
Security in IoT Pairing & Authentication protocols, a
Threat Model and a Case Study Analysis
Daniele Granata, Massimiliano Rak, Giovanni Salzillo and Umberto Barbato

Università della Campania "Luigi Vanvitelli", Dipartimento di Ingegneria, Aversa (CE), 81031 Italy

Abstract
The Internet of Things has changed the way we interact with the environment around us in our daily life,
and it is increasingly common to find more than one IoT device in our home. However, the current design
approaches adopted by the vendors are more oriented towards customer usability than to security. This
often results in more and more devices exposing serious security problems. This work focuses on the
security implications, i.e. the threats and the risks, of the current IoT pairing mechanisms and represents
a step forward in the definition of our automated penetration testing methodology. In addition to the
general threat model for a general IoT pairing process, we present the analysis of a QR code-based
pairing mechanism implemented by a class of devices taken from the real market, which led to the
identification of two vulnerabilities, one of which publicly disclosed as CVE-2021-27941.

Keywords
IoT security, pairing protocols, threat model, IoT pairing

1. Introduction

Internet of Things is becoming an accepted reality. Vocal assistants, smart lamps, smart plugs
are more and more common in our houses. Industrial systems include smart meters, connected
robots, and drones. The health system makes large use of portable devices for continuous
monitoring of critical sick persons. Cars are complex and connected computer systems. As a
matter of facts, our daily life is full of interactions with several multiple surrounding devices.

Users need to continuously interact with new devices, establishing a connection and correctly
using them. Pairing is the term adopted for describing the process of establishing a connection
with a new device [1]. Pairing processes should be as simple as possible, otherwise, interactions
become unacceptable for common life interactions.

However, pairing includes complex procedures and relies on the authentication of the peers
connecting each other. As commonly happens, there is a clear trade-off between usability of
pairing processes and the security, of the process itself [2]. Considering that users, as a general
assumption, have absolutely no expertise of any kind, such trade-off is hard to consider, and
often usability is the only factor considered, sometimes opening IoT devices to severe security
issues.

" daniele.granata@unicampania.it (D. Granata); massimiliano.rak@unicampania.it (M. Rak);
giovanni.salzillo@unicampania.it (G. Salzillo); umberto.barbato1@studenti.unicampania.it (U. Barbato)
� 0000-0002-6776-9485 (D. Granata); 0000-0001-6708-4032 (M. Rak); 0000-0001-6491-9655 (G. Salzillo)
© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

mailto:daniele.granata@unicampania.it
mailto:massimiliano.rak@unicampania.it
mailto:giovanni.salzillo@unicampania.it
mailto:umberto.barbato1@studenti.unicampania.it
https://orcid.org/0000-0002-6776-9485
https://orcid.org/0000-0001-6708-4032
https://orcid.org/0000-0001-6491-9655
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


To assess the security of IoT systems, our research team is working on a methodology that
aims at automating IoT-based security testing. This paper, together with [3, 4, 5], is a concrete
testing process made to build up such an automated procedure.

In this paper, we focus on the pairing process of IoT devices and made a systematic analysis
of smart devices for home systems, building a general-purpose threat model. Thanks to our
methodologies, we made a threat-based analysis of the devices pairing process, identifying the
possible attacks that implement the identified threats, demonstrating their feasibility on real
devices, and how some pairing systems may lead to dangerous side effects. The experiments
lead to the discovery of two vulnerabilities, for one of which we requested a CVE id. Also, we
contacted the vendor before the submission of this paper to leave him the time to apply some
internal countermeasures to mitigate the vulnerabilities.

As a summary, the main contributions of this work are: (i) a generic Threat Model for the IoT
device pairing process, (ii) a demonstration of the usefulness of our threat-based penetration
testing approach, (iii) a detailed security analysis of a particular pairing scheme from the real
market, (iv) the discovery of two vulnerabilities in real-world class of devices.

The remainder of the paper is organized as follows: Section 2 illustrates the state of art,
focusing on the existing pairing schemes and the security analysis available in the literature on
the topic. Section 3 briefly summarizes our threat-based approach to penetration testing and
the Threat Model we made for the IoT pairing process. Section 4 describes the analysis on a
real-world class of devices and presents one of the two discovered vulnerabilities. Section 5
summarizes the conclusions and the future works.

2. IoT Pairing State of the Art

In the current literature, the term pairing is defined as the bootstrap process that creates a
communication channel between two entity, which have never met each other before [1]. A
pairing process involves the authentication process, needed to prove each device the identity of
the other. Accordingly, it is worth noticing that device authentication is only a component of
the pairing scheme, even if in literature sometimes the two processes are confused. Hereafter,
we briefly summarize the existing techniques and the taxonomies for device authentication
available in the current state of the art.

El-Hajj et Al. [6] analyze multiple IoT authentication schemes through a multi-layered
approach, i.e. through the Perception, the Network and the Application layer, proposing a taxon-
omy of IoT authentication schemes based on multiple properties, such as the authentication
architecture, the authentication procedures, the number of authentication factors, the use of a
token, or other hardware-based properties.

Similarly, Meneghello et Al. [7] present an extensive survey about the most common IoT
authentication schemes, as well as their weakness and the possible countermeasures, even if
adopting a different layering, made of the Edge, the Middleware, and the Application layer.

Ferrag et al. [8] address the IoT authentication schemes problem with a different approach,
mainly based on the application context: Machine-to-Machine (M2M), Internet-of-Vehicles (IoV),
Internet-of-Energy (IoE) and Internet-of-Sensors (IoS). The authors propose a framework to
evaluate and implement a secure authentication schema.



(a) Generic Pairing Schema (b) Case Study Pairing Schema

Figure 1: Pairing Schema

As concerning the device pairing process, and in particular, the process of pairing a device
to the customer’s WiFi network, very few papers are available in the literature. A survey
on the available IoT pairing schemes is available in [1] by Fomichev et Al. According to the
authors, a general pairing schema consists of 3 steps: (i) the discovery, (ii) the secret exchange
and (iii) the verification step. In Figure 1a is reported a generic pairing association schema.
During the discovery phase, the involved entities try to discover each other. Next, to create a
secure communication channel, a secret exchange phase is needed, during which both entities
agree and exchange a secret, for example, a key to encrypt messages or a password to join the
customer’s WiFi network. Finally, during the verification phase, the involved entities verify the
shared secret and ensure that the process has not tampered.

Due to the intrinsic characteristics of the wireless communication links, those pairing pro-
cedures are often vulnerable to Man-In-The-Middle (MITM) attacks. Therefore, an auxiliary
out-of-band channel (OOB) is usually involved for the key-exchange step. The authors outline
that this communication channel is not necessarily a dedicated PHY (Physical) channel, but
could also be a HCI (Human-Computer Interaction) channel, which is a channel where data is
transmitted through human interaction.

As concerning the existing pairing techniques and their underlining technologies, multiple
schemes have been proposed [9, 10, 11, 12, 13]. Therefore, device vendors stretch to develop
custom solutions, relying on the security-by-obscurity paradigm and often resulting in insecure
pairing mechanisms [5]. It is worth noticing that a vulnerable pairing protocol may affect not
only the IoT device but also the full system in which the device resides.

Moreover, the existent pairing solutions often rely on dedicated protocols built on-top of
physical channels [12, 13, 9]. From a security point of view, it is worth noticing that different
physical channels have different security properties. Furthermore, physical channels are often
used as out-of-band communication channels as a "verification" step, i.e. devices communicate
on a network, like a WiFi network, but adopt a dedicated physical communication channel to
share the data needed to authenticate each other.

As already outlined, some pairing solutions rely on particular OOB channels to securely
authenticate the devices, i.e. the Human Computer Interaction (HCI) channel. Within an HCI



channel, the user is asked to perform a physical action, like pressing a button or scan a QR code.
Nevertheless, HCI channels are subjected to the human error, so the user could become the
"weakest link" of the entire pairing procedure [10, 11].

Despite the cited references, currently, there is no standard reference architecture for the
pairing mechanism, and on which base a systematic security analysis approach. Accordingly,
there is a clear need for a standard security solution and the definition of the general-purpose
best practices for IoT-based systems.

In this paper, we focus on a specific pairing schema that uses an OOB channel, an HCI and
an external service for the device configuration process. Figure 1b shows the involved parties
and summarizes, at the same time, the steps required by the pairing schema.

This particular schema involves an initial HCI interaction (step 1), by which the user starts
the pairing process on both the IoT device and his user equipment (UE), usually a smartphone.
The HCI step could also involve the acquisition of a device secret, later used to authenticate
the communication. The user equipment retrieves some device information from a remote
service (step 2) and shares the network credentials to the IoT device (step 3), possibly throughout
and OOB channel. Next, the device joins the user’s network (step 4) and registers itself to a
remote service (step 5), typically to be remotely associated with the customer’s account, thus
completing the configuration process.

This work analyzes the threats for this particular pairing schema and represents another
little step forward in the demonstration of the versatility of our general-purpose methodology
for systematic and threat-based penetration testing, already adopted in other contexts [4, 5].

3. Security Assessment Methodology

The methodology adopted in this work was previously proposed in [4, 3] and we briefly summa-
rize here the involved steps. The approach enables less-skilled penetration testers to perform a
threat-modeling-driven penetration testing security evaluation, guiding them to look for system
vulnerabilities on a per threats basis. As highlighted in Fig 2, the approach relies on four phases:
(i) the System Modeling, during which a (semi-)formal description of the system under test
is produced, (ii) the Threat Modeling, a phase devoted to the threat identification, (iii) the
Planning phase, for test and attack planning, and (iv) the final Penetration Testing phase,
for the actual attack execution.

Figure 2: The steps of the used methodology

According to our approach, the System-under-Test (SuT) is described by the Multi-cloud
Application Composition Model (MACM) formalism [14, 15], a graph-based system modelling
formalism introduced to describe architectural components and security properties of cloud-
based applications and IoT systems. The purpose of the model is to offer a simple and synthetic
description of the system, enabling our automation techniques for threat modelling.



In MACM, system components are modelled with graph nodes, whereas relationships between
system components are represented with directed links between nodes. The proposed formalism
allows to properly represent system architecture components and also enable to annotate
security-concerning information in a human and machine-readable format.

Thanks to the techniques described in [14, 16], it is possible to generate a full list of threats
that may affect the SuT starting from a pre-organized, general-purpose catalogue. The catalogue
is constructed in such a way that MACM nodes coincide with the threat asset-type and it
includes threats for many software components and protocols (Ethernet, IP, TCP, TLS, XMPP,
OAuth, Zigbee, Bluetooth, BLE, GSM/3G/4G/5G) and it is currently maintained and constantly
updated. The goal of the threat model is to support and guide less-skilled penetration testers at
identifying system security vulnerabilities. In this paper, we enriched the catalogue with a set
of threats specific to IoT devices pairing process.

In the planning phase, penetration testers analyze the identified threats and select the most
promising one, based on his experience and his competencies in terms of possible attacks.
Currently, we are working on techniques that aim at automating this step (in [3] and in [4] there
are two alternative possible solutions). Once selected the targeted component and the security
objectives to be tested, penetration testers look for available vulnerabilities and, eventually, set
up the appropriate tools or framework to exploit and put into effect the chosen threat.

3.1. Pairing Process: A Threat Model

As anticipated, the automated threat modelling procedure relies on a predefined threat catalogue,
that collects high-level and system-independent threats, organized by asset type.

In our methodology, a threat is modelled as the triple {𝑇ℎ𝑟𝑒𝑎𝑡𝐴𝑔𝑒𝑛𝑡,𝐴𝑠𝑠𝑒𝑡, 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟},
representing the possibility of a Threat Agent, i.e. a malicious actor, to cause damage to an Asset,
i.e. something that has a value in the system, through a specific Behavior, i.e. a set of actions
that implies human and/or automated interactions with the target systems [16]. All the threats
in the catalogue are linked to the assets of the system under analysis, through the asset type
field and are obtained in an automated way through ad-hoc queries on the threat catalogue.

The Table 1, reported in Appendix, contains an excerpt of our catalogue with the specific
behaviours of the threats for the IoT pairing processes. Our catalogue contains additional
information to characterize the threats (like the STRIDE classification [17]) and the information
needed to customize the Threat Model for a specific system.

Also, we identified and reported in Table 1 two classes of possible threat agents: the Malicious
User and the Malicious Service. A Malicious User is a hostile attacker who has internal access to
the infrastructure (i.e. connected to the LAN Network) to perform the attacks with no legal and
ethical constraints. The threat agent goal is to damage or steal the asset, denying, causing harm
or taking control of the asset. The skills required by the attacker(s) is operational, or rather
someone who understands the technology background, but is not an expert in performing the
attack methods. Unlike the Malicious User, a Malicious Service can also have external access
to the system and aims to steal sensitive data. To carry out a social engineering attack, the
threat agent requires minimum skills, but he must register a domain that exposes the attacker
to greater legal limits.

As an example of identified threats, threat T2 of Table 1 consider the case in which a malicious



user could compromise the IoT Device by replacing it with a malicious one or by connecting a
malicious User Equipment to the customer’s device without the legitimate users’ awareness.
This would affect the IoT device integrity.

Other threats target the customer’s network: a malicious user could, for example, connect a
malicious IoT device to the user’s WiFi network, or physically disturb the communication link
to prevent the pairing process from completing (e.g. Jamming). Also, an attacker could manage
to compromise the communication between the UE and the remote service. Further, the latter
could be subjected to Denial of Service, an attack that aims at denying the service availability.
Or worse, it could be subjected to spoofing, i.e. an attacker could replace a legitimate service
with a malicious one and obtain sensitive information.

Based on the threats described in this section, the penetration tester analyzes the threat list
and constructs the specific attacks in the Planning phase.

4. A Case Study: The eWelink QR Code Pairing Protocol

In this section, we present the methodology applied for the security analysis of a real-market
case study, about a pairing schema matching the one presented in Figure 1b. In particular, we
analyze the implementation details and the weaknesses exposed by a particular QR-code based
pairing schema, tied to the eWeLink hub platform.

eWeLink [18] is a cooperative smart home platform, compatible with most of the home
automation systems such as Apple HomeKit[19], Google Nest[20], Amazon Echo[21]. It supports
a wide range of smart devices, including power switches, sockets, LEDs and several other sensors.
The eWeLink application is available for free on the Google Play Store and the Apple App Store.
Our tests regard the entire class of devices which are QR-code pairable with the latest versions
of the eWeLink mobile application (Android version 4.9.2 and iOS version 4.9.1).

The application, depending on the device class, provides five different methods for pairing:
(i) the Quick Pairing mode, a pairing mechanism based on the ESP-Touch protocol (which
we already found vulnerable [5]), (ii) the Sound Pairing mode, available for camera and other
devices equipped with a microphone, (iii) the Bluetooth Pairing mode, for devices equipped with
a Bluetooth interface, (iv) the Compatible Mode, a fallback compatibility pairing mode based on
softAP, and (v) the Scan QR code mode, that involves both the scan of a QR code label and the
connection to the device WiFi softAP network.

Among the devices supporting the latter pairing schema, we tested the ITEAD Sonoff Micro
[22], depicted in Figure 3a, which is a USB smart adapter that converts an ordinary USB power
port to a smart controlled switch. It permits to schedule stop charging times, check the power-on
status, or remotely turn on/off the attached devices.

The steps required to pair a supported device are reported in Figure 3b. The process starts by
setting the IoT device into pairing mode (step 1), and by selecting a new device association on
the eWeLink application, tapping on the QR code pairing mode (step 2 and 3). The user is asked
to scan the QR code label shipped with the device (step 4) and, then, to insert his WiFi network
credentials (step 5). Finally, the device joins the user’s WiFi network and gets associated with
the user’s account (step 6).

Note that, the steps form 1 to 5 in Figure 3b directly coincide to the first step of the generic



(a) Sonoff Micro (b) QR code pairing through the eWeLink application

Figure 3: Device and Pairing Schema

Figure 4: MACM eWeLink case study

pairing model introduced in Figure 1b, i.e. the user-device HCI interaction, described in Section
2. Conversely, step 6 in Figure 3b encloses all the remaining steps (from 2 to 5) of the pairing
model of Figure 1b. This is because that the low-level device pairing operations do not require
any human intervention, and are automatically executed once all the initial protocols parameters
are set by the customer.

4.1. Security Evaluation

To start the security evaluation, and according to the first step of our methodology, we devised
the MACM model of the entities involved in the pairing process. The graph in Figure 4 represents
these assets, grouped by type in different colours, and their relationships. Among the green
coloured network nodes, note the softAP network raised by the IoT device for its configuration.
Also, note the remote service node, hosted by the Cloud Service Provider (CSP), that is used
by both the smartphone (and the eWeLink mobile app) and the IoT device for the configuration.
Finally, the IoT Gateway node represents the user’s target WiFi AP.

According to the above-described approach, we derive the detailed threat model of the system
from the MACM. For brevity reasons we do not report here the model, but we will refer to
the threats using the information in the catalogue reported in the Appendix, in Table 1. For



each threat in the threat model, a certain number of security test plans were produced and
then executed by the penetration tester (steps 3 and 4 of the methodology), looking for possible
security issues. Hereafter, we report only the successful tests, i.e. the ones that led to a successful
attack.

For each threat in the threat model, a certain number of security test plans were produced
and then executed by the penetration tester (steps 3 and 4 of the methodology), looking for
possible security issues. Hereafter, we report only the successful tests, i.e. the ones that led to a
successful attack.

In our case, the device_id was a 10 characters long alphanumerical string representing a
unique device id. After the QR code scan, the companion application extracts the SSID name
and, based on the device id parameter, queries a remote service to retrieve a secret key and
other device information (e.g. device model and device type). During the penetration testing
steps, we found that, by having a valid platform account, it is possible to manually query the
Cloud APIs and retrieve the secret key of any device just by knowing its device id, whether
already associated with a network or not.

Later, the mobile application asks the user to insert both the target WiFi network SSID and
passkey and finally connects the smartphone to the device WiFi AP network (unprotected by
default) to perform the configuration. Accordingly, applying the attacks for the threat T4 in
Table 1, we intercepted the HTTP post configuration request to the device. The intercepted
JSON message contained the target WiFi network authentication details and the Cloud API
endpoint for the user reference region location. This JSON message was encrypted with the
AES algorithm, using a 0-pad IV and the previously retrieved secret key. The IoT device has a
hard-coded copy of the secret key and, thus, can decrypt the incoming messages.

4.2. Results

According to our test plan results, an attacker could leverage this specific pairing pattern to
gain full access to the client’s WiFi network. In fact, the device softAP SSID also contains the
device id information and, by looking at this field, a malicious attacker would be able to retrieve
the related device private key. By knowing this encryption key and due to the openness of the
device WiFi softAP, an attacker can sniff the HTTP configuration message sent by the mobile
user equipment and decrypt the user’s WiFi network credentials.

Hereafter, an example of decrypted JSON {“ssid" : “Test-Network", “password" : “Test-Password",
“serverName" : “eu-disp.coolkit.cc", “port" : 443}, where the “Test-Network" and “Test-Password"
parameters are the network credentials we chose for our testbed configuration. Also, note the
presence of the eu-disp.coolkit.cc endpoint serving the European region.

Once received the pairing parameters, the device stops advertising its WiFi AP, joins the
user’s WiFi network and registers itself with the remote API Cloud platform.

Note that, this vulnerability does not expose only the IoT device, but the entire user’s network,
even though, for the actual exploitation, the threat agent must be located in the proximity of
the pairing device.

The security of the eWeLink QR code protocol and, in particular, the confidentiality of the
user’s network credentials, rely on the proper AES encryption of the configuration messages.
The problem is that the QR code does not encode any security information related to the IoT



device (only the public SSID is encoded into the QR label). Instead, a publicly accessible API
endpoint is called to retrieve the device secret key, which is used to implement the AES security
layer of the pairing protocol. This makes the HCI interaction via QR code useless from a security
point of view. Currently, there isn’t much users can do to prevent their network credentials
from being exposed during a pairing session based on the eWeLink QR code schema. Monitoring
the API endpoint for secret key retrieval, or any attempt to associate a secret key exclusively to
its first calling user would be ineffective solutions, and a possible cause of denial of service to
the customers, intended as the inability to complete a legitimate pairing process. One solution
would be to encode the secret key inside the QR label. However, problems arise if the QR sticker
is lost: it would become impossible to re-pair the device.

We responsible disclosed the vulnerabilities we found to eWeLink, which acknowledged back
and defined a set of provisional countermeasures before a complete API re-design.

We reserved a CVE ID number and published the vulnerability as CVE-2021-27941 [23, 24].

5. Conclusions

“Security is the dark side of Internet of Things"1 emphasizes that the IoT is a young technology
and, as a consequence, it suffers from many concrete issues that must be addressed as soon
as possible. This paper is part of a research line that aims at defining a fully automated and
threat-based technique for the security assessment of IoT systems. Moreover, our analysis led
to the production of a general-purpose threat model for the IoT pairing processes, that can be
used for further analysis and can be integrated with our automated risk analysis process. We
hope that this contribution raises the awareness of the existing security issues in home-based
systems. The security analysis enabled us to disclose and report two major vulnerabilities to
the vendor. We also registered a CVE number for one of them: CVE-2021-27941. We didn’t
disclose any detail about the second vulnerability, which has a major severity, to give eWeLink
enough time to implement a correction. We are working on extending the approach to support
other pairing schemes and testing more devices, and on the automation, as much as possible, of
the entire process. Moreover, as anticipated, we are integrating the testing process with our
risk analysis methodologies, to offer a clear definition of the level of risk associated with the
adoption of new devices.

1https://iaonline.theiia.org/2017/Pages/The-Dark-Side-of-IoT.aspx



6. Appendix

Table 1
Pairing Threat Model.

ID Threat Compromised
Asset

Behaviour Threat
Agent

T1 Unauthorized
Netw. Access

WiFi Network A Malicious User connects a malicious IoT de-
vice to the user’s WiFi network

Malicious
User

T2 Device
Substitution

IoT Device AMalicious User physically substitutes a legit-
imate IoT Device with a Malicious IoT Device

Malicious
User

T3 Device
Hijacking

IoT Device A Malicious User connects a Malicious UE to
the user’s IoT Device without the legitimate
user’s awareness

Malicious
User

T4 Eavesdropping WiFi Network A Malicious User retrieves valuable data from
packets transmitted over the network

Malicious
User

T5 Data Leakage UE AMalicious User retrieves valuable data about
the user’s UE, i.e. the user account credentials.

Malicious
User

T6 Data Leakage IoT Device AMalicious User retrieves valuable data about
the user’s IoT Device, i.e. by eavesdropping on
network packets or by directly querying the
device

Malicious
User

T7 Impersonation IoT Device A Malicious User forces the legitimate user’s
UE to pair with a Malicious IoT Device

Malicious
User

T8 Device
Hijacking

IoT Device A Malicious User pairs a Malicious UE to a le-
gitimate IoT Device

Malicious
User

T9 Impersonation WiFi network A Malicious User connects a legitimate IoT de-
vice to a malicious WiFi network

Malicious
User

T10 Jamming WiFi network A Malicious User disturbs the WiFi communi-
cation channel

Malicious
User

T11 Message
Elimination

AP WiFi
Network

A Malicious User disturbs the communication
on the WiFi network

Malicious
User

T12 Message
Elimination

Network A Malicious User disturbs the communication
with a remote service

Malicious
User

T13 Device
Hijacking

IoT Device A Malicious User pairs a Malicious UE by re-
playing data from a previous pairing

Malicious
User

T14 Exhaustion of
Power

IoT Device A Malicious User consumes power resources
on IoT Device, i.e. by preventing it from being
paired

Malicious
User

T15 Data Leakage Service AMalicious User obtains valuable information
for the IoT device from a remote Service

Malicious
User

T16 Device
Hijacking

IoT Device A Malicious User registers the User’s IoT De-
vice to the remote Service

Malicious
User

T17 Impersonation Service A Malicious User replaces the legitimate Ser-
vice with a Malicious Service

Malicious
Service

T18 Denial of
Service

Service AMalicious User makes the legitimate remote
Service unavailable

Malicious
User



References

[1] M. Fomichev, F. Álvarez, D. Steinmetzer, P. Gardner-Stephen, M. Hollick, Survey and
systematization of secure device pairing, IEEE Communications Surveys & Tutorials 20
(2017) 517–550.

[2] S. Dutta, Striking a balance between usability and cyber-security in IoT devices, Ph.D.
thesis, Massachusetts Institute of Technology, 2017.

[3] M. Rak, G. Salzillo, C. Romeo, Systematic iot penetration testing: Alexa case study 2597
(2020) 190–200.

[4] S. N. Firdous, Z. Baig, C. Valli, A. Ibrahim, Modelling and evaluation of malicious attacks
against the iot mqtt protocol, in: 2017 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2017.

[5] G. Salzillo, M. Rak, A (in) secure-by-design iot protocol: the esp touch protocol and a
case study analysis from the real market, in: Proceedings of the 2020 Joint Workshop on
CPS&IoT Security and Privacy, 2020, pp. 37–48.

[6] M. El-Hajj, A. Fadlallah, M. Chamoun, A. Serhrouchni, A survey of internet of things (iot)
authentication schemes, Sensors 19 (2019) 1141.

[7] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, A. Zanella, Iot: Internet of threats?
a survey of practical security vulnerabilities in real iot devices, IEEE Internet of Things
Journal 6 (2019) 8182–8201.

[8] M. A. Ferrag, L. A. Maglaras, H. Janicke, J. Jiang, L. Shu, Authentication protocols for
internet of things: a comprehensive survey, Security and Communication Networks (2017).

[9] G. T. Amariucai, C. Bergman, Y. Guan, An automatic, time-based, secure pairing protocol
for passive rfid, in: International Workshop on Radio Frequency Identification: Security
and Privacy Issues, Springer, 2011, pp. 108–126.

[10] C. Castelluccia, P. Mutaf, Shake them up! a movement-based pairing protocol for cpu-
constrained devices, in: Proceedings of the 3rd international conference on Mobile systems,
applications, and services, 2005, pp. 51–64.

[11] J. Zhang, Z. Wang, Z. Yang, Q. Zhang, Proximity based iot device authentication, in: IEEE
INFOCOM 2017-IEEE Conference on Computer Communications, IEEE, 2017, pp. 1–9.

[12] B. Zhang, K. Ren, G. Xing, X. Fu, C. Wang, Sbvlc: Secure barcode-based visible light
communication for smartphones, IEEE Trans. on Mobile Computing 15 (2015) 432–446.

[13] C. Soriente, G. Tsudik, E. Uzun, Hapadep: human-assisted pure audio device pairing, in:
International Conference on Information Security, Springer, 2008, pp. 385–400.

[14] V. Casola, A. De Benedictis, M. Rak, U. Villano, Toward the automation of threat modeling
and risk assessment in iot systems, Internet of Things 7 (2019).

[15] M. Rak, Security assurance of (multi-) cloud application with security sla composition, in:
Int. Conference on Green, Pervasive, and Cloud Computing, Springer, 2017, pp. 786–799.

[16] D. Granata, M. Rak, Design and development of a technique for the automation of the risk
analysis process in IT Security (2021) 14.

[17] Microsoft, The STRIDE Threat Model, 2009. URL: https://docs.microsoft.com/en-us/
previous-versions/commerce-server/ee823878(v=cs.20).

[18] eWeLink, the eWeLink smart hub platform, last access, 2021. URL: https://www.ewelink.

https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://www.ewelink.cc/en/
https://www.ewelink.cc/en/


cc/en/.
[19] Apple, Apple HomeKit, last access, 2021. URL: https://www.apple.com/shop/accessories/

all/homekit.
[20] Google, Google Nest, last access, 2021. URL: https://store.google.com/category/connected_

home.
[21] Amazon, Amazon Echo, last access, 2021. URL: https://www.amazon.it/l/15755810031.
[22] ITEAD, Sonoff Micro reference, last access, 2021. URL: https://www.itead.cc/

sonoff-micro-5v-usb-smart-adaptor.html.
[23] CVE-2021-27941, MITRE CVE reference, last access, 2021. URL: https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2021-27941.
[24] CVE-2021-27941, CVE reference, last access, 2021. URL: https://github.com/salgio/

eWeLink-QR-Code.

https://www.ewelink.cc/en/
https://www.ewelink.cc/en/
https://www.apple.com/shop/accessories/all/homekit
https://www.apple.com/shop/accessories/all/homekit
https://store.google.com/category/connected_home
https://store.google.com/category/connected_home
https://www.amazon.it/l/15755810031
https://www.itead.cc/sonoff-micro-5v-usb-smart-adaptor.html
https://www.itead.cc/sonoff-micro-5v-usb-smart-adaptor.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-27941
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-27941
https://github.com/salgio/eWeLink-QR-Code
https://github.com/salgio/eWeLink-QR-Code

	1 Introduction
	2 IoT Pairing State of the Art
	3 Security Assessment Methodology
	3.1 Pairing Process: A Threat Model

	4 A Case Study: The eWelink QR Code Pairing Protocol
	4.1 Security Evaluation
	4.2 Results

	5 Conclusions
	6 Appendix

