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Abstract
In this paper, we present a novel deep-learning-based method to deal with volumetric data like CT
scans. The method ensembles a 2-dimensional convolutional neural network (2D-CNN) with a 3D-CNN
followed by a recurrent neural network (RNN). We used this approach and its constituent to solve the
task of categorizing tuberculosis type in the context of ImageCLEF 2021. Our best run ranked 4th based
on the Kappa metric by reaching a value of 0.181 and 3rd based on the accuracy of 0.404. Also, it is
worthy of mentioning that our obtained results were very similar to that of the third team with a Kappa
of 0.190; and we had a big gap with the fifth team with a Kappa of 0.140.
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1. Introduction

Tuberculosis (TB) is an airborne disease that usually affects the lungs and causes severe coughing,
chest pains, and fever. The disease is still one of the main health concerns worldwide, being
second in causing high mortality rates [1]. Approximately 10.0 million people around the world
caught TB in 2019 in line with WHO[World Health Organization. Global tuberculosis report
2020. Geneva, Switzerland: World Health Organization; 2020]. A CT Scan or Computerized
Tomography Scan is a versatile medical imaging modality that uses computers and rotating
X-ray machines to create cross-sectional images of the patient’s body. In other words, the
number of detector rows in the z-axis is increased. This allows us to image the whole organ,
which reduces image capturing time. It also has several advantages, including improving the
quality of images, reducing radiation exposure, and illustrating the soft tissues, blood vessels,
and bones of the patient’s body [2, 3].

Despite all the advantages, CT scan-based diagnosing approaches have some challenges in
terms of the variety of images, their corresponding size, and the complexities there exist in
the diagnosing process itself. Moreover, there exist some factors, namely, eye exhaustion and
the great number of visitors, which lead to human mistakes [4]. These challenges motivated
researchers to use Artificial Intelligence(AI) in order to create automated diagnosis systems for

CLEF 2021 – Conference and Labs of the Evaluation Forum, September 21–24, 2021, Bucharest, Romania
" emad.aghajanzadeh@mail.um.ac.ir (E. Aghajanzadeh); behzad.shomali@mail.um.ac.ir (B. Shomali);
d.aminshahidi@mail.um.ac.ir (D. Aminshahidi); navidghassemi@mail.um.ac.ir (N. Ghassemi)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:emad.aghajanzadeh@mail.um.ac.ir
mailto:behzad.shomali@mail.um.ac.ir
mailto:d.aminshahidi@mail.um.ac.ir
mailto:navidghassemi@mail.um.ac.ir
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


increasing the accuracy of medical diagnosis on CT-Scan [5, 6]. In recent years, Deep Learning
(DL), a sub-field of AI, has shown encouraging results in medical diagnosis [7, 8].

In this paper, we presented a strategy based on deep learning approaches to detect the type
of TB disease, in the context of the ImageCLEF tuberculosis task [9, 10]. ImageCLEF 2021
is an evaluation campaign that is being organized as part of the CLEF initiative labs. The
campaign offers several research tasks that welcome participation from teams around the world.
In 2021, there were three medical subtasks, one of which was Tuberculosis CT analysis that
we participated in. The task is to classify the CT scans into five classes based on their TB type.
Besides the dataset, the organizers also provided two versions of extracted masks per each
lung [11, 12]. We analyzed the effectiveness of three main approaches based on Convolutional
Neural Network (CNN) [13] for this task. The first one is to use a 2 Dimensional convolutional
Neural Network (2D-CNN) to learn slice-level features and then obtain the final prediction label
through several strategies, such as majority voting or the most certain prediction. The second
approach is to utilize a 3 Dimensional convolutional Neural Network (3D-CNN) to capture
the spatial features, which are not extracted by the 2D-CNN. Finally, the last approach was
to combine the 2D-CNN and 3D-CNN models to reach a model that benefits from both the
slice-level and the inter-slice-level features.

The rest of the paper is organized as follows. Section 2 is devoted to describing the competition.
Section 3 introduces the preprocessing steps that were used. Section 4 explains the proposed
method, which obtained the results demonstrated in section 5. Finally, section 6 concludes the
paper with future work directions.

2. ImageClef Tuberculosis: task, data, evaluation

The tuberculosis task of ImageCLEF 2021 Challenge was categorizing each TB case based on its
type into five categories: Infiltrative, Focal, Tuberculoma, Miliary, and Fibro-cavernous. Figure 1
illustrates one example for each TB type 1. The dataset contains 1338 CT images stored in the
NIfTI (Neuroimaging Informatics Technology Initiative) format with the resolution of 512×512
pixels and around 100 slices per scan. The file format stores raw voxel intensities in Hounsfield
Units (HU). The training dataset consists of 917 CTs, each of which belongs to only one of the
five classes. Hence, the task is a multi-class classification (see Table 1).

Table 1
The number of training samples for each of the five TB types.

Type # of samples
Infiltrative 419
Focal 226
Tuberculoma 101
Miliary 101
Fibro-cavernous 70
total 917

1https://www.imageclef.org/2021/medical/tuberculosis



Figure 1: Examples of the five types of TB.

The results are evaluated using unweighted Cohen’s Kappa [14] and accuracy metrics, but
the primary ranking is done based on only the Kappa metric.

3. Preprocessing

As the dataset files were provided in the NIfTI format with the extension .nii, we used the
Nibabel package2 in Python3 to load the dataset. Following this, a threshold between -1000
and 400 is used to normalize the CT scans, HU values are scaled to be between 0 and 1. One
of the major outcomes of this normalization is reducing the existing contrast among data (See
Figure 2). The volumes are then rotated by 90 degrees so that their orientation is fixed. We
did not use the masks provided by the task organizers. In most cases, the first and last slices
do not contain beneficial features for a model to consider [15], therefore we only selected 50
middle slices and removed the rest of them; this number was chosen empirically by testing a
few alternatives. It is worth mentioning, this also saves the power of computational resources;
thus helping us to search through different models and settings more efficiently. Moreover, for
the same reason, we resized each slice to 100*100, so finally, we had a set of 100*100*50 CT
scans. Figure 3 shows the slices of a CT after the preprocessing phase.

4. Proposed Method

In recent years, Deep Neural Networks (DNN) have shown great performance in various tasks,
and medical diagnosis has not been an exception [16, 17]. More specifically, Convolutional
Neural Networks (CNN), a well-known deep learning architecture inspired by the mechanism

2https://github.com/nipy/nibabel
3https://github.com/python



Figure 2: Examples of slices with absolutely different contrast.

Figure 3: Illustration of 50 selected slices of a CT scan, after preprocessing.

of visual perception of creatures, have been used to solve many image processing tasks. It takes
its name from Convolution, a mathematical operation, which performs mapping on input data
and processes them into a new space. The main advantage of using CNN is that the kernel
can automatically extract the important features from the input data such as detecting edges
and distribution of colors in an image which other networks are unable to do, thus making
these networks very robust in some processes like image classification. However, despite
all aforementioned advantages, CNN models are data-hungry [18], making them less useful,



when there are not enough data available like in medical tasks. Moreover, there are even more
challenges to face to train these models properly; such as unbalanced [19].

In our attempt to use the CNN to categorize the CT images, we remedied the mentioned
problems as follows:

• Small Dataset: We used data duplication and also data augmentation techniques to
increase our training data. For augmenting the training data, a degree between -5 to 5
was randomly chosen to apply rotation on each data. Later, we zoomed each data by a
ratio of 1.25 and then resized it to its original size; by putting resizing at the last step, we
ensured that image quality is kept during data augmentation.

• Imbalanced Data: As shown in Table 1, the number of samples in different classes varies
dramatically. To overcome this issue, two distinct approaches were used: the first one is
to consider variable penalties for different classes, that is, the multiplier error in classes
with fewer data becomes larger. The second approach is to remove the samples from the
classes with more data. For this purpose, we removed plenty of samples from classes 0
and 1 from the dataset.

By doing these steps, the training dataset became larger and more balanced (see Table 2). In the

Table 2
The number of training samples after the preprocessing step.

Type # of samples
Infiltrative 376
Focal 262
Tuberculoma 342
Miliary 250
Fibro-cavernous 250
total 1480

proposed method, we mainly used two different approaches, 2D-CNN-based and 3D-CNN-based,
where their training settings are as follows:

• Optimizer: Adam optimizer with default parameters (alpha=0.001, beta1=0.9, beta2=0.999,
epsilon=1e-7) [20] was used for all epochs of 2D models and the first 30 epochs of 3D
models. For the rest epochs of 3D models, we decayed the learning rate by a 1/2 ratio.

• Train/validation split: The dataset was split into train and validation partitions with a
ratio of 0.2.

• Batch size: Due to facing some problems with memory, we had to keep the batch size
small; thus we set the batch sizes 32 and 8 for 2D and 3D models, respectively.

• Loss function: A combination of cross-entropy and weighted Kappa [21] with multipliers
of 0.7 and 0.3 was used for all epochs of 2D models and 30 initial epochs of 3D models.
The contribution ratio of losses was then changed into 0.85 and 0.15 for the 10 last epochs
of 3D models. The cross-entropy loss is defined as:

𝐿𝐶𝐸 = −
𝐶∑︁
𝑖=1

𝑡𝑖 log(𝑝𝑖) (1)



Where C is the number of classes, 𝑡𝑖 is the ground truth, and 𝑝𝑖 is the probability for
the 𝑖-th class. The formula of weighted kappa with the matrix of observed scores 𝑂, the
matrix of expected scores based on chance agreement 𝐸, and the weight matrix 𝜔 is
defined as follows:

𝜅 = 1−
∑︀

𝑖,𝑗 𝜔𝑖,𝑗𝑂𝑖,𝑗∑︀
𝑖,𝑗 𝜔𝑖,𝑗𝐸𝑖,𝑗

∀𝑖, 𝑗 ∈ {1, 2, ..., 𝐶} (2)

where 𝑂𝑖,𝑗 is the number of observations that are predicted to be in class 𝑖, but their true
classes were 𝑗. 𝐸𝑖,𝑗 also denotes the outer product between the vectors of prediction and
true value. Finally, 𝜔𝑖,𝑗 represents the weight penalization for every pair 𝑖, 𝑗.

It is worthy of mentioning that all of our experiments were done using Google Colab [22].

4.1. 2D

In this method, we examined each slice of a single CT individually. To be more specific, in
the training phase, we assigned the label of each CT to all of its corresponding slices and fed
each slice to the 2D-CNN separately. In this case, we have a vector of 50, the number of slices,
predicted labels as output for each CT. To obtain the final prediction for each CT in the testing
phase, we have used two different approaches:

• Pick the label which appeared the most (majority voting)
• Pick the label whose corresponding probability was the highest, i.e., where the model is

highly certain about that label.

To configure hyper-parameters, we examined various settings such as using skip connection,
changing the number of neurons of the last hidden layer, using different activation functions,
and differing kernel size of convolution layers and selected our final network empirically. Finally,
we got the best result from the model shown in Figure 4.

Figure 4: Illustration of 2D model

The learning curve of this model is illustrated in Figure 5. For the evaluation of the model,
we used Accuracy, Kappa, and F1-score on validation data which are reported in Table 3



Figure 5: Learning curve of 2D-CNN model.

Table 3
Evaluation results on 2D-CNN model.

Criteria Score
Accuracy 0.614
Kappa 0.509
F1-score 0.618

4.2. 2D + RNN

In this method, we used the best-trained 2D-CNN that we found in the previous section, but in
order to have a more accurate classifier, we implemented a simple Recurrent Neural Network
(RNN). As illustrated in Figure 6, we used the extracted features of the 2D-CNN as input of the
RNN. To be more clear, we tried two different approaches to fulfill this:

• Feeding the output of the 2D CNN (vector of 50 labels) to the RNN (see 6a)
• Feeding the features extracted by the last hidden layer of 2D CNN to the RNN (see 6b)

We tried different settings for the RNN such as trying different architectures, including long
short-term memory (LSTM) [23] and gated recurrent unit (GRU) [24], besides, different number
of units. Despite all of the efforts, the accuracy obtained in this method was almost in the same
range of 2D-CNN and neither was superior to another one. Therefore, we decided not to submit
the result of this approach.

4.3. 3D

Generally, 2D-CNN are unable to catch information that exists among slices, i.e., spatial infor-
mation. This is because they take a single slice as input and the learning process is applied
on each slice individually, thus some of the spatial information may be lost in the process.
However, the input of 3D-CNN is a 3D matrix with dimensions of height, width, and depth
and the kernel slides over these three dimensions. This property of 3D-CNNs enables them to
capture the spatial information between slices. For this reason, we used a 3D model consists of
5 convolution layers as shown in Figure 7 and its corresponding learning curve is displayed in
Figure 8.

The evaluation result of the model is also listed in Table 4



(a) Feeding the output of the 2D CNN to the RNN

(b) Feeding the extracted features by the 2D CNN to the RNN

Figure 6: Two types of employing RNN model after the 2D CNN.

Figure 7: Illustration of proposed 3D model

Figure 8: Learning curve of 3D-CNN model.

4.4. 3D + Transfer learning

In order to make use of pre-trained networks, we designed a model that transforms the input
images into three-channel images using convolution layers and then followed by the pre-trained



Table 4
Evaluation results on 3D-CNN model.

Criteria Score
Accuracy 0.646
Kappa 0.547
F1-score 0.656

models. In this experiment, we used ResNet [25], VGG16 [26] and EfficientNet [27], none of
which obtained better result than what was obtained through the 3D model itself.

4.5. Fusion of 2D and 3D with RNN

3D CNN can capture the spatial information among CT slices, while 2D CNN can better extract
2D features in each slice. We assumed that ensembling these two models can result in a model
with both advantages. Therefore, we first put the features of all slices together and then
concatenate them with the features obtained by the 3D CNN model. This forms a feature vector
for each CT image, which is then passed to the RNN model as Figure 9. The result was similar
to that of the 3D model, which implies that the contribution of the 3D model in the learning
process is more dominant than the other model.

Figure 9: Illustration of fusion 2D and 3D model

4.6. Fusion of 2D and 3D to use the best of both

After investigating the confusion matrices obtained from the 3D and 2D models, we noticed
that the 3D model can better separate the last 3 classes, while can not properly categorize the
first two ones. However, this pattern was completely reversed for the 2D model. Therefore, we
decided to select the final prediction of classes 1 and 2 on test data manually from the prediction
of both models. The result was similar to the 3D model which shows that the 2D model did not
help the 3D model in the prediction of classes 1 and 2.



5. Comparative results

Table 5 shows the results obtained on the test data of the competition. As it can be seen, the
2D-CNN model obtained 0.036 and 0.373 scores based on Kappa and accuracy score, which is the
worst score on Kappa and second-best on accuracy metric among all our submissions. Then, the
Kappa is increased by 0.02 when the RNN module is added on top of the 2D-CNN; meanwhile,
the accuracy score is decreased by 0.031. Furthermore, the 3D-CNN model obtained 0.181 and
0.404 on Kappa and accuracy, respectively, which is our best score on both metrics. This result
is then decreased to 0.136 and 0.371 by adding the 2D features and manually selecting the final
prediction when 2 models had conflicts in the first two classes.

Table 5
Results obtained on the test data.

Method Kappa Acc
2D 0.036 0.373
2D + RNN 0.056 0.342
3D 0.181 0.404
3D + 2D + Manual 0.136 0.371

6. Conclusion and Future Works

In this paper, we have described our proposed method for the tuberculosis task of ImageCLEF
Tuberculosis 2021. We proposed three different approaches and analyzed their corresponding
results. The results demonstrate that the 2D-CNN didn’t work well, while we believe that it can
be significantly improved by applying a smarter voting mechanism for outputting the final label.
These improvements can be such as applying Gaussian Distribution Normalization or defining
a window with a fixed size, k, to move through the vector of 50 labels and pick the final label.
By having a better 2D-CNN in hand, we can expect some enhancements while ensembling 2D
and 3D-CNN models. Moreover, comparing the obtained results on validation data, Table 3 and
Table 4, with the results on test data, Table 5, shows that there exists a considerable gap between
them, which can be caused by the existence of different distributions between validation and
test datasets. To resolve this issue, we suggest exchanging the order of duplicating and splitting
the data. This guarantees that there is no overlap between training and validation data. We
also plan to employ more complicated approaches for data augmentation; in this case, the
models can learn and generalize more robustly. During our experiments, we also figured out
that the main part of the incorrect predictions of models caused by predicting the first two
classes interchangeably. By having this in mind, we can fix this problem by training a separate
binary classification on those classes.
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