeled 1, all others are
labeled 0.

3.1. Exploratory data analysis

As presented in Table 1, the given training sets for the individual tasks differ significantly in
scope. The collection contain 822 and 42033 entries, respectively. The length of the individual
statements is far below the limit of BERT-based model of 512 tokens to be processed. Both
datasets are therefore not subject to the restriction of the input length of the model used. The
mean token count of each statement, however, differs significantly between the two tasks and
amounts to about half of the tokens in the statements of the debates (12.55) compared to those
of tweets (31.68). This may have implications for the performance of attention-based models,
which primarily rely on sequence information.

Unbalanced class distribution Imbalance in data can exert a major impact on the value
and meaning of accuracy and on certain other well-known performance metrics of an analytical
model. Figure 1 depicts a clear skew towards information classified as not check-worthy. This
is be especially true in the case of the debate chunk labels.
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Figure 1: Label distribution - training set

3.2. Evaluation measures

For both tasks the submitted ranked lists per claim have been evaluated using ranking evaluation
measures MAP (Mean Average Precision), MRR (Mean Reciprocal Rank), RP (R-precision) and
Precision@k for 𝑘 ∈ {1, 3, 5, 10, 10, 20, 30} (Precision for the top-k documents). The MAP
score has been defined as the official evaluation measure to rank the submissions.

4. Our approach

In this section, we provide a general overview of our approach to both subtasks.

4.1. Experimental setup

Model Architecture Subtasks A and B are both evaluated as a ranking task. Our model for
this subtask is based on RoBERTa. For the classification task, fine-tuning is performed using
RobertaForSequenceClassification[20] – roberta-base – as the pre-trained model. RobertaForSe-
quenceClassification optimizes for Binary Cross Entropy Loss using an AdamW optimizer with
an initial learning rate set to 2e-5. Fine-tuning is done on NVIDIA TESLA P100 GPU using the
Pytorch [21] framework with a vocabulary size of 50265 and an input size of 512. The model is
trained to optimize the objective for 20 epochs. The submission for each subtask is based on the
best performing model checkpoint on the validation set.

Input Embeddings The input embedding layer converts the inputs into sequences of features:
word-level sentence embeddings. These embedding features will be further processed by the
latter encoding layers.

Word-Level Sentence Embeddings A sentence is split into words 𝑤1, ..., 𝑤𝑛 with length
of n by the WordPiece tokenizer [22]. The word 𝑤𝑖 and its index 𝑖 (𝑤𝑖’s absolute position in the
sentence) are projected to vectors by embedding sub-layers, and then added to the index-aware



word embeddings:
�̂�𝑖 = 𝑊𝑜𝑟𝑑𝐸𝑚𝑏𝑒𝑑(𝑤𝑖)

�̂�𝑖 = 𝐼𝑑𝑥𝐸𝑚𝑏𝑒𝑑(𝑖)

ℎ𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(�̂�𝑖 + �̂�𝑖)

Attention Layers Attention layers [23, 24] aim to retrieve information from a set of context
vectors 𝑦𝑗 related to a query vector 𝑥. An attention layer first calculates the matching score 𝑎𝑗
between the query vector 𝑥 and each context vector 𝑦𝑗 . Scores are then normalized by softmax:

𝑎𝑗 = 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦𝑗)

𝛼𝑗 = 𝑒𝑥𝑝(𝑎𝑗)/Σ𝑘𝑒𝑥𝑝(𝑎𝑘)

The output of an attention layer is the weighted sum of the context vectors w.r.t. the softmax
normalized score: 𝐴𝑡𝑡𝑋→𝑌 (𝑥, {𝑦𝑗}) = Σ𝑗𝛼𝑗𝑦𝑗 . An attention layer is called self-attention
when the query vector 𝑥 is in the set of context vectors 𝑦𝑗 . Specifically, we use the multi-head
attention following Transformer [5].

Target Encoding The goal of regression is to predict a single, continuous target value for
each example in the dataset. A transformer-based regression model typically consists of a
transformer model with a fully-connected layer on top of it. Setting the number of labels to one,
the fully-connected layer will have a single output neuron which predicts the target value. To
perform regression, thus, is just a matter of changing the loss function. The classifier is replaced
with a regressor for the error to be propagated to the rest of the network.

4.2. Results and Discussion

We participated in both ranking tasks in English. Official evaluation results on the test set
are presented in Table 2 and Table 3 for each subtask, respectively. Both tables contain a
ngram-baseline submission from the competition organizers.

We focused on suitable combinations deep learning methods as well as their hyperparameter
settings. Finetuning pre-trained language models like RoBERTa on downstream tasks has
become ubiquitous in NLP research and applied NLP. The submission for each subtask is based
on the best performing model checkpoint on the validation set. MSE (Mean Squared Error) was
used as evaluation measure to estimate the performance with a lowest value of 0.24017 and
0.01887 for each subtask, respectively.

When improving on these baseline models, class imbalance appears to be a primary challenge.
This is clearly reflected in Figures 1 and 2, in particular, for the second subtask on chunks
of speeches and debates. In our case, it results in no check-worthy claim at all being found
in the test data. Based on our model, in the case of tweets, far more posts are classified as
check-worthy than was predetermined by the gold standard.

A commonly used tactic to deal with imbalanced datasets is to assign weights to each label.
Alternative solutions for coping with unbalanced supervised dataset are undersampling or
oversampling. Undersampling only considers a subset of an overpopulated class to end up with



Table 2
Results on the test set on subtask A (tweets).

Rank Team MAP MRR RP P@1 P@3 P@5 P@10 P@20 P@30
1 NLP&IR@UNED 0.224 1.000 0.211 1.000 0.667 0.400 0.300 0.200 0.160
2 Fight for 4230 0.195 0.333 0.263 0.000 0.333 0.400 0.400 0.250 0.160
3 ibaris 0.149 1.000 0.105 1.000 0.333 0.200 0.200 0.100 0.120
4 bigIR 0.136 0.500 0.105 0.000 0.333 0.200 0.100 0.100 0.120
5 Team GPLSI 0.132 0.167 0.158 0.000 0.000 0.000 0.200 0.150 0.140
6 csum112 0.126 0.250 0.158 0.000 0.000 0.200 0.200 0.150 0.160
7 abaruah 0.121 0.200 0.158 0.000 0.000 0.200 0.200 0.200 0.140
8 NLytics 0.111 0.071 0.053 0.000 0.000 0.000 0.000 0.050 0.120
9 Accenture 0.101 0.143 0.158 0.000 0.000 0.000 0.200 0.200 0.100
10 TOBB ETU 0.081 0.077 0.053 0.000 0.000 0.000 0.000 0.050 0.080

ngram-
baseline

0.052 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.020

Table 3
Results on the test set on subtask B (speeches/debates).

Rank Team MAP MRR RP P@1 P@3 P@5 P@10 P@20 P@30
1 Fight for 4230 0.402 0.917 0.403 0.875 0.833 0.750 0.600 0.475 0.350

ngram-
baseline

0.235 0.792 0.263 0.625 0.583 0.500 0.400 0.331 0.217

2 NLytics 0.135 0.345 0.130 0.250 0.125 0.100 0.137 0.156 0.135

a balanced dataset. With the same goal oversampling creates copies of the unbalanced classes.
However, it remains questionable whether the measures to tackle class imbalance will lead to
success, since we expect additional confounding issues. The highly adversial and task-specific
nature of the relevance criterion of check-worthiness, may have a counterproductive effect on
the goal of generalizability of the language representations of transformer-based models. Thus,
overfitting poses the most difficult challenge in this experiment, reducing its generalizability.

In addition to imbalance, document length is a potential confounding factor. The significant
difference in the mean token count seems to be reflected in the classification result not even
passing the given ngram-baseline on subtask B. Since the classification features are derived
primarily from sequence information, we assume that this has a decisive influence on the result.

5. Conclusion and Future work

In future work, we plan to investigate more recent neural architectures for language representa-
tion such as T5 [25] and GPT-3 [26].

Furthermore, we expect great opportunities for transfer learning from the areas such as
argumentation mining [27] and offensive language detection [28]. To deal with data scarcity as
a general challenge in natural language processing, we examine the application of concepts
such as active learning, semi-supervised learning [29] as well as weak supervision [30].
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Figure 2: Confusion matrix for each subtask on the test set compared to the gold standard.
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