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Abstract  
The ImageCLEF 2021 Tuberculosis task is an example of a challenging research problem in 

the field of computed tomography (CT) image analysis. The purpose of this study is to make 

accurate estimates for five labels (infiltrative, focal, tuberculoma, miliary, and fibrocavernous) 

based on lung images. We describe the tuberculosis task and approach for chest CT image 

analysis and then perform a single-label CT image analysis using the task dataset. We propose 

an image processing and fine-tuning deep neural network model that uses inputs from 

convolutional neural network features. This paper presents several approaches for applying 

normalization and pseudo-color to the extracted 2D images, for applying mask data to the 

extracted 2D image data, and for extracting a set of 2D projection images based on the 3D 

chest CT data. Our submissions for the task test dataset achieved an unweighted Cohen’s kappa 

of 0.117 and an accuracy of 0.382. 
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1. Introduction 

With the spread of various diseases (e.g., tuberculosis (TB), COVID-19, and influenza), medical 

research has been performed to develop and implement the necessary treatments for viruses. However, 

there is no method currently available to identify such diseases early. An early diagnosis method is 

needed to provide the necessary treatment, develop specific medicines, and prevent the deaths of 

patients. 

Accordingly, a significant amount of effort has been invested in medical image analysis research in 

recent years. In fact, a task dedicated to TB has been adopted as part of the ImageCLEF evaluation 

campaign for the five last years [1][2][3][4][5]. In ImageCLEF 2021 the main task [6], 

“ImageCLEFmed Tuberculosis,” is treated as a computed tomography (CT) report. The goal of this 

subtask is to automatically categorize each TB case into one of the following five types: infiltrative, 

focal, tuberculoma, miliary, or fibrocavernous. Accordingly, the goal of this study is to automatically 

categorize the TB type from 3D CT images of TB patients. 
In this paper, we employ a new fine-tuning neural network model that uses features extracted by pre-

trained convolutional neural network (CNN) models as input. The existing CNN model had weak 

classifications; therefore, we propose a new fully connected two layers. The new contributions of this 

paper are the proposition of novel feature building techniques, the incorporation of features from the 

proposed CNN model, and the use of several forms of pre-processing to predict TB from the images. 

In Section 2, we describe the conducted task and the ImageCLEF2021 dataset. In Section 3, we 
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introduce the image pre-processing, experimental settings, and features used in this study. In Section 4, 

we describe the experiments we performed. In Section 5, we provide our conclusions. 

2. ImageCLEF 2021 Dataset 

The TB task of the ImageCLEF 2021 Challenge included partial 3D patient chest CT images [7]. 

The dataset contained the chest CT scan imaging data, including 917 images for the training 

(development) dataset and 421 images for the test dataset. Some of the scans include additional meta-

information, which may vary depending on data availability for different cases. Each CT image 

corresponds to only one TB type. In this edition, each CT scan corresponds to one patient. Using the 

CT image data, our goal is to automatically extract and categorize each TB case into one of the following 

five types: (1) Infiltrative, (2) Focal, (3) Tuberculoma, (4) Miliary, (5) fibrocavernous Table 1 lists the 

labels for the chest CT scan in the training dataset. 

 

Table 1 
Presence of labels for the chest CT scan in the training dataset. 

Label In Training set (number of patients) 

Infiltrative 420 
Focal 226 

Tuberculoma 101 
Miliary 100 

fibrocavernous 70 
Total 917 

 

3. Proposed Method 

We propose a single-label analysis system to predict the TB type from CT scan images. The first 

step is input data pre-processing. After introducing our pre-processing of the input data, we describe 

our deep neural network model, which enables single-label outputs given the CT scan images. In 

addition, optionally in the first step, we can use a CT scan movie instead of CT scan images. We detail 

our proposed system in the following subsections. 

3.1. Input data pre-processing  

The 3D CT scans in the training and test datasets are provided in compressed Nifti format. We 

decompressed the files and extracted the slices along the z-axis of the 3D image, as shown in fig. 1. For 

each Nifti image, we obtained a number of slices, according to the dimensions, ranging from 110 to 250 

images for the z-dimension. After extracting the slices along the z-axis, we filtered the slices of each 

patient using mask1 and mask2 data [8][9]. The mask1 data provide more accurate masks but tend to 

miss large abnormal regions of the lungs in the most severe TB cases. The mask2 data provide more 

rough bounds but behave more stably in terms of including lesion areas. We extracted the filtered CT 

scan images. We noticed that all slices contain relevant information, including bone, space, fat, and 

skin, in addition to the lungs that could help classify the samples. This is why we added a step to the 

filter and selected a number of slices per patient. We call this data the Applying mask CT data. 

In addition, as shown in fig. 2, we implemented pseudo-color on the normalization mask CT data. 

We call this data the normalization mask CT data. 

In addition, as shown in fig. 3, we perform pseudo color for normalization mask CT data. We call 

this data pseudo color CT data. 

 

 



 
Figure 1: Pre-processing of the input data applying mask data. 

 
Figure 2: Pre-processing of the input data using normalization. 

 



 
Figure 3: Pre-processing of the input data using pseudo color. 

3.2. Proposed deep neural network model 

To solve this single-label problem, we propose fine-tuning neural network models that allow inputs 

coming from end-to-end CNN features. 

 
Figure 4: Our proposed method for feature extraction. 

3.2.1. Training and Validation sets 

The training dataset consists of 107,955 and 105,494 images extracted from the applying mask1 and 

mask2 CT datasets, respectively, for the z-axis. 
We divided the training dataset at random into training and validation datasets with a ratio of 8:2. 

The CNN features were extracted using pre-trained CNN-based neural networks, including EfficientNet 

B05. To deal with the above features, we propose a deep neural network architecture. 

Our system incorporates CNN features, which can be extracted using deep CNNs pre-trained on 

ImageNet [10] such as EffcientNet B05[11]. Because of the lack of datasets in visual sentiment analysis, 

we adopted transfer learning for the feature extraction to prevent overfitting. We decreased the 

dimensions of the fully connected layers used in the CNN models. In addition, we extracted the vector 

to 2048 dimensions. 

 



3.2.2. Training and Validation sets and Test data 

We employed the unweighted Cohen’s kappa and accuracy to fine-tune the above CNN model. 

As illustrated in fig. 4, the CNN features are combined and represented by an integrated feature as a 

linearly weighted average, where the weights are w3 for the CNN features. The CNN features are passed 

through “Fusion” processing to generate the integrated features, followed by a “softmax” activation 

function. 

3.3. Single-label probability 

We propose the method illustrated in Algorithm 1. The input is a collection of features extracted 

from each image with K types of diseases, while the output is a K-dimensional hot vector. 

In Algorithm 1, we assume that the extracted CNN features are represented by their probabilities. 

For each TB case, we sum the features, followed by the median of the result, which is denoted as Ti
k in 

Algorithm 1. In short, the vector Si represents the output of each hot vector. We repeat this computation 

until all the test (unknown) images are processed. 

 

4. Experiments 
4.1. Unweighted Cohen’s Kappa and Accuracy of training and 

validation sets 

The training dataset consists in Applying mask1 and mask2 CT data, and the normalization mask1 

and mask2 CT data. The training dataset consists of 105 494,107 955 images extracted for the mask1 

and mask2 CT data respectively. 

Here, we have divided the filtering data into training and validation datasets with a ratio of 8:2. We 

determined the following hyper-parameters: the batch size is 256, the optimization function is stochastic 

gradient descent with a learning rate of 0.001 and a momentum of 0.9, and the number of epochs is 200. 

For the implementation, we employed Tensorflow[12] as our deep learning framework. 

For the evaluation of the single-label classification, we employed the un-weighted Cohen’s kappa 

and the accuracy. Table 2 shows the results. finally, we employed EfficientNet B05 for the training and 

validation datasets and the test data. The results are given in Section (4.2). 

 

Table 2 
Unweighted Cohen’s Kappa and Accuracy of training and validation sets for fine-tuning EfficientNet 
B05. 

Mask Pre-processing Unweighted Cohen’s 
Kappa 

Accuracy 

 
mask1 

applying mask 0.213 0.443 
applying mask and normalization 0.199 0.443 

applying mask, normalization, pseudo color 0.215 0.475 

 
mask2 

applying mask 0.215 0.495 

applying mask and normalization 0.244 0.489 
applying mask, normalization, pseudo color 0.183 0.448 

 
 
 
 
 
 
 



Table 3 
Numbers of images with the five labels for the chest CT scans in the training dataset. 

Mask Pre-processing In Training set (number of 
images) 

 
 

mask1 

Infiltrative 49058 

Focal 25722 

Tuberculoma 11293 

Miliary 11692 

fibrocavernous 7729 

 
 

mask2 

Infiltrative 50035 

Focal 26203 

Tuberculoma 11552 

Miliary 12030 

fibrocavernous 8135 

 

4.2. Results for the training and validation datasets and the test data 
using our proposed model  

The test dataset consisted of 59 835 and 60 758 images extracted from the applying mask1 and 

mask2 CT data, respectively, as show in Table 3. 

It is likely that our proposed models will give better results after more advanced data pre-processing 

including the use of several types of CT images and data augmentation. Here as described above, we 

employed fine-tuning CNN models in EfficientNet B05 based on several pre-processing methods. 

Table 4 shows the results. Here, we compare the results in terms of the unweighted Cohen’s kappa 

and the accuracy. For mask1 and normalization on fine-tuning EfficientNet B05, our proposed CNN 

model has good values of un-weighted Cohen’s kappa and accuracy. 

In addition, results of the other participants’ submissions with their un-weighted Cohen’s kappa and 

accuracy are shown in Table 5. Here, we compare the results in terms of the unweighted Cohen’s kappa 

and the accuracy. 

For our team, KDE-lab, our proposed CNN model has the best unweighted Cohen’s kappa and 

accuracy. 

The results achieved by our submissions are well ranked compared to those at the top of the list 

given in Table 5. Note that several runs in the table belong to the same teams and likely do not differ 

significantly. In terms of the unweighted Cohen’s kappa, our model ranks 8th. In terms of the accuracy, 

our model ranks 7th. 

 

Table 4 
Results of experiments for single-label classification. 

Mask Pre-processing Unweighted Cohen’s 
Kappa 

Accuracy 

 
mask1 

applying mask 0.016 0. 382 

applying mask and normalization 0.117 0.382 

applying mask, normalization, pseudo color 0.069 0.371 

 
mask2 

applying mask 0.015 0.372 
applying mask and normalization 0.085 0.375 

applying mask, normalization, pseudo color 0.081 0.373 

 

 

 



Table 5 
The best participants’ runs submitted for the CTR subtask. 

Group name Rank Unweighted Cohen’s 
Kappa 

Accuracy 

SenticLab.UAIC 1 0.221 0.446 
hasibzunair 2 0.200 0.423 

SDVA-UCSD 3 0.190 0.371 
Emad-Aghajanzadeh 4 0.181 0.333 
MIDL-NCAI-CUI  5 0.140 0.333 

uaic2021 6 0.129 0.401 
IALab PUC 7 0.120 0.401 

KDE-Lab 8 0.117 0.381 

JBTTM 9 0.038 0.221 
Zhao_Shi_ 10 0.015 0.380 
YNUZHOU 11 -0.08 0.385 

 

5. Conclusions 

In this study, we proposed image pre-processing and a CNN model for predicting five labels 

(infiltrative, focal, tuberculoma, miliary, and fibrocavernous) from chest CT images. We performed a 

lung CT image analysis in which we proposed a deep neural network model that enabled the inputs to 

be derived from the CNN features. To predict the five labels, we introduced a threshold-based single-

label prediction algorithm. 

Specifically, after training our deep neural network using the pre-processed images, we were able to 

predict the categories of the five types of TB cases from unknown CT scan images. The experimental 

results demonstrate that our proposed models out-perform some models in terms of the unweighted 

Cohen’s kappa and the accuracy. For the unweighted Cohen’s kappa, our model achieved a good value. 

As a consequence, we believe that using normalization to pre-process an image is effective. 

In the future, given an arbitrary X-ray, CT, echo, or magnetic resonance imaging image might be 

included the optimal weights for the neural networks. Moreover, we hope our proposed model will 

encourage further research into the early detection of diseases (such as TB, COVID-19, and influenza) 

or unknown diseases. 
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