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Abstract
Quantum algorithms providing an exponential boost to the solutions of Decision and Search Problems on
infinite, non-commutative groups have not been found yet. Despite this apparent robustness, only one
candidate of the NIST Post-quantum standardization based its security on these problems (WalnutDSA).
In this brief note we look at some general aspects of Lattice based and Isogeny based cryptoschemes
(with particular reference to the idea of Hard Homogeneous Space by Couveignes —[1]) and we show how
these ideas can be adapted to the context of non-commutative Group based cryptography. We identify
the Mapping Class Group of a closed surface and its action on the Curve Graph as an ideal candidate to
construct a new quantum resistant key exchange protocol built on this group action based approach.
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1. Introduction

Since the breakthrough of Shor ([2], [3]) in the mid nineties, who provided a polynomial time
quantum algorithm for integer factorization and discrete logarithm —virtually breaking every
currently used cryptosystem—, the advent of a scalable, universal quantum computer inspire
mixed feeling into academics, institutions and in the tech industry.

Two main questions were raised:

• Assume quantum computers become available. How can we protect classified informations
stored and encrypted with classical methods?

• Will the quantum key distribution (QKD) and quantum mechanics based cryptographic
protocols completely replace classic cryptography?

Over twenty years after Shor’s discovery, it is widely believed that quantum computers will not
entirely replace classical computers ([4]), with the former employed to execute specific tasks
which are classically intractable, and that classical cryptography is likely to serve us also in
the next technological revolution, though renewed to face threat posed by a malevolent use of
quantum technologies.
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The necessity of classical methods to secure informations from quantum attacks is certainly
driven by the efforts that Tech Giants are putting in place to realize more and more power-
ful and refined quantum computers. This rush is one of the reasons why NIST proposed a
selection for Post-Quantum standardization ([5]) in 2017, looking for new quantum resistant
cryptographic primitives which could guarantee certain functionalities (Public-key Encryp-
tion and Key-establishment algorithms, Digital Signatures algorithms). We are currently at
the final round of evaluation with 4 candidates considered for Public-key Encryption and
Key-establishment algorithms and 3 candidates for Digital Signatures (other candidates has
been considered as alternate candidates). The 4 candidates for Public-key Encryption and Key-
establishment algorithms are ClassicMcEliece (code based cryptosystem), CRYSTALS-KYBER,
NTRU and SABER (lattice based cryptosystems).

It did not go unnoticed the absence of candidates exploiting techniques of non-commutative
group based cryptography, among the proposals (with the exception of WalnutDSA for Digital
Signatures, based on Braid Groups). This note aims to provide some motivations to why it
still makes sense to look at non-commutative group based cryptography as fertile ground for
quantum resistant public-key cryptoschemes. We shall thus try to highlight the links existing
between group-based cryptography and low-dimensional geometry and topology, and see
how their interaction mirrors into abstract paradigms preparing the ground for Isogeny based
cyrptography and Lattice based cryptography.

Our eventual aim, which will not be pursued in this short note, is to provide a new quantum
resistant key-exchange protocol, based on the action of the Mapping Class Group onto the
Curve Graph (see §3.2 for an heuristic description of these mathematical objects). To this end
we remark that some specific operations involving these mathematical objects have become
computationally tractable only recently (see §2.2). The techniques adopted to develop these ideas
have a minimal overlap with the techniques used by the NIST candidates, hence it is a research
direction which is new. Nevertheless, we are working within the general framework of exploiting
a group action to provide an additional layer of complexity. This should be understood as an
attempt to bring Geometric Topology into play in quantum resistant Public-Key Cryptography.

2. Non commutative group based cryptography and
computational topology

2.1. Non commutative group based cryptography and quantum resistance

It is customary to date back the origin of non-commutative group based cryptography to the
work of Magyarik-Wagner ([6]) though it was the successive work of Anshel-Anshel-Goldfeld
([7]) that attracted attention of group theorist and cryptographers. In [7] the authors proposed
the protocol described below whose major advantage is the fact that it does not rely on any
commutativity property of the groups (or subgroups) involved.
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Anshel-Anshel-Goldfeld Protocol

0. A trusted authority provides Alice and Bob with a group 𝐺 and two subsets {𝑎1, ..., 𝑎𝑛},
{𝑏1, ..., 𝑏𝑚} of elements of 𝐺;

1. Alice chooses a secret word 𝑤𝐴 = 𝑤𝐴(𝑎1, .., 𝑎𝑛); Bob chooses a secret word 𝑤𝐵 =
𝑤𝐵(𝑏1, ..., 𝑏𝑚);

2. Alice sends to Bob the conjugates {𝑏𝑤𝐴
𝑖 }𝑖=1,...,𝑚; Bob sends to Alice the conjugates

{𝑎𝑤𝐵
𝑖 }𝑖=1,...,𝑛;

3. Bob computes 𝑤−1
𝐵 𝑤−1

𝐴 𝑤𝐵𝑤𝐴 = 𝑤−1
𝐵 · 𝑤𝐵(𝑏

𝑤𝐴
1 , ..., 𝑏𝑤𝐴

𝑚 );
Alice computes (𝑤−1

𝐵 𝑤𝐴𝑤𝐵)
−1𝑤𝐴 = (𝑤𝐴(𝑎

𝑤𝐵
1 , .., 𝑎𝑤𝐵

𝑛 ))−1𝑤𝐴;
4. The shared secret [𝑤−1

𝐵 , 𝑤−1
𝐴 ] is established.

The introduction of this protocol raised the attention of researchers on possible application
of infinite, non-abelian group theory to cryptography. One year later a protocol by Ko-Lee et
al. ([8]) was proposed on Braid Groups. Since then, a lot of effort have been made in order to
identify a good platform group (see [9] chapter 4 for the definition) for AAG-protocol, bringing
more and more attention on Braid groups, a rather peculiar and well understood family of
groups, whose characteristics match with the requests defining a platform group. Braid groups
on one hand show sufficient complexity and on the other hand they come with a handful of
algebraic tools which make them computationally tractable. Several other protocols have been
conceived in this area, we refer to [9] and references therein.
The general idea for protocols à la Anshel-Anshel-Goldfeld is to choose among decisional
problems on non-abelian infinite groups (Word Problem, Conjugacy Problem, Membership
Problem, Decomposition Problem, Factorization Problem, Isomorphism Problem etc.) and define
a protocol exploiting the corresponding “search problem". There have also been attempts to
define protocols for infinite non-abelian groups using decisional problems. As it can be read in
[9], some of these protocols exhibit security against computationally unbounded adversaries,
the trade-off of these techniques being that their use only allows a legitimate party to decrypt
messages correctly with a probability which can be made arbitrarily close but not equal to 1.

It is worth to remark that no quantum algorithm at the moment is known to provide an
exponential computational boost to the solution of problems over finitely generated, infinite,
non-abelian groups ([10], [11] the second providing an updated list of quantum tools to solve
hard computational problems). This could be due to the fact quantum algorithms are usually
based on the possibility of creating an entangled state exhausting the elements of a finite set,
which hopefully encodes enough information to solve a certain problem. This is not the case
when we work on infinite, non-abelian groups, which do not have any preferred or “canonical"
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finite set of elements to rely upon. It is possible that the lack of efficient quantum algorithms
to speed up solutions of certain computational problems over non-commutative group based
cryptography is due to a minor interest of the quantum computing community towards this
kind of cryptoschemes. Nevertheless, the absence of efficient algorithms for treating problems
on infinite, finitely generated, non-abelian groups is factual.

2.2. Non commutative group based cryptography and topology

Non commutative group based cryptography investigates the hardness of certain computational
problems over non-abelian, infinite, finitely generated groups and tries to produce effective and
secure cryptographic protocols based on these problems. Infinite groups have been originally
studied using tools coming from combinatorics and algebra. During the eighties of the 20th
century a new approach to the study of infinite group, mostly fueled by ground-breaking
works of M. Gromov ([12],[13], [14], [15]), led to the rise of Geometric Group Theory as an
established research field. Generally speaking the idea behind Geometric Group Theory is to
derive properties of infinite groups not just looking at their presentations1 and their algebraic
aspects but instead looking at the way these groups “act" on suitably constructed spaces. These
provided mathematicians with a bunch of new tools, which led to unforeseeable developments
in the last 30 years.

It is thus safe to say that there is a strong interaction between the study of infinite, discrete
groups and the fields of Topology and Geometry. This link is particularly significant when we
look at the Topology and Geometry of manifolds of dimension 2 and 3: here the fundamental
group — a group obtained by looking at loops based at a given point of the manifold (up to
homotopy) with “multiplication" given by the concatenation of paths — of a 2- or 3-manifold
encodes (almost) all of the topological information of the manifold, and conversely several
properties of the group can be investigated by studying suitably chosen geometric structures
on the manifold. In particular several geometric problems have group-theoretic translations
and viceversa.

On the other hand, the techniques used to study manifolds of dimension 2 and 3 have strongly
combinatorial aspects: several proofs concerning surfaces and 3-manifolds are actual algorithms.
The study of these combinatorial and algorithmic aspects of surfaces and 3-manifolds have
been one of the motivations for the development of an area which is known as Computational
Topology. If we restrict our attention to surfaces, several works throughout the last twenty
years enable us to efficiently perform several topological and geometric operations on them (for
example [16], [17], [18]). Our belief is that we can exploit these algorithms and the connection
existing within surfaces and groups for cryptographic purposes.

1A presentation of a group 𝐺 is a pair ⟨𝑆 | 𝑅⟩ where 𝑆 is a set of symbols and 𝑅 is a subset of (reduced) words
in 𝑆 ∪ 𝑆−1 such that F(𝑆)/⟨⟨𝑅⟩⟩ ∼= 𝐺, where F(𝑆) denotes the free group over the set 𝑆 and ⟨⟨𝑅⟩⟩ denotes the
smallest normal subgroup containing all elements of the collection 𝑅.
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3. The Mapping Class Group

3.1. An unexpected help

In the attempt of applying geometric and topological techniques to group-based cryptography,
we first studied one of the most interesting protocols of the NIST Post-quantum standardization:
the candidate SIKE (Supersingular Isogeny Key Encapsulation), the unique candidate using
Isogeny-based Cryptography. SIKE can be thought as the Post-quantum evolution of Elliptic
Curve Cryptography. A description of the protocol SIKE is beyond the scope of this note (the
webpage [19] contains an exhaustive repository of research papers as well as expository papers
concerning SIKE and more generally Isogeny-based cryptography). That being said we want to
focus on one foundational aspect: the notion of Hard Homogeneous Space.

Hard Homogeneous Spaces were introduced by Couveignes in [1]. His (unpublished) paper
contains also a first Isogeny-based protocol. The intuition of Couveignes is the abstract paradigm
on which SIKE have been built. Let us consider a group 𝐺 acting on a space 𝑋 , transitively and
freely; we give some preliminary definitions:

Vectorization Problem: Given two points 𝑥1, 𝑥2 ∈ 𝑋 find the unique element 𝑔 ∈ 𝐺 such
that 𝑔.𝑥1 = 𝑥2.

Parallelization Problem: Given three points 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋 find the unique point 𝑥4 such
that 𝑔.𝑥1 = 𝑥2 and 𝑔.𝑥3 = 𝑥4, for some 𝑔 ∈ 𝐺.

We are thus ready to explain what a Hard Homogeneous Space is:

Hard Homogeneous Space (HHS): a Hard Homogeneous Space or HHS fis a pair (𝐺,𝑋) where
𝐺 is a finite commutative group, and 𝑋 is a space on which 𝐺 acts transitively and freely, where
there exist efficient algorithms for the following operations:

• Compute inverses and products of elements of 𝐺 and equality testing in 𝐺;
• Random sampling from 𝐺 with uniform probability;
• Decide whether a given string represents an element in 𝑋 ;
• Test equality in 𝑋 ;
• Compute the action 𝐺 ↷ 𝑋 ;

but the Vectorization Problem and the Parallelization Problem are computationally infeasible.

The original idea of Couveignes (later, though independently, rediscovered by Rostovtsev and
Stolbunov — [20], [21]—) was to look at the action of isogenies onto Ordinary Elliptic Curves,
with a set of isogenous ordinary elliptic curves to play the role of the HHS for the group of
isogenies. The work of Childs-Jao-Soukharev [24] pointed out that Isogeny-based schemes
on Ordinary Elliptic Curve are susceptible to quantum attacks. A different key exchange in-
volving Supersingular Elliptic Curves had successively been proposed by De Feo-Jao-Plût [22]
(see also the corresponding extended version [23]) and eventually led to SIKE. The work of
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Childs-Jao-Soukharev [24] pointed out that Isogeny-based schemes on Ordinary Elliptic Curve
are susceptible to quantum attacks, a problem which is circumvented by the deployment of
Supersingular Elliptic Curves.

At this level of abstraction there are several remarks to make:

1. While the transitivity of the action of the group 𝐺 on 𝑋 can be seen as a minimality
assumption (otherwise we could just restrict ourselves to a 𝐺-orbit in 𝑋), the freedom
of the action is useful if our objective is to produce a “non-algebraic copy" of the group
𝐺. If we drop the assumption we are in a situation where we have some redundancy in
the group action 𝐺 ↷ 𝑋 (for example several solution to the parallelization equation
𝑔.𝑥1 = 𝑥2, i.e. non-trivial stabilizers). Can we benefit from the presence of non-trivial
stabilizers?

2. Commutativity does not play any role in the definition of HHS. Though abelian groups
are certainly more studied than their non-abelian siblings from the computational point
of view, the assumption can be dropped.

3. The finiteness assumption on 𝐺 (and thus on 𝑋) interact with the requirement of the
existence of efficient algorithms for random sampling with uniform probability. If we
want to drop the finiteness assumption we should replace the uniform probability with
some different condition.

Taking into account these comments, it is clear that the framework provided by HHS is
extremely general and it seems that it could be well adapted to infinite, possibly non-abelian,
finitely generated groups. This provides an additional motivation to construct cryptoschemes
involving group actions. It is therefore legitimate to ask ourselves whether there exists a
concrete example of non-commutative, infinite group action onto a suitable space which could
represent a sort of HHS in the generalized sense suggested by the previous remarks.

3.1.1. Group actions and lattice-based cryptography

Though not directly linked or even inspired by Couveignes’ notion of HHS, protocols arising in
Lattice based Cryptography do not make exception from the paradigm of hiding the algebra
via a “group action". Here we briefly describe GGH algorithm ([25]) as it is presented in [26],
pg. 167. In such a protocol each legitimate party possesses a secret key which is represented
by a good basis ℬ (composed by almost orthogonal vectors) for a lattice L (ℬ) < R𝑛, and a
public key which is represented by a “bad basis" ℬ𝑏𝑎𝑑 of the same lattice. Suppose that Alice
wants to construct a shared key with Bob. Then she chooses a short noise vector r; she takes
the bad basis ℬ𝑏𝑎𝑑, she chooses a point v in the lattice L (ℬ𝑏𝑎𝑑) and she publishes w = v + r.
As the bad basis chosen by Bob is particularly inconvenient and the information published by
Alice is “noisy", the instance of the Closest Vector Problem that a potential eavesdropper is
forced to solve is computationally infeasible. Viceversa as Bob possesses the good basis, he is
able to efficiently solve the Closest Vector Problem, which allows him to find the vector v, as
the closest point to w in L (ℬ). Once found v Bob is able to retrieve the original noise vector
chosen by Alice r = w − v. This naïve description of a Lattice-based protocol, is to highlight

6



Filippo Cerocchi et al. CEUR Workshop Proceedings 1–11

that Lattice based cryptography is built on the idea of exploiting a group action (the action of
the abstract group given by the integer lattice Z𝑛) on a suitable space (the Euclidean space R𝑛).
In particular for what concerns the protocol we just described, the idea is to hide the shared
key using a perturbation of the shared key together with a choice of a vector obtained from a
public basis (a generating system for the group L (ℬ) which has be chosen to be different from
the secret basis of the other legitimate party) which makes computations for the recovery of
the secret noise vector infeasible. We observe that this is a rather general and flexible schema
which can be adapted to many other interesting group actions.

3.2. Homeomorphisms of surfaces

A natural candidate to provide a link between Group-based cryptography and the Geometry
and Topology of low-dimensional manifolds is the Mapping Class Group of a closed surface 𝑆 of
genus 𝑔 ≥ 2. The Mapping Class Group of𝑆 (usually denoted𝑀𝑜𝑑(𝑆) orMCG(𝑆)) is the group
of orientation preserving homeomorphisms of 𝑆 considered up to homeomorphisms isotopic to
the identity of 𝑆. It is one of the most studied groups in Geometric Topology and Geometric
Group Theory. The more direct introduction to subject, to our knowledge, is the book by Farb
and Margalit ([27]). Due to lack of space we shall only try to give an heuristic idea of certain
basic concepts, and briefly recall some of the properties which are relevant to our purposes.
The group 𝑀𝑜𝑑(𝑆) is a finitely presented group; we shall not give the presentation (see [27]),
but we shall exhibit a finite generating set. A Dehn twist about the isotopy class of a simple,
essential closed curve [𝛼] in the surface 𝑆 (an embedded curve in 𝑆 which is not homotopic to
a point in 𝑆) is the mapping class 𝑇[𝛼] corresponding to the following homeomorphism of 𝑆:
the map is the identity map outside an annulus 𝐴(𝛼) whose core is a representative of 𝛼, and it
is isotopic to the following map inside 𝐴(𝛼):

Figure 1: The action of the Dehn twist 𝑇[𝛼] about 𝛼 on a curve 𝛽 crossing 𝛼 inside the annulus 𝐴(𝛼).

It was proven in 1964 by Lickorish ([28]) that the Dehn twists corresponding to the homotopy
classes of curves in Figure 2 generate the Mapping Class Group:

The Mapping Class Group has several interesting properties. First of all it is a group of
exponential-growth, meaning that, for any choice of a finite generating set Σ the number of
elements of 𝑀𝑜𝑑(𝑆) in the ball of radius 𝑛 (with respect to the word metric2 induced by Σ)

2Let Σ be a finitely generating set for a group 𝐺 = F(Σ)/⟨⟨𝑅⟩⟩. The word metric on 𝐺 relative to Σ measures

7



Filippo Cerocchi et al. CEUR Workshop Proceedings 1–11

Figure 2: The Dehn-Lickorish generating system for 𝑀𝑜𝑑(𝑆).

is an exponential function of 𝑛. The group contains many interesting subgroups: free groups,
braid groups and Z𝑘 for every 𝑘 ≤ 3𝑔 − 3. There exist efficient algorithms to compute inverses
as well as products of mapping classes and a linear time algorithm for the Word Problem, i.e. the
problem of recognizing whether a given mapping class represents the identity element or not,
which means that there exists an efficient algorithm to check equality between mapping classes.
For what concerns measures on finitely generated, infinite, non abelian groups and suitable
notions of complexity in this context they are extensively discussed in [9]. The Mapping Class
Group possesses several interesting actions, two of them are particularly significant and played
a central role in the understanding of the group itself:

1. the action of 𝑀𝑜𝑑(𝑆) on 𝑆;
2. the action of 𝑀𝑜𝑑(𝑆) on the Curve Graph.

The action of 𝑀𝑜𝑑(𝑆) on 𝑆 shows us that certain mapping classes called “pseudo-Anosov"
have a highly mixing behaviour: they possess a dense orbit, the number of periodic point of 𝑆
with respect to a given transformation is dense in 𝑆 and they have relevant measure-theoretic
mixing properties. On the other hand, it is possible to show that random walking on the Cayley
graph of 𝑀𝑜𝑑(𝑆) we stop at a pseudo-Anosov mapping class (see [27], Ch. 14) with asymptotic
probability 1. As randomness lies at the very core of cryptography, this partially justify the idea
to look at 𝑀𝑜𝑑(𝑆) for cryptographic purposes.

The Curve Graph C (𝑆) is a simplicial graph whose vertices are given by isotopy classes
of essential, simple closed curves. We put an edge of length 1 between two (distinct) isotopy
classes [𝛼], [𝛽] if they possess disjoint representatives. It turns out that C (𝑆) is an infinite graph,
having infinite diameter and where each vertex has infinite valence, i.e. there are infinitely many
edges based at every vertex. The action of 𝑀𝑜𝑑(𝑆) onto C (𝑆) is a simplicial action. There is
an interesting correspondence between the Vectorization Problem on the pair (𝑀𝑜𝑑(𝑆),C (𝑆))
and the Conjugacy Search Problem on 𝑀𝑜𝑑(𝑆), for which the fastest known algorithms run
in exponential time. On the other hand computational aspects of the Mapping Class Group
and of its action on simple closed curves have been investigated over the last 15 years by

the distance between two elements 𝑔1, 𝑔2 ∈ 𝐺 as equal to the shortest length in terms of letters in Σ ∪ Σ−1 of a
word in F(Σ) representing 𝑔−1

1 𝑔2.
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several authors ([16], [17], [29], [30], [18], [31], [32]), so there is a set of linear/polynomial time
algorithms at our disposal to perform elementary operations on the Curve Graph.

Among all the mentioned characteristics of the Mapping Class Group and the properties of
its action of the Curve Graph, the existing link between the CSP on the Mapping Class Group
and the Vectorization Problem for the action 𝑀𝑜𝑑(𝑆) ↷ C (𝑆) is certainly the most inspiring.
We are currently investigating the possibility to exploit this correspondence.

4. Conclusions

Decisional and Search problems on non-commutative (infinite) groups is one of the areas where
quantum algorithms have not provided yet computational advantage. Despite difficulties of
non-commutative group based cryptography to present efficient and secure concrete protocols,
it seems that some of the abstract ideas underlying other areas such as Isogeny based and Lattice
based cryptography could be a source of inspiration for new research directions and possibly
concrete implementations. In particolar, non-commutative, infinite group actions protocols
could present some advantage in comparison with to the pure group theoretic approach to
cryptography. On the other hand, if we look at non-commutative group actions it is natural to
look at topology and geometry as a source of those action. We thus identified the Mapping Class
Group as one promising candidate in view of its complexity as a group, of its extremely involved
actions on both surfaces and on the Curve Graph, and on the fact that we have reasonably
efficient algorithms at our disposal. One of the activities we are carrying on at Leonardo
Cybersecurity is the development of non-commutative group action based cryptoschemes, with
particular reference to the Mapping Class Group.
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