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Abstract
Firewalls are effectively employed to protect network portions by blocking illegitimate traversing traf-
fic. However, during traffic load peaks, possibly due to DoS-like attacks, they may become performance
bottlenecks, introducing consistent delays/losses on legitimate packets. In multiple firewall networks,
a cooperative approach to mitigate performance degradation caused by firewall overloads consists in
suitably distributing responsibility for security policy implementation among available devices to bal-
ance workload. We present a technique for migrating security policies among firewalls in a sequence,
formally verified to preserve the overall security policy implemented by the sequence itself. The tech-
nique can be used as building block in the development of cooperative solutions allowing to balance
workload in networks where firewalls are arbitrarily placed to guard specific domains.
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1. Introduction

Nowadays firewalls are pervasively deployed over the Internet to protect network portions
(or single devices) against undesired/malicious traffic possibly threatening confidentiality, in-
tegrity and availability of the provided services. Firewalls implement security policies, which,
operatively, translate in lists of rules, each consisting of a condition defined over some packet
header fields (filtering fields), and an action. Firewalls operating according to the first matching
strategy check incoming packets against rule conditions sequentially, until the matching rule
(i.e., the first rule in the list whose condition is satisfied by the packet) is found, and then apply
the corresponding action (i.e., typically 𝑎𝑙𝑙𝑜𝑤 or 𝑑𝑒𝑛𝑦).

Firewall operation also impacts the legitimate traffic and, especially during traffic load peaks
(when the average packet arrival rate exceeds the firewall average service rate), legitimate
packets may suffer high delays and even be lost before being processed because of overloads and
overflows [1, 2]. The time necessary to a firewall for processing a packet is mainly determined
by the packet matching time, which is proportional to the number of rules against which the
packet is checked before finding the matching one. In general, the higher the firewall cardinality
(i.e., the number of rules in the list), the higher the firewall average service time. This criticality
is exploited, for example, by DoF (Denial of Firewalling) attacks which generate traffic targeting
the last rules in firewall lists [3].
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This paper presents a technique which may be used as a building block towards the de-
velopment of a cooperative solution, mitigating network performance degradation caused by
firewalls during traffic load peaks (either naturally arising or caused by cyber-attacks). The
idea is, when a firewall is overloaded, to split the security policy it implements so that part of
it is cooperatively implemented by other, less loaded, firewalls within the protected network.
Reducing the cardinality of the overloaded firewall, at the expense of that of the cooperating
ones, allows to balance the workload among the available devices. The presented technique
allows to migrate security policies along firewalls in a sequence, without altering the overall
security policy implemented by the sequence itself, by translating them in lists of only 𝑑𝑒𝑛𝑦
rules. The technique can be extended to more general configurations, where firewalls are not
connected in sequences but arbitrarily placed to guard specific network domains. Note that,
security administrators are only supposed to act (maintain/modify) on firewall configurations
in their original form, while the proposed technique operates independently, ensuring that the
overall network security policy is not changed in any way.

The paper is organized as follows: Sect. 2 provides an overview of state of the art techniques
for firewall performance optimization, Sect. 3 formalizes notation and considered problem,
while Sect. 4 describes the proposed technique for security policy migration. Sect. 5 concludes
the paper and, finally, App. A collects proofs.

2. Related works

Several techniques have been proposed to mitigate firewall impact on legitimate traffic. Some of
them aim at minimizing firewall cardinality without changing the implemented security policy
(e.g., policy analysis [4, 5, 6, 7], firewall compression [8, 9]), and are typically run offline, before
actual firewall configuration. Others, lean on the observation that traffic characteristics remain
constant for long periods of time and aim at ordering firewall rules so that those with higher
matching probability are at the top of the list, allowing the majority of packets to be checked
against a small number of rules (rule ordering [10, 11, 12, 13]). The latter are run online, any
time a change in the traffic profile is detected. Although effective, these techniques may not be
sufficient to avoid firewall overloads and overflows, especially during traffic load peaks. Indeed,
complex security policies may result in hundreds of rules even after analysis/compression.
Moreover, compression often leads to lists of highly dependent rules which cannot easily
be reordered, limiting the improvements achievable by compression and ordering combined.
Finally, if the packet arrival rate increases but the distribution of matching probability among
firewall rules does not change consistently, rule ordering is not helpful.

The technique we propose can be used in combination with all the previously mentioned
ones but follows a different approach, i.e., like [14, 15, 16], exploits the presence of multiple
firewalls within the protected network. In [14] a technique to balance workload by dynamically
distributing rules among firewalls in a network is described. However, to increase the degrees
of freedom in rule deployment, the technique relies on some unused IP header fields, written
and checked by firewalls, allowing packets only to be filtered by a fraction of the firewalls they
traverse. In [15], a solution for migrating rules from a central firewall to decentralized micro-
firewalls in cloud/cloudlets architectures is presented. However, to preserve the overall security



policy implemented in the network, the solution requires a rearrangement of traffic paths after
rule migration. Differently from [14] and [15], the technique described in this paper does not
imply any modification to firewall or network behavior. The proposed solution resembles the
one in [16], in that it allows to migrate (part of) the security policy originally implemented
by a firewall to downstream ones in the protected network, preserving the overall network
security policy. Solution in [16], however, relies on the go to action, which allows packets to
jump among firewall rules instead of being checked against their conditions sequentially. This
paper extends [16], as the proposed technique does not rely on the go to construct, and can thus
be used in combination with policy analysis, rule ordering and compression algorithms, which
are traditionally developed for security policies not including jumps.

3. Notation and problem definition

In this section, we define the notation used through the paper, which partially relies on the
ones in [8, 16], and formalize the tackled problem.

3.1. Firewalls and firewall sequences

We call range any non-empty, finite set of consecutive non-negative integers, [𝑎, 𝑏] ⊆ N0

(with N0 set of natural numbers including zero). Note that [𝑎, 𝑎] is range only consisting
of 𝑎 ∈ N0. Firewalls operating a the IP layer filter packets based on the content of five
header fields, i.e., source and destination IP address, source and destination port address and
protocol number. Formally, a filtering field 𝑃𝑖 is a range, and source and destination IP address,
source and destination port address and protocol number are defined, respectively, as ranges
𝑃1,2 = [0, 232 − 1], 𝑃3,4 = [0, 216 − 1], and 𝑃5 = [0, 28 − 1]. Even if we focus on IP-layer
firewalls, in the following, we refer to a generic number 𝑛 of filtering fields.

A packet 𝑝 defined over fields 𝑃𝑖, 𝑖 = 1, . . . , 𝑛, is a 𝑛-tuple

𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑛), 𝑝𝑖 ∈ 𝑃𝑖, 𝑖 = 1, . . . , 𝑛 (1)

A packet 𝑝 is a point in N𝑛
0 , and the finite set of all possible packets defined over fields 𝑃𝑖,

𝑖 = 1, . . . , 𝑛, 𝒫 = 𝑃1 × 𝑃2 × . . . × 𝑃𝑛 ⊆ N𝑛
0 , is a hyperrectangle (the generalization of a

rectangle in a 𝑛-dimensional space) in N𝑛
0 . Note that, the Cartesian product of 𝑛 ranges is a set

of 𝑛-tuple of integers, i.e., of packets defined over 𝑛 filtering fields.
A condition defined over fields 𝑃𝑖, 𝑖 = 1, . . . , 𝑛, is a 𝑛-tuple

𝑐 = (𝐶1, 𝐶2, . . . , 𝐶𝑛) (2)

where for 𝑖 = 1, . . . , 𝑛, 𝐶𝑖 is a range such that 𝐶𝑖 ⊆ 𝑃𝑖.
A rule 𝑟 over fields 𝑃𝑖, 𝑖 = 1, . . . , 𝑛, is defined as

𝑟 = ⟨𝑐, 𝑎𝑐𝑡𝑖𝑜𝑛⟩ (3)

where 𝑐 is a condition over fields 𝑃𝑖, 𝑖 = 1, . . . , 𝑛 and 𝑎𝑐𝑡𝑖𝑜𝑛 varies in the set of all possible
firewall actions, i.e., 𝑎𝑐𝑡𝑖𝑜𝑛 ∈ {𝑎𝑙𝑙𝑜𝑤, 𝑑𝑒𝑛𝑦}. From now on, we assume all packets, conditions



and rules to be defined over the same filtering fields 𝑃𝑖, 𝑖 = 1, . . . , 𝑛. We use symbol * as
a possible value for condition components, i.e., 𝐶𝑖 = * means 𝐶𝑖 = 𝑃𝑖, and the traditional
dotted decimal notation for single or ranges of IP addresses. Note, however, that statements like
192.168.* .1 do not define single ranges and are not admissible values for condition components.

A packet 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) is said to match a rule 𝑟 = ⟨(𝐶1, 𝐶2, . . . , 𝐶𝑛), 𝑎𝑐𝑡𝑖𝑜𝑛⟩ if and
only if 𝑝𝑖 ∈ 𝐶𝑖, 𝑖 = 1, . . . , 𝑛, i.e., 𝑝𝑖 ∈ 𝒮𝑟 = 𝐶1 × 𝐶2 × . . .× 𝐶𝑛 ⊆ 𝒫 . Packet set 𝒮𝑟, defined
by rule 𝑟, is also a hyperrectangle in N𝑛

0 .
A firewall 𝑓𝑤 (see Fig. 1a, where, as in other examples in the paper, condition/action-rule

correspondence has been made explicit through superscripts) is a tuple of rules

𝑓𝑤 = (𝑟1, 𝑟2, . . . , 𝑟|𝑓𝑤|) (4)

where |𝑓𝑤| is the firewall cardinality. The operation performed by a firewall acting according to
the first matching strategy, consists in checking any incoming packet against its rule conditions,
sequentially, until the matching rule is found. Then, the matching rule action is applied to the
packet, that can be either forwarded (𝑎𝑙𝑙𝑜𝑤), or discarded (𝑑𝑒𝑛𝑦). A packet may match multiple,
possibly conflicting (i.e., characterized by different actions), rules within a firewall (dependent
rules), in this case the packet fate is determined by the rule order. Note that, we currently focus
only on filtering operation, while we do not model other possible firewall functions, e.g., NAT
(Network Address Translation).

A firewall 𝑓𝑤 is said to be complete if any packet 𝑝 ∈ 𝒫 matches at least one rule in 𝑓𝑤. We
only consider complete firewalls and, to make sure of this, we assume a firewall last rule to be
always 𝑟|𝑓𝑤| = ⟨(*, *, . . . , *), 𝑎𝑐𝑡𝑖𝑜𝑛⟩, matched by any packet 𝑝 ∈ 𝒫 . Under the completeness
hypothesis, any firewall 𝑓𝑤 defines a filtering function 𝑓𝑓𝑤 : 𝒫 ∪ {−} → 𝒫 ∪ {−}, that maps
any packet 𝑝 ∈ 𝒫 either in itself, if the packet is forwarded, or in −, the null packet, if it is
discarded by 𝑓𝑤. Note that, the domain of 𝑓𝑓𝑤 has been extended to the null packet, defining
𝑓𝑓𝑤(−) = − for any firewall. Firewalls characterized by different rule lists may define the same
filtering function. In particular, two firewalls 𝑓𝑤1 and 𝑓𝑤2 are said to be equivalent over 𝒫 , or
just equivalent (𝑓𝑤1 ≡ 𝑓𝑤2), if they equally map all packets, i.e., if ∀𝑝 ∈ 𝒫 , 𝑓𝑓𝑤1(𝑝) = 𝑓𝑓𝑤2(𝑝).

A firewall sequence (see Fig.1b) is a tuple of firewalls:

𝑓𝑤𝑠 = (𝑓𝑤1, 𝑓𝑤2, . . . , 𝑓𝑤|𝑓𝑤𝑠|) (5)

where the number of firewalls |𝑓𝑤𝑠| is called sequence cardinality. The cumulative filtering
operation performed by a firewall sequence (i.e., that defining whether a traversing packet
is forwarded at the end of the sequence or discarded by one of the firewall within) can be
equated to that of a single firewall. For this reason, analogously to single firewalls, any firewall
sequence 𝑓𝑤𝑠 defines a filtering function 𝑓𝑓𝑤𝑠 : 𝒫 ∪ {−} → 𝒫 ∪ {−}, which corresponds
to the inverted order composition of the filtering functions defined by the firewalls of the
sequence, i.e., which maps any packet 𝑝 ∈ 𝒫 in 𝑓𝑓𝑤|𝑓𝑤𝑠| ∘ . . .∘𝑓𝑓𝑤2 ∘𝑓𝑓𝑤1(𝑝). The definitions of
equivalence provided for single firewalls can then be extended to the firewall sequence domain,
i.e., two firewall sequences 𝑓𝑤𝑠1 and 𝑓𝑤𝑠2 are said to be equivalent (𝑓𝑤𝑠1 ≡ 𝑓𝑤𝑠2) if ∀𝑝 ∈ 𝒫 ,
𝑓𝑓𝑤𝑠1(𝑝) = 𝑓𝑓𝑤𝑠2(𝑝). Note that a single firewall can be seen as a firewall sequence with only
one component. Moreover, as described in detail later, in general, a firewall sequence is not
equivalent to a single firewall orderly listing the rules of all firewalls in the sequence.



fw

r1 = 〈(Cr1
1 , Cr1

2 , . . . , Cr1
n ), actionr1 〉

r2 = 〈(Cr2
1 , Cr2

2 , . . . , Cr2
n ), actionr2 〉

...
r|fw| = 〈(∗, ∗, . . . , ∗), action

r|fw| 〉

(a) fw1 fw2 fw|fws|. . .(b)

fw2(c) fw1

C1 C2 C3 C4 C5 action
r1 * 192.168.2.1-50 * 22 TCP allow
r2 * 192.168.2.1-50 * 80 TCP allow
r3 * 192.168.2.1-50 * * TCP deny
r4 * 192.168.3.1-50 * 20-23 TCP allow
r5 * * * * * deny

C1 C2 C3 C4 C5 action
r1 * 192.168.2.40 * 80 TCP allow
r2 * 192.168.2.35-45 * 80 TCP deny
r3 * * * * * deny

Figure 1: Examples of firewalls and firewall sequences.

3.2. Problem statement

We consider the problem of moving the security policy implemented by a firewall, so that
it is implemented by a downstream firewall in the same sequence, without changing the
overall security policy implemented by the sequence itself. Specifically, we focus on network
configurations like the one in Fig. 1c, and consider the following problem:

Problem 1. Given a firewall sequence 𝑓𝑤𝑠 = (𝑓𝑤1, 𝑓𝑤2), where 𝑓𝑤𝑖 = (𝑟𝑓𝑤𝑖
1 , 𝑟𝑓𝑤𝑖

2 , . . . , 𝑟𝑓𝑤𝑖

|𝑓𝑤𝑖|),
𝑖 = 1, 2, how to compute a firewall 𝑓𝑤2 such that sequence 𝑓𝑤𝑠 = (𝑓𝑤1, 𝑓𝑤2), where 𝑓𝑤1 is
the trivial firewall (i.e., the firewall that forwards every packet, 𝑓𝑤1 = (⟨(*, *, . . . , *), 𝑎𝑙𝑙𝑜𝑤⟩)),
satisfies the following property:

𝑓𝑤𝑠 ≡ 𝑓𝑤𝑠 (6)

Prob. 1 is a simplified version of the problem we are actually interested in, and allows for an
easier technique description. I.e., the ultimate goal is to make 𝑓𝑤2 (and/or other firewalls within
the protected network) responsible for implementing only part of the security policy originally
implemented by 𝑓𝑤1, to balance workload among available devices. Also, we are interested in
realistic configurations, where firewalls are not connected in sequences but arbitrarily placed to
guard specific network domains. Finally, Prob. 1 only considers downstream policy migration,
where the overloaded firewall is the one firstly traversed by traffic. Although an upstream
firewall is typically traversed by more packets and thus more likely to suffer from overloads,
it is not always so. Situations described above are variations to Prob. 1, and can be solved by
extending its solution, i.e., the significance of the proposed technique goes beyond Prob. 1.

Note that Prob. 1 is not trivial, e.g., defining 𝑓𝑤2 by moving rules in 𝑓𝑤1 to the top of 𝑓𝑤2 is
not an admissible solution. Indeed, migrating 𝑎𝑙𝑙𝑜𝑤 rules, in general, makes (6) not satisfied.
In 𝑓𝑤𝑠, a packet matching an 𝑎𝑙𝑙𝑜𝑤 rule in 𝑓𝑤1, is forwarded by the first firewall, but is still
subjected to the filtering operation of (i.e., can still be dropped by) 𝑓𝑤2. In 𝑓𝑤𝑠, where 𝑓𝑤2

is defined by listing rules in 𝑓𝑤1 before those in 𝑓𝑤2, the same packet is surely forwarded, as
the trivial firewall 𝑓𝑤1 forwards every packet and the matching rule of the packet in 𝑓𝑤2 is
the same migrated 𝑎𝑙𝑙𝑜𝑤 rule matched by the packet in 𝑓𝑤1. Thus, the packet is not checked
against rules originally in 𝑓𝑤2, possibly violating (6).



4. Security policy migration technique

In this section, we describe the proposed technique to solve Prob. 1, and the algorithms defined
to implement it.

4.1. A solution to Problem 1

The proposed security policy migration technique is based on the observation that a packet
whose matching rule in 𝑓𝑤1 is a 𝑑𝑒𝑛𝑦 rule, independently of its matching rule in 𝑓𝑤2, is
dropped by 𝑓𝑤𝑠 and, for (6) to hold, should be dropped by 𝑓𝑤𝑠 as well. As a consequence, if we
compute a set of 𝑑𝑒𝑛𝑦 rules, which discards all and only packets originally discarded by 𝑓𝑤1,
we can move list these rules before those in 𝑓𝑤2 to obtain 𝑓𝑤2 required by Prob. 1. Formally:

Theorem 1. Given Prob. 1, if a set of 𝑑𝑒𝑛𝑦 rules 𝑟1, 𝑟2, . . . , 𝑟𝑘 satisfies property

𝑘⋃︁
𝑗=1

𝒮𝑟𝑗 = 𝒟𝑓𝑤1 = {𝑝 ∈ 𝒫 | 𝑓𝑓𝑤1(𝑝) = −}, (7)

where 𝒮𝑟𝑗 is packet set defined by rule 𝑟𝑗 and 𝒟𝑓𝑤1 is the set of packets discarded by 𝑓𝑤1, then

𝑓𝑤2 = (𝑟1, . . . , 𝑟𝑘, 𝑟
𝑓𝑤2
1 , . . . , 𝑟𝑓𝑤2

|𝑓𝑤2|) (8)

is a solution to Prob. 1. (Proof of Thm. 1 is provided in App. A.1.)

Note that, in Thm. 1, we refer to a set of rules, instead of a list, as rules 𝑟1, 𝑟2, . . . , 𝑟𝑘 all have
the same action (𝑑𝑒𝑛𝑦) and thus their relative order in (8) does not matter.

We now address how to compute a set of 𝑑𝑒𝑛𝑦 rules 𝑟1, 𝑟2, . . . , 𝑟𝑘 satisfying (7). By definition
of firewall operation, 𝒟𝑓𝑤1 consists of packets having as matching rule in 𝑓𝑤1 a 𝑑𝑒𝑛𝑦 rule, i.e.,

𝒟𝑓𝑤1 = {𝑝 ∈ 𝒫 | ∃ ℓ ∈ 𝐿, 𝑝 ∈ 𝒮
𝑟
𝑓𝑤1
ℓ

, ∀𝑚 ∈ 𝐼,𝑚 < ℓ, 𝑝 /∈ 𝒮
𝑟
𝑓𝑤1
𝑚

} (9)

where 𝐼 and 𝐿 are the sets of indexes, respectively, of all rules and 𝑑𝑒𝑛𝑦 rules in 𝑓𝑤1. From
(9), by applying generic set properties, 𝒟𝑓𝑤1 can be expressed in term of packet sets defined by
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Figure 2: Hint on security policy migration for 𝑛 = 2.



rules in 𝑓𝑤1 as (proof in App. A.2)

𝒟𝑓𝑤1 =
⋃︁
ℓ∈𝐿

⎛⎝𝒮
𝑟
𝑓𝑤1
ℓ

∖

⎛⎝ ⋃︁
𝑚∈𝑀,𝑚<ℓ

𝒮
𝑟
𝑓𝑤1
𝑚

⎞⎠⎞⎠ (10)

=
⋃︁
ℓ∈𝐿

(︂(︁
. . .

(︁(︁
𝒮
𝑟
𝑓𝑤1
ℓ

∖ 𝒮
𝑟
𝑓𝑤1
𝑚1

)︁
∖ 𝒮

𝑟
𝑓𝑤1
𝑚2

)︁
. . .

)︁
∖ 𝒮

𝑟
𝑓𝑤1
𝑚|𝑀ℓ|

)︂
(11)

where, 𝑀 = 𝐼 ∖ 𝐿 is the set of indexes of 𝑎𝑙𝑙𝑜𝑤 rules in 𝑓𝑤1 and, for each ℓ ∈ 𝐿, 𝑀ℓ =
{𝑚1,𝑚2, . . . ,𝑚|𝑀ℓ|} = {𝑚 ∈ 𝑀,𝑚 < ℓ} is the set of indexes of 𝑎𝑙𝑙𝑜𝑤 rules preceding 𝑑𝑒𝑛𝑦

rule 𝑟𝑓𝑤1

ℓ in 𝑓𝑤1. Set 𝒟𝑓𝑤1 is expressed in (11) as a union of sets, one for each 𝑑𝑒𝑛𝑦 rule 𝑟𝑓𝑤1

ℓ ,
resulting from sequences of set subtractions, where the result of a subtraction is the minuend
of the next one. We want to compute a set of 𝑑𝑒𝑛𝑦 rules 𝑟1, 𝑟2, . . . , 𝑟𝑘 such that (7) holds for
𝒟𝑓𝑤1 described by (11). Note that, while a packet set defined by a rule (or a union of packet
sets defined by rules), can be directly translated into the rule (or set of rules) defining it, the
set resulting from the subtraction between two packet set defined by rules (although can be
always expressed as a union of hyperrectangles) is not necessarily a single hyperrectangle
and cannot directly be translated into a rule set defining it. We thus define a rule subtraction
operator, sub_rule(𝑟𝑑, 𝑟𝑎), which allows to compute the set of rules defining a set expressed
by a subtraction between two packet sets defined by rules. In general,

Definition 1. A rule subtraction operator is any operator that given rules 𝑟𝑑 and 𝑟𝑎, returns a,
possibly empty, set ℛ of rules, with the same action as 𝑟𝑑, such that

⋃︀
𝑟∈ℛ 𝒮𝑟 = 𝒮𝑟𝑑 ∖ 𝒮𝑟𝑎 .

Once defined sub_rule(𝑟𝑑, 𝑟𝑎), for each ℓ ∈ 𝐿, rule set ℛ
𝑚|𝑀ℓ|
ℓ defining the packet set

resulting from the sequence of set subtractions from 𝒮
𝑟
𝑓𝑤1
ℓ

in (11), can be iteratively computed

as (proof in App. A.2):

ℛ𝑚0
ℓ = {𝑟𝑓𝑤1

ℓ }, ℛ𝑚𝑡
ℓ =

⋃︁
𝑟∈ℛ𝑚𝑡−1

ℓ

sub_rule(𝑟, 𝑟𝑓𝑤1
𝑚𝑡

) 𝑡 = 1, . . . ,𝑚|𝑀ℓ| (12)

Note that, in (11), for each ℓ ∈ 𝐿, only the first set subtraction in the sequence is among packet
sets defined by rules and (as described in (12)) the set of rules defining it can be computed by using
sub_rule(𝑟𝑑, 𝑟𝑎) once. The next set subtractions in the sequence require the execution of a
rule subtraction for each rule resulting from the previous rule subtraction(s). Rules 𝑟1, 𝑟2, . . . , 𝑟𝑘
satisfying (7) are then those in

⋃︀
ℓ∈𝐿ℛ

𝑚|𝑀ℓ|
ℓ . As required by Thm. 1, they are all 𝑑𝑒𝑛𝑦 rules, as

they result from sequences of rule subtractions from 𝑑𝑒𝑛𝑦 rules 𝑟𝑓𝑤1

ℓ .
Fig. 2 shows a simple clarifying example. Rectangles in the figure correspond to rules 𝑟𝑓𝑤1

𝑗 ,
𝑗 = 1, . . . , 4, defined over 𝑛 = 2 filtering fields 𝑃𝑖 = [0, 9], 𝑖 = 1, 2 and listed in firewall
𝑓𝑤1. The filtering function defined by 𝑓𝑤1, 𝑓𝑓𝑤1 , is represented in Fig. 2 through symbols
and colors: dotted white points of N2

0 correspond to packets forwarded by 𝑓𝑤1, while crossed
grey ones to packets dropped by the firewall. Computing a set of 𝑑𝑒𝑛𝑦 rules 𝑟1, 𝑟2, . . . , 𝑟𝑘
satisfying (7) means finding a set of rectangles covering all and only crossed grey points in Fig.
2, which, by (11), are those in set 𝒟𝑓𝑤1 = 𝒮

𝑟
𝑓𝑤1
1

∪
(︁(︁

𝒮
𝑟
𝑓𝑤1
4

∖ 𝒮
𝑟
𝑓𝑤1
2

)︁
∖ 𝒮

𝑟
𝑓𝑤1
3

)︁
. The required



set of 𝑑𝑒𝑛𝑦 rules can be computed as ℛ0
1 ∪ ℛ3

4, where, based on (12), ℛ0
1 = {𝑟𝑓𝑤1

1 } and
ℛ3

4 =
⋃︀

𝑟∈ℛ2
4
sub_rule(𝑟, 𝑟𝑓𝑤1

3 ), with ℛ2
4 = sub_rule(𝑟𝑓𝑤1

4 , 𝑟𝑓𝑤1
2 ).

Alg. 1, implements the described procedure. The algorithm takes as inputs firewalls 𝑓𝑤𝑖 =
(𝑟𝑓𝑤𝑖

1 , 𝑟𝑓𝑤𝑖
2 , . . . , 𝑟𝑓𝑤𝑖

|𝑓𝑤𝑖|), 𝑖 = 1, 2, and returns 𝑓𝑤2, solution to Prob. 1, by computing 𝑑𝑒𝑛𝑦

rules 𝑟1, 𝑟2, . . . , 𝑟𝑘 satisfying (7) and listing them, before rules in 𝑓𝑤2, in 𝑓𝑤2, as in (8). Alg.
1 sequentially checks rules in 𝑓𝑤1 (line 2), and any time it finds a 𝑑𝑒𝑛𝑦 rule 𝑟𝑓𝑤1

ℓ (line 3),
computes rule set 𝑅

𝑚|𝑀ℓ|
ℓ as described in (12). In detail, Alg. 1 initializes a rule set ℛ𝑚𝑖𝑛 to

{𝑟𝑓𝑤1

ℓ } (line 4), checks rules preceding 𝑟𝑓𝑤1

ℓ (line 5), and any time finds an 𝑎𝑙𝑙𝑜𝑤 rule 𝑟𝑓𝑤1
𝑚

(line 6), executes rule subtractions between each rule in ℛ𝑚𝑖𝑛 and 𝑟𝑓𝑤1
𝑚 (lines 8-10). Routine

sub_rule(𝑟𝑑, 𝑟𝑎) (line 9) implements the defined rule subtraction operator, and is described
in detail in Subsect. 4.2. Rules resulting from rule subtractions having 𝑟𝑓𝑤1

𝑚 as subtrahend
are stored in ℛ𝑡𝑚𝑝 and, subsequently, copied back in ℛ𝑚𝑖𝑛 to be the new minuend. Once the
process is repeated for each 𝑎𝑙𝑙𝑜𝑤 rule 𝑟𝑓𝑤1

𝑚 preceding 𝑟𝑓𝑤1

ℓ , ℛ𝑚𝑖𝑛 is equal to ℛ
𝑚|𝑀ℓ|
ℓ and Alg.

1 lists the rules it contains in 𝑓𝑤2 (line 14).

4.2. A rule subtraction operator

In this subsection, we describe the defined rule subtraction operator, sub_rule(𝑟𝑑, 𝑟𝑎), imple-
mented by Alg. 3, employed by Alg. 1. Alg. 3 takes as inputs rules 𝑟𝑑 = ⟨(𝐶𝑟𝑑

1 , 𝐶𝑟𝑑
2 , . . . , 𝐶𝑟𝑑

𝑛 ),
𝑎𝑐𝑡𝑖𝑜𝑛𝑟𝑑⟩ and 𝑟𝑎 = ⟨(𝐶𝑟𝑎

1 , 𝐶𝑟𝑎
2 , . . . , 𝐶𝑟𝑎

𝑛 ), 𝑎𝑐𝑡𝑖𝑜𝑛𝑟𝑎⟩, and returns a set ℛ, |ℛ| ∈ [0, 2𝑛], of rules
with the same action as 𝑟𝑑, such that

⋃︀
𝑟∈ℛ 𝒮𝑟 = 𝒮𝑟𝑑 ∖ 𝒮𝑟𝑎 (proof in App. A.3). Alg. 3 relies

on the range subtraction operator, sub_range(𝐶𝑑, 𝐶𝑎), which, given two ranges 𝐶𝑑 = [𝑎𝑑, 𝑏𝑑]
and 𝐶𝑎 = [𝑎𝑎, 𝑏𝑎], returns the set of ranges 𝒞, of minimal cardinality |𝒞| ∈ [0, 2], satisfying

Algorithm 1: Security policy migration algorithm
Data: 𝑓𝑤1 = (𝑟𝑓𝑤1

1 , 𝑟𝑓𝑤1
2 , . . . , 𝑟𝑓𝑤1

|𝑓𝑤1|) 𝑓𝑤2 = (𝑟𝑓𝑤2
1 , 𝑟𝑓𝑤2

2 , . . . , 𝑟𝑓𝑤2
|𝑓𝑤2|)

Result: 𝑓𝑤2 = (𝑟
𝑓𝑤2
1 , 𝑟

𝑓𝑤2
2 , . . . , 𝑟

𝑓𝑤2

|𝑓𝑤2|
)

1 𝑓𝑤2 ← − ; /* initialization, firewall with no rules */
2 for (ℓ = 1; ℓ ≤ |𝑓𝑤1|; ℓ++) do
3 if (𝑟𝑓𝑤1

ℓ is a 𝑑𝑒𝑛𝑦 rule) then
4 ℛ𝑚𝑖𝑛 ← {𝑟𝑓𝑤1

ℓ };
5 for (𝑚 = 1;𝑚 < ℓ;𝑚++) do
6 if (𝑟𝑓𝑤1

𝑚 is an 𝑎𝑙𝑙𝑜𝑤 rule) then
7 ℛ𝑡𝑚𝑝 ← ∅;
8 forall 𝑟 ∈ ℛ𝑚𝑖𝑛 do
9 ℛ𝑡𝑚𝑝 ←ℛ𝑡𝑚𝑝 ∪ sub_rule(𝑟, 𝑟𝑓𝑤1

𝑚 );
10 end
11 ℛ𝑚𝑖𝑛 ←ℛ𝑡𝑚𝑝;
12 end
13 end
14 append all 𝑟 ∈ ℛ𝑚𝑖𝑛 to 𝑓𝑤2 in any order;
15 end
16 end
17 append rules in 𝑓𝑤2 to 𝑓𝑤2;
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Figure 3: Range subtraction.
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ra [9,11] [1,3] allow
rd [1,8] [2,7] deny

r1 [1,8] [2,7] deny
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(a) Resulting rule is 𝑟1 = 𝑟𝑑.

C1 C2 action
ra [7,9] [1,3] allow
rd [1,8] [2,7] deny

r1 [1,6] [2,7] deny
r2 [7,8] [4,7] deny

P1
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(b) Two resulting rules.

C1 C2 action
ra [4,6] [4,6] allow
rd [1,8] [2,7] deny

r1 [1,3] [2,7] deny
r2 [7,8] [2,7] deny
r3 [4,6] [2,3] deny
r4 [4,6] [7,7] deny

P1

P2

2 8 104 6

4

2

6

8
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(c) Four resulting rules.
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C1 C2 action
ra [1,8] [2,7] allow
rd [5,7] [4,6] deny

2 8 10

4

2

6

8

0 4 6

(d) No resulting rules.

Figure 4: Examples of rule subtraction for 𝑛 = 2.

property
⋃︀

𝐶∈𝒞 𝐶 = 𝐶𝑑 ∖ 𝐶𝑎. The range subtraction operator is implemented by Alg. 2, which
distinguishes between the four cases in Fig. 3: if ranges 𝐶𝑑 and 𝐶𝑎 are non overlapping (cases
captured by line 5 or 9, shown in Fig. 3a), 𝒞 = {𝐶𝑑}, if 𝐶𝑑 and 𝐶𝑎 partially overlap (cases
captured by line 4 or 8, shown in Fig. 3b), 𝒞 contains a single range, portion of 𝐶𝑑, if 𝐶𝑎 ⊂ 𝐶𝑑

(cases captured by both lines 4 and 8, shown in Fig. 3c), 𝒞 contains two ranges, portions of 𝐶𝑑,
and, finally, if 𝐶𝑑 ⊂ 𝐶𝑎 (none of the above, Fig. 3d), 𝒞 = ∅.

Alg. 3 iteratively computes a set 𝒞1 of conditions defined over 𝑛 filtering fields (lines
3-8), whose elements are used to compute rules of set ℛ (line 9). Set 𝒞1 is initialized to
sub_range(𝐶𝑟𝑑

1 , 𝐶𝑟𝑎
1 ) and is then updated in 𝑛− 1 steps (lines 5-8). At each step 𝑘 ∈ [2, 𝑛],

𝒞1 is obtained as the union of two sets of conditions (line 6). The first set is recursively com-
puted as the Cartesian product of current 𝒞1 and set containing single range 𝐶𝑟𝑑

𝑘 (the result
of the Cartesian product between sets of tuple of ranges is a set of tuple of ranges, i.e., of
conditions). The second set is computed as the Cartesian product of set containing single
condition (𝐶𝑟𝑑

1 ∩ 𝐶𝑟𝑎
1 , . . . , 𝐶𝑟𝑑

𝑘−1 ∩ 𝐶𝑟𝑎
𝑘−1), with set of ranges sub_range(𝐶𝑟𝑑

𝑛 , 𝐶𝑟𝑎
𝑛 ). Fig. 4



shows examples of pairs of rules defined over 𝑛 = 2 filtering fields. Considering, e.g., case
in Fig. 4c, 𝐶𝑟𝑑

1 = [1, 8], 𝐶𝑟𝑑
2 = [2, 7], 𝐶𝑟𝑎

1 = [4, 6], and 𝐶𝑟𝑎
2 = [4, 6]. Initially, Alg. 3 sets

𝒞1 = sub_range(𝐶𝑟𝑑
1 , 𝐶𝑟𝑎

1 ) = {[1, 3], [7, 8]} and 𝒞2 = {𝐶𝑟𝑑
1 ∩𝐶𝑟𝑎

1 } = {[4, 6]}, at step 𝑘 = 2
(the only step since 𝑛 = 2), 𝒞1 is computed as the union of two sets of conditions. The first
is 𝒞1 × 𝐶𝑟𝑑

2 = {[1, 3], [7, 8]} × {[2, 7]} = {([1, 3], [2, 7]), ([7, 8], [2, 7])}, the second is 𝒞2 ×
sub_range(𝐶𝑟𝑑

2 , 𝐶𝑟𝑎
2 ) = {[4, 6]} × sub_range([2, 7], [4, 6]) = {[4, 6]} × {[2, 3], [7, 7])} =

{([4, 6], [2, 3]), ([4, 6], [7, 7])}. Then 𝒞1 := {([1, 3], [2, 7]), ([7, 8], [2, 7]), ([4, 6], [2, 3]), ([4, 6],
[7, 7])}, from which, since 𝑟𝑑 is a 𝑑𝑒𝑛𝑦 rule, ℛ = {𝑟1 = ⟨([1, 3], [2, 7]), 𝑑𝑒𝑛𝑦⟩, 𝑟2 = ⟨([7, 8],
[2, 7]), 𝑑𝑒𝑛𝑦⟩, 𝑟3 = ⟨([4, 6], [2, 3]), 𝑑𝑒𝑛𝑦⟩, 𝑟4 = ⟨([4, 6], [7, 7]), 𝑑𝑒𝑛𝑦⟩}.

In Fig. 4, rules returned by sub_rule(𝑟𝑑, 𝑟𝑎) are listed in the bottom part of tables and
shown in red in the plots. The number |ℛ| of resulting rules depends on 𝑟𝑑 and 𝑟𝑎. In particular,
when 𝑟𝑑 and 𝑟𝑎 are independent, i.e., 𝒮𝑟𝑑 and 𝒮𝑟𝑎 are disjoint (e.g., Fig. 4a), the result is a single
rule equal to 𝑟𝑑, if 𝑟𝑑 and 𝑟𝑎 are dependent and the corresponding rectangles partially overlap
(e.g., Fig. 4b), |ℛ| ∈ [1, 3], if 𝑆𝑟𝑎 ⊂ 𝑆𝑟𝑑 (e.g., Fig. 4c), |ℛ| = 4, and, finally if 𝑟𝑑 is shadowed by
𝑟𝑎, i.e., 𝑆𝑟𝑑 ⊂ 𝑆𝑟𝑎 (e.g., Fig. 4d), there are no resulting rules, i.e., |ℛ| = 0. In Figs. 4b and 4c,
rules returned by sub_rule(𝑟𝑑, 𝑟𝑎) are not contiguous as conditions are defined as tuple of
ranges including their extremes and sub_rule(𝑟𝑑, 𝑟𝑎) returns independent rules. Other rule
subtraction operators can be defined, however sub_rule(𝑟𝑑, 𝑟𝑎) guarantees that the number
of resulting rules, |ℛ|, is kept to the minimum.

Fig 5 shows result obtained when security policy migration, implemented by Alg. 1, is applied
to example in Fig. 1c. As can be seen, 𝑓𝑤1 is the trivial firewall, while 𝑓𝑤2 has been obtained
by placing 12 𝑑𝑒𝑛𝑦 rules before those originally in 𝑓𝑤2. Actually, 𝑑𝑒𝑛𝑦 rules at the top of 𝑓𝑤2

are the result of a further optimization, as often subsets of rules returned by Alg. 3 can be
unified in single rules. As a first observation, expressing the security policy implemented by
𝑓𝑤1 with only 𝑑𝑒𝑛𝑦 rules, requires a higher number of rules, which penalizes the cooperating
firewall. One way to mitigate this effect is to use compression algorithms on 𝑓𝑤2. As a second
observation, the proposed technique can be, in principle, used to move only part of the security
policy implemented by 𝑓𝑤1, as by migrating any subset of 𝑑𝑒𝑛𝑦 rules 𝑟1, 𝑟2, . . . , 𝑟𝑘 to 𝑓𝑤2, (7)
is still satisfied. However, from the performance point of view, a better solution would be to split

Algorithm 2: Algorithm for range subtraction.
Data: 𝐶𝑑 = [𝑎𝑑, 𝑏𝑑], 𝐶𝑎 = [𝑎𝑎, 𝑏𝑎], 𝐶𝑑, 𝐶𝑎 ⊆ N0.
Result: A set of ranges 𝒞, |𝒞| ∈ [0, 2].

1 Function sub_range(𝐶𝑑,𝐶𝑎):
2 𝒞 ← ∅; /* initialization */
3 if (𝑎𝑎 > 𝑎𝑑) then
4 if (𝑎𝑎 ≤ 𝑏𝑑) then 𝒞 ← 𝒞 ∪ {[𝑎𝑑, 𝑎𝑎 − 1]} ;
5 else 𝒞 ← 𝒞 ∪ {[𝑎𝑑, 𝑏𝑑]} ;
6 end
7 if (𝑏𝑎 < 𝑏𝑑) then
8 if (𝑏𝑎 ≥ 𝑎𝑑) then 𝒞 ← 𝒞 ∪ {[𝑏𝑎 + 1, 𝑏𝑑]} ;
9 else 𝒞 ← 𝒞 ∪ {[𝑎𝑑, 𝑏𝑑]} ;

10 end
11 return 𝒞



Algorithm 3: Algorithm for rule subtraction in N𝑛
0 .

Data: 𝑟𝑑 = ⟨(𝐶𝑟𝑑
1 , 𝐶

𝑟𝑑
2 , . . . , 𝐶

𝑟𝑑
𝑛 ), 𝑎𝑐𝑡𝑖𝑜𝑛𝑟𝑑⟩, 𝑟𝑎 = ⟨(𝐶𝑟𝑎

1 , 𝐶𝑟𝑎
2 , . . . , 𝐶𝑟𝑎

𝑛 ), 𝑎𝑐𝑡𝑖𝑜𝑛𝑟𝑎⟩
Result: A setℛ of rules with the same action as 𝑟𝑑, |ℛ| ∈ [0, 2𝑛].

1 Function sub_rule(𝑟𝑑,𝑟𝑎):
2 ℛ← ∅; /* initialization */
3 𝒞1 ← sub_range(𝐶𝑟𝑑

1 , 𝐶𝑟𝑎
1 );

4 𝒞2 ← {𝐶𝑟𝑑
1 ∩ 𝐶𝑟𝑎

1 }; /* the intersection of two ranges is always a single range */
5 for (𝑘 = 2; 𝑘 ≤ 𝑛; 𝑘 ++) do
6 𝒞1 ← (𝒞1 × {𝐶𝑟𝑑

𝑘 }) ∪ (𝒞2 × sub_range(𝐶𝑟𝑑
𝑘 , 𝐶𝑟𝑎

𝑘 ));
7 𝒞2 ← 𝒞2 × {𝐶𝑟𝑑

𝑘 ∩ 𝐶𝑟𝑎
𝑘 };

8 end
9 forall 𝑐 ∈ 𝒞1 do ℛ← ℛ∪ {𝑟 = ⟨𝑐, 𝑎𝑐𝑡𝑖𝑜𝑛𝑟𝑑⟩} ;

10 returnℛ

the security policy of 𝑓𝑤1 before translating it into 𝑑𝑒𝑛𝑦 rules, so as to minimize the number of
rules added to 𝑓𝑤2. This can be done by suitably partitioning 𝒫 and, accordingly, rules in 𝑓𝑤1

[16], so that a new firewall ̂︁𝑓𝑤1 is given as a input to Alg. 3. The same approach, as detailed in
[16], allows to extend the technique to the case of more complex topologies, where firewalls
are arbitrarily placed to guard specific domains. Note that, in this case, additional constraints
deriving from network topology should be considered in security policy migration.

C1 C2 C3 C4 C5 action
r1 * * * * * allow

C1 C2 C3 C4 C5 action
r1 * 192.168.3.1-50 * 0-19 * deny
r2 * 192.168.2.1-50 * 0-21 6-6 deny
r3 * 192.168.3.1-50 * 20-23 0-5 deny
r4 * 192.168.3.1-50 * 20-23 7-255 deny
r5 * 192.168.2.1-50 * * 0-5 deny
r6 * 192.168.2.1-50 * * 7-255 deny
r7 * 192.168.2.1-50 * 23-79 6-6 deny
r8 * 192.168.2.1-50 * 81-65535 6-6 deny

fw1 fw2

C1 C2 C3 C4 C5 action
r9 * 0.0.0.0-192.168.2.0 * * * deny
r10 * 192.168.2.51-3.0 * * * deny
r11 * 192.168.3.51-255.255.255.255 * * * deny
r12 * 192.168.3.1-50 * 24-65535 * deny
r13 * 192.168.2.40 * 80 6-6 allow
r14 * 192.168.2.35-45 * 80 6-6 deny
r15 * * * * * deny

Figure 5: Sequence 𝑓𝑤𝑠 obtained from example in Fig. 1c after security policy migration.

5. Conclusions

We presented a technique for migrating security policies along firewalls in a sequence, which is
formally verified to preserve the overall security policy implemented by the sequence itself. The
proposed technique can be extended to the case of more general topologies comprising firewall-
protected domains and is the building block for the development of cooperative solutions
balancing workload by distributing filtering responsibility among firewalls available within
a protected network. Future work will analyze solutions to compress rule lists obtained after
migration in the cooperating firewall, as the proposed technique may lead to rule proliferation.
Techniques for suitably partitioning the packet space will also be investigated to split policies
based on network/workload characteristics and further optimize network performance.
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A. Appendix

A.1. Proof of Thm. 1

Given 𝑓𝑤𝑠 = (𝑓𝑤1, 𝑓𝑤2), 𝑓𝑤𝑖 = (𝑟𝑓𝑤𝑖
1 , 𝑟𝑓𝑤𝑖

2 , . . . , 𝑟𝑓𝑤𝑖

|𝑓𝑤𝑖|), 𝑖 = 1, 2, and 𝑓𝑤𝑠 = (𝑓𝑤1, 𝑓𝑤2),

where 𝑓𝑤1 = (⟨(*, *, . . . , *), 𝑎𝑙𝑙𝑜𝑤⟩) and 𝑓𝑤2 = (𝑟1, . . . , 𝑟𝑘, 𝑟
𝑓𝑤2
1 , . . . , 𝑟𝑓𝑤2

|𝑓𝑤2|), if 𝑟1, . . . , 𝑟𝑘
are 𝑑𝑒𝑛𝑦 rules such that

⋃︀𝑘
𝑗=1 𝒮𝑟𝑗 = 𝒟𝑓𝑤1 = {𝑝 ∈ 𝒫 | 𝑓𝑓𝑤1(𝑝) = −}, then 𝑓𝑤𝑠 ≡ 𝑓𝑤𝑠.

Proof. By firewall completeness, a partition of 𝒫 is {𝒟𝑓𝑤1 ,𝒜𝑓𝑤1}, where 𝒟𝑓𝑤1 = {𝑝 ∈
𝒫 | 𝑓𝑓𝑤1(𝑝) = −} and 𝒜𝑓𝑤1 = {𝑝 ∈ 𝒫 | 𝑓𝑓𝑤1(𝑝) = 𝑝} are the sets of packets, respec-
tively, discarded and forwarded by 𝑓𝑤1. By hypothesis, packets in 𝒟𝑓𝑤1 match at least one
rule in 𝑟1, . . . , 𝑟𝑘. Conversely, since 𝒜𝑓𝑤1 and 𝒟𝑓𝑤1 are disjoint sets, packets in 𝒜𝑓𝑤1 do not
match any of rules 𝑟1, . . . , 𝑟𝑘. Packets in 𝒟𝑓𝑤1 are discarded by 𝑓𝑤𝑠 as, by definition of 𝒟𝑓𝑤1 ,
they are discarded by 𝑓𝑤1. Equivalently, packets in 𝒟𝑓𝑤1 are discarded by 𝑓𝑤𝑠, as they are
forwarded by the trivial firewall 𝑓𝑤1, but discarded by 𝑓𝑤2, as they match at least one of the
𝑑𝑒𝑛𝑦 rules 𝑟1, . . . , 𝑟𝑘 placed at the top of 𝑓𝑤2.

Packets in 𝒜𝑓𝑤1 are forwarded by 𝑓𝑤1 by definition of 𝒜𝑓𝑤1 , thus their fate in 𝑓𝑤𝑠 is
determined by 𝑓𝑤2. In 𝑓𝑤𝑠, packets in 𝒜𝑓𝑤1 are forwarded by the trivial firewall 𝑓𝑤1 and
their fate is determined by 𝑓𝑤2. However, since packets in 𝒜𝑓𝑤1 do not match any of rules
𝑟1, . . . , 𝑟𝑘, they have as a matching rule in 𝑓𝑤2 the same (𝑎𝑙𝑙𝑜𝑤 or 𝑑𝑒𝑛𝑦) matching rule they
have in 𝑓𝑤2, i.e., 𝑓𝑓𝑤2(𝑝) = 𝑓𝑓𝑤2

(𝑝). Summarizing, ∀𝑝 ∈ 𝒟𝑓𝑤1 , 𝑓𝑓𝑤𝑠(𝑝) = 𝑓𝑓𝑤𝑠(𝑝) = − and
∀𝑝 ∈ 𝒜𝑓𝑤1 , 𝑓𝑓𝑤𝑠(𝑝) = 𝑓𝑓𝑤𝑠(𝑝) = 𝑓𝑓𝑤2(𝑝). Since {𝒟𝑓𝑤1 ,𝒜𝑓𝑤1} is a partition of 𝒫 , it follows
that ∀𝑝 ∈ 𝒫 , 𝑓𝑓𝑤𝑠(𝑝) = 𝑓𝑓𝑤(𝑝), i.e., 𝑓𝑤𝑠 ≡ 𝑓𝑤𝑠, which proves the thesis. □

A.2. Proofs referenced in Subsect. 4.1

Given a firewall 𝑓𝑤1 = (𝑟𝑓𝑤1
1 , 𝑟𝑓𝑤1

2 , . . . , 𝑟𝑓𝑤1

|𝑓𝑤1|), the set of packets discarded by the firewall,
𝒟𝑓𝑤1 = {𝑝 ∈ 𝒫 | 𝑓𝑓𝑤1(𝑝) = −}, can be expressed as:

𝒟𝑓𝑤1 =
⋃︁
ℓ∈𝐿

⎛⎝𝒮
𝑟
𝑓𝑤1
ℓ

∖

⎛⎝ ⋃︁
𝑚∈𝑀,𝑚<ℓ

𝒮
𝑟
𝑓𝑤1
𝑚

⎞⎠⎞⎠ (13)

where 𝐿, and 𝑀 are, respectively, is the set of indexes of 𝑑𝑒𝑛𝑦 and 𝑎𝑙𝑙𝑜𝑤 rules in 𝑓𝑤1.

Proof. By definition of firewall operation, 𝒟𝑓𝑤1 is the set of packets having as a matching rule
in 𝑓𝑤1 a 𝑑𝑒𝑛𝑦 rule, i.e.,

𝒟1 = {𝑝 ∈ 𝒫 | ∃ ℓ ∈ 𝐿, 𝑝 ∈ 𝒮
𝑟
𝑓𝑤1
ℓ

, ∀𝑚 ∈ 𝐼,𝑚 < ℓ, 𝑝 /∈ 𝒮
𝑟
𝑓𝑤1
𝑚

}

=
⋃︁
ℓ∈𝐿

⎛⎝𝒮
𝑟
𝑓𝑤1
ℓ

∖

⎛⎝ ⋃︁
𝑚∈𝐼,𝑚<ℓ

𝒮
𝑟
𝑓𝑤1
𝑚

⎞⎠⎞⎠ (14)

where 𝐼 = 𝐿∪𝑀 is the set of indexes of all rules in 𝑓𝑤1. In (14), each set𝒮
𝑟
𝑓𝑤1
𝑚

, defined by a 𝑑𝑒𝑛𝑦

rule in 𝑓𝑤1 (i.e., 𝑚 ∈ 𝐿), appearing at least once in the second (internal) set union, also appears



once in the first (external) set union. That is, for any term 𝒞 ∖
(︁⋃︀

𝑚<𝑚

(︁
𝒮
𝑟
𝑓𝑤1
𝑚

)︁
∪ 𝒮

𝑟
𝑓𝑤1
𝑚

∪ 𝒟
)︁

,

where 𝑚 ∈ 𝐿, and 𝒞 and 𝒟 have been used to indicate unions of sets defined by rules in 𝑓𝑤1,
there is also a term 𝒮

𝑟
𝑓𝑤1
𝑚

∖
(︁⋃︀

𝑚<𝑚 𝒮
𝑟
𝑓𝑤1
𝑚

)︁
. By set property (𝒜 ∖ ℬ) ∪ (𝒞 ∖ (𝒜 ∪ ℬ ∪ 𝒟)) =

(𝒜 ∖ ℬ) ∪ (𝐶 ∖ (ℬ ∪ 𝒟)), which holds for generic sets 𝒜,ℬ, 𝒞,𝒟, considering 𝒮
𝑟
𝑓𝑤1
𝑚

= 𝒜 and⋃︀
𝑚<𝑚

(︁
𝒮
𝑟
𝑓𝑤1
𝑚

)︁
= ℬ, it follows that term 𝒮

𝑟
𝑓𝑤1
𝑚

can be neglected any time it appears in the

second (internal) set union in (14), i.e.,

𝒟𝑓𝑤1 =
⋃︁
ℓ∈𝐿

⎛⎝𝒮
𝑟
𝑓𝑤1
ℓ

∖

⎛⎝ ⋃︁
𝑚∈𝐼∖𝐿,𝑚<ℓ

𝒮
𝑟
𝑓𝑤1
𝑚

⎞⎠⎞⎠ (15)

since 𝐼 ∖ 𝐿 = 𝑀 , equality (15) proves the thesis. □

We consider a packet set 𝒟𝑓𝑤1 defined by

𝒟𝑓𝑤1 =
⋃︁
ℓ∈𝐿

(︂(︁
. . .

(︁(︁
𝒮
𝑟
𝑓𝑤1
ℓ

∖ 𝒮
𝑟
𝑓𝑤1
𝑚1

)︁
∖ 𝒮

𝑟
𝑓𝑤1
𝑚2

)︁
. . .

)︁
∖ 𝒮

𝑟
𝑓𝑤1
𝑚|𝑀ℓ|

)︂
(16)

where, in general 𝒮𝑟 is the packet set defined by a rule 𝑟 and where 𝐿 and 𝑀 are sets of indexes
and, for each ℓ ∈ 𝐿, 𝑀ℓ = {𝑚1,𝑚2, . . . ,𝑚|𝑀ℓ|} = {𝑚 ∈ 𝑀,𝑚 < ℓ} is the set of indexes in 𝑀

preceding ℓ. We then consider, rule set ℛ* =
⋃︀

ℓ∈𝐿ℛ
𝑚|𝑀ℓ|
ℓ , where for each ℓ ∈ 𝐿 rule set ℛ

𝑚|𝑀ℓ|
ℓ

is iteratively computed as:

ℛ𝑚0
ℓ = {𝑟𝑓𝑤1

ℓ }, ℛ𝑚𝑡
ℓ =

⋃︁
𝑟∈ℛ𝑚𝑡−1

ℓ

sub_rule(𝑟, 𝑟𝑓𝑤1
𝑚𝑡

) 𝑡 = 1, . . . ,𝑚|𝑀ℓ| (17)

where sub_rule(𝑟𝑑, 𝑟𝑎) is a rule subtraction operator, want to prove that
⋃︀

𝑟∈ℛ* 𝒮𝑟 = 𝒟𝑓𝑤1

Proof. We prove that for each ℓ ∈ 𝐿, rule set ℛ
𝑚|𝑀ℓ|
ℓ , computed as defined in (17), is such that:⋃︁

𝑟∈ℛ
𝑚|𝑀ℓ|
ℓ

𝒮𝑟 =
(︁
. . .

(︁(︁
𝒮
𝑟
𝑓𝑤1
ℓ

∖ 𝒮
𝑟
𝑓𝑤1
𝑚1

)︁
∖ 𝒮

𝑟
𝑓𝑤1
𝑚2

)︁
. . .

)︁
∖ 𝒮

𝑟
𝑓𝑤1
𝑚|𝑀ℓ|

(18)

We prove (18), by proving by induction over 𝑡, that for each 𝑡 = 1, . . . , |𝑀ℓ|, rule set ℛ𝑚𝑡
ℓ ,

computed as defined in (17), is such that:⋃︁
𝑟∈ℛ𝑚𝑡

ℓ

𝒮𝑟 =
(︁
. . .

(︁(︁
𝒮
𝑟
𝑓𝑤1
ℓ

∖ 𝒮
𝑟
𝑓𝑤1
𝑚1

)︁
∖ 𝒮

𝑟
𝑓𝑤1
𝑚2

)︁
. . .

)︁
∖ 𝒮

𝑟
𝑓𝑤1
𝑚𝑡

(19)

Base case (𝑡 = 1): according to (17), ℛ𝑚1
ℓ = sub_rule(𝑟𝑓𝑤1

ℓ , 𝑟𝑓𝑤1
𝑚1 ). By definition of rule

subtraction operator, it holds that
⋃︀

𝑟∈ℛ𝑚1
ℓ

𝒮𝑟 = 𝒮
𝑟
𝑓𝑤1
ℓ

∖ 𝒮
𝑟
𝑓𝑤1
𝑚1

, which proves the thesis.

Induction (𝑡− 1 ⇒ 𝑡): ℛ𝑚𝑡−1

ℓ is such that⋃︁
𝑟∈ℛ𝑚𝑡−1

ℓ

𝒮𝑟 =
(︁
. . .

(︁(︁
𝒮
𝑟
𝑓𝑤1
ℓ

∖ 𝒮
𝑟
𝑓𝑤1
𝑚1

)︁
∖ 𝒮

𝑟
𝑓𝑤1
𝑚2

)︁
. . .

)︁
∖ 𝒮

𝑟
𝑓𝑤1
𝑚𝑡−1

(20)



From (20), set
(︂(︁

. . .
(︁(︁

𝒮
𝑟
𝑓𝑤1
ℓ

∖ 𝒮
𝑟
𝑓𝑤1
𝑚1

)︁
∖ 𝒮

𝑟
𝑓𝑤1
𝑚2

)︁
. . .

)︁
∖ 𝒮

𝑟
𝑓𝑤1
𝑚𝑡−1

)︂
∖ 𝒮

𝑟
𝑓𝑤1
𝑚𝑡

can be expressed as:

⎛⎜⎝ ⋃︁
𝑟∈ℛ𝑚𝑡−1

ℓ

𝒮𝑟

⎞⎟⎠ ∖ 𝒮
𝑟
𝑓𝑤1
𝑚𝑡

=
⋃︁

𝑟∈ℛ𝑚𝑡−1
ℓ

(︁
𝒮𝑟 ∖ 𝒮𝑟

𝑓𝑤1
𝑚𝑡

)︁
(21)

where the second equality in (21) derives from set property, valid for generic sets 𝒜, ℬ
and 𝒜𝑗 , 𝒜 =

⋃︀𝑘
𝑗=1𝒜𝑗 ⇒ 𝒜 ∖ 𝐵 =

⋃︀𝑘
𝑗=1 (𝒜𝑗 ∖ ℬ). Since, according to (17), ℛ𝑚𝑡

ℓ =⋃︀
𝑟∈ℛ𝑚𝑡−1

ℓ
sub_rule(𝑟, 𝑟𝑓𝑤1

𝑚𝑡 ), by definition of rule subtraction operator, thesis holds true. □

A.3. Proof referenced in Subsect. 4.2

Alg. 3 implements a rule subtraction operator, i.e., given two rules 𝑟𝑑 = ⟨(𝐶𝑟𝑑
1 , 𝐶𝑟𝑑

2 , . . . , , 𝐶𝑟𝑑
𝑛 ),

𝑎𝑐𝑡𝑖𝑜𝑛𝑟𝑑⟩ and 𝑟𝑎 = ⟨(𝐶𝑟𝑎
1 , 𝐶𝑟𝑎

2 , . . . , , 𝐶𝑟𝑎
𝑛 ), 𝑎𝑐𝑡𝑖𝑜𝑛𝑟𝑎⟩, it returns a set of rules ℛ, with the same

action as 𝑟𝑑, satisfying property:
⋃︀

𝑟∈ℛ 𝒮𝑟 = 𝒮𝑟𝑑 ∖ 𝒮𝑟𝑎 .

Proof. Firstly, we prove that 𝒮𝑟𝑑 ∖ 𝒮𝑟𝑎 can be expressed in terms of a union of hyperrectangles,
that can be translated in a set ℛ of rules. Then we show that Alg. 3 computes ℛ this way.

Given a rule 𝑟 = ⟨(𝐶1, 𝐶2, . . . , 𝐶𝑛), 𝑎𝑐𝑡𝑖𝑜𝑛⟩, the set of packets matching the rule is 𝒮𝑟 =
𝐶1 × 𝐶2 × . . . × 𝐶𝑛 ⊆ 𝒫 . Note that, any packet set that can be expressed as the Cartesian
product of 𝑛 ranges can be defined by a rule having as a condition the 𝑛-tuple of ranges. We

call
𝑘
𝒮𝑟 , 𝑘 ≤ 𝑛, the projection of 𝒮𝑟 over set

𝑘
𝒫 ⊆ N𝑘

0 , where
𝑘
𝒫 is the projection of 𝒫 over N𝑘

0 :

𝑘
𝒮𝑟 = {𝑝 ∈

𝑘
𝒫 | 𝑝𝑖 ∈ 𝐶𝑖, 𝑖 = 1, . . . , 𝑘} = 𝐶1 × 𝐶2 × · · · × 𝐶𝑘 (22)

Set
𝑘
𝒮𝑟 , 𝑘 ≤ 𝑛, is a hyperrectangle in N𝑘

0 . Given a rule 𝑟𝑑, from (22) it holds that
𝑘
𝒮𝑟𝑑 =

𝑘−1
𝒮𝑟𝑑 ×𝐶𝑟𝑑

𝑘 .
Since by set property 𝒜 = (𝒜 ∖ ℬ) ∪ (𝒜 ∩ ℬ), which holds for any pair of sets 𝒜 and ℬ, we

have that
𝑘−1
𝒮𝑟𝑑 = (

𝑘−1
𝒮𝑟𝑑 ∖

𝑘−1
𝒮𝑟𝑎) ∪ (

𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎), we obtain:

𝑘
𝒮𝑟𝑑 = ((

𝑘−1
𝒮𝑟𝑑 ∖

𝑘−1
𝒮𝑟𝑎) ∪ (

𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎))× 𝐶𝑟𝑑

𝑘 = ((
𝑘−1
𝒮𝑟𝑑 ∖

𝑘−1
𝒮𝑟𝑎)× 𝐶𝑟𝑑

𝑘 ) ∪ ((
𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)× 𝐶𝑟𝑑

𝑘 ) (23)

By set property 𝒜 ∖ℬ = 𝒜 ∖ (𝒜∩ℬ), we have
𝑘
𝒮𝑟𝑑 ∖

𝑘
𝒮𝑟𝑎 =

𝑘
𝒮𝑟𝑑 ∖ (

𝑘
𝒮𝑟𝑑 ∩

𝑘
𝒮𝑟𝑎) and by using (23)

we obtain

𝑘
𝒮𝑟𝑑 ∖

𝑘
𝒮𝑟𝑎= (((

𝑘−1
𝒮𝑟𝑑 ∖

𝑘−1
𝒮𝑟𝑎)× 𝐶𝑟𝑑

𝑘 ) ∪ ((
𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)× 𝐶𝑟𝑑

𝑘 )) ∖ (
𝑘
𝒮𝑟𝑑 ∩

𝑘
𝒮𝑟𝑎)

= (((
𝑘−1
𝒮𝑟𝑑 ∖

𝑘−1
𝒮𝑟𝑎)× 𝐶𝑟𝑑

𝑘 )∖(
𝑘
𝒮𝑟𝑑 ∩

𝑘
𝒮𝑟𝑎)) ∪ (((

𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)× 𝐶𝑟𝑑

𝑘 ) ∖ (
𝑘
𝒮𝑟𝑑 ∩

𝑘
𝒮𝑟𝑎)) (24)

We can rewrite ((
𝑘−1
𝒮𝑟𝑑 ∖

𝑘−1
𝒮𝑟𝑎) × 𝐶𝑟𝑑

𝑘 ) and (
𝑘
𝒮𝑟𝑑 ∩

𝑘
𝒮𝑟𝑎) as ((

𝑘−1
𝒮𝑟𝑑 ∖ (

𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)) × 𝐶𝑟𝑑

𝑘 ) and

(
𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)× (𝐶𝑟𝑑

𝑘 ∩𝐶𝑟𝑎
𝑘 ), respectively. Since (

𝑘−1
𝒮𝑟𝑑 ∖ (

𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)) and (

𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎) are disjoint,



((
𝑘−1
𝒮𝑟𝑑 ∖

𝑘−1
𝒮𝑟𝑎)× 𝐶𝑟𝑑

𝑘 ) and (
𝑘
𝒮𝑟𝑑 ∩

𝑘
𝒮𝑟𝑎) are disjoint and (24) becomes:

𝑘
𝒮𝑟𝑑 ∖

𝑘
𝒮𝑟𝑎 = ((

𝑘−1
𝒮𝑟𝑑 ∖

𝑘−1
𝒮𝑟𝑎)× 𝐶𝑟𝑑

𝑘 ) ∪ (((
𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)× 𝐶𝑟𝑑

𝑘 ) ∖ (
𝑘
𝒮𝑟𝑑 ∩

𝑘
𝒮𝑟𝑎)) (25)

Since sets
𝑘
𝒮𝑟 , 𝑘 ≤ 𝑛 are hyperrectangles, it holds that

𝑘
𝒮𝑟𝑑 ∩

𝑘
𝒮𝑟𝑎 = (𝐶𝑟𝑑

1 ∩𝐶𝑟𝑎
1 )× (𝐶𝑟𝑑

2 ∩𝐶𝑟𝑎
2 )× . . .× (𝐶𝑟𝑑

𝑘 ∩𝐶𝑟𝑎
𝑘 ) = (

𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)× (𝐶𝑟𝑑

𝑘 ∩𝐶𝑟𝑎
𝑘 ) (26)

From (26), we can rewrite the second term in union (25) as:

((
𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)× 𝐶𝑟𝑑

𝑘 ) ∖ (
𝑘
𝒮𝑟𝑑 ∩

𝑘
𝒮𝑟𝑎) = ((

𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)× 𝐶𝑟𝑑

𝑘 ) ∖ ((
𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)× (𝐶𝑟𝑑

𝑘 ∩ 𝐶𝑟𝑎
𝑘 ))

= (
𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)× (𝐶𝑟𝑑

𝑘 ∖ (𝐶𝑟𝑑
𝑘 ∩ 𝐶𝑟𝑎

𝑘 ))

= (
𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)× (𝐶𝑟𝑑

𝑘 ∖ 𝐶𝑟𝑎
𝑘 ) (27)

where the last equality is obtained by using again set property 𝒜 ∖ ℬ = 𝒜 ∖ (𝒜 ∩ ℬ).
Summarizing, from (25) and (27) we have that:

𝑘
𝒮𝑟𝑑 ∖

𝑘
𝒮𝑟𝑎 = ((

𝑘−1
𝒮𝑟𝑑 ∖

𝑘−1
𝒮𝑟𝑎)× 𝐶𝑟𝑑

𝑘 ) ∪ ((
𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)× (𝐶𝑟𝑑

𝑘 ∖ 𝐶𝑟𝑎
𝑘 )) (28)

To translate set (28) into a set of rules defining it, we prove, by induction over 𝑘, that (28) can
be expressed as a set of sets of the kind 𝐶1 × 𝐶2 × . . . 𝐶𝑛 (i.e., of hyperrectangles).

Base case (𝑘 = 1):
1

𝒮𝑟𝑑 ∖
1

𝒮𝑟𝑎 = (𝐶𝑟𝑑
1 ∖ 𝐶𝑟𝑎

1 ). (𝐶𝑟𝑑
1 ∖ 𝐶𝑟𝑎

1 ) can be computed by
sub_range(𝐶𝑟𝑑

1 , 𝐶𝑟𝑎
1 ), which returns a set of ranges (i.e., of hyperrectangles in N1

0).

Induction step (𝑘 − 1 ⇒ 𝑘): We assume
𝑘−1
𝒮𝑟𝑑 ∖

𝑘−1
𝒮𝑟𝑎 to be expressed as a set of hyperrectangles.

The first term in union (28), is then a hyperrectangle. The second term in union in union (28) is

((
𝑘−1
𝒮𝑟𝑑∩

𝑘−1
𝒮𝑟𝑎)×(𝐶𝑟𝑑

𝑘 ∖𝐶𝑟𝑎
𝑘 )). By (26), (

𝑘−1
𝒮𝑟𝑑∩

𝑘−1
𝒮𝑟𝑎) is a hyperrectangle, and since (𝐶𝑟𝑑

𝑘 ∖𝐶𝑟𝑎
𝑘 ) can be

computed by sub_range(𝐶𝑟𝑑
𝑘 , 𝐶𝑟𝑎

𝑘 ) which returns a set of ranges, ((
𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎)× (𝐶𝑟𝑑

𝑘 ∖𝐶𝑟𝑎
𝑘 ))

returns a set of hyperrectangles, which proves the thesis.
Now we prove that Alg. 3 computes conditions (𝐶1, 𝐶2, . . . , 𝐶𝑛) defining the just described

hyperrectangles (28), from which it generates rules of ℛ. In (28) set
𝑘
𝒮𝑟𝑑 ∖

𝑘
𝒮𝑟𝑎 is incrementally

built by set
𝑘−1
𝒮𝑟𝑑 ∖

𝑘−1
𝒮𝑟𝑎 , 𝑘 ≤ 𝑛, we call the set of conditions defining the first set

𝑘
𝒞1. We compute

𝐶𝑟𝑑
𝑘 ∖𝐶𝑟𝑎

𝑘 as sub_range(𝐶𝑟𝑑
𝑘 , 𝐶𝑟𝑎

𝑘 ). Moreover, we call the set of conditions defining
𝑘−1
𝒮𝑟𝑑 ∩

𝑘−1
𝒮𝑟𝑎

as
𝑘−1
𝒞2 . We can now rewrite (28) in terms of set of conditions as:

𝑘
𝒞1 = (

𝑘−1
𝒞1 × 𝐶𝑟𝑑

𝑘 ) ∪ (
𝑘−1
𝒞2 × sub_range(𝐶𝑟𝑑

𝑘 , 𝐶𝑟𝑎
𝑘 )) (29)

In Alg. 3, two set 𝒞1 and 𝒞2 are initialized (lines 3-4) respectively to sub_range(𝐶𝑟𝑑
1 , 𝐶𝑟𝑎

1 ) and
1

𝒮𝑟𝑑 ∩
1

𝒮𝑟𝑎 . Both are then updated in 𝑛 step (loop in lines 5-8), in particular line 6 implements

(29). At the end, 𝒞1 =
𝑛
𝒞1, and the set of conditions is used to build rule set ℛ, which proves the

thesis. □
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