
Question Answering on RDF Data based on
Grammars Automatically Generated from

Lemon Models

Mohammad Fazleh Elahi1[0000−0002−8843−9039], Basil Ell1,2[0000−0002−8863−3157]

Frank Grimm1[0000−0002−7045−8055], and Philipp Cimiano1[0000−0002−4771−441X]

1 CITEC, Universität Bielefeld, Germany
{melahi,bell,fgrimm,cimiano}@techfak.uni-bielefeld.de

http://www.sc.cit-ec.uni-bielefeld.de/home/
2 Department of Informatics, University of Oslo, Norway

basile@ifi.uio.no

Abstract. Many question answering (QA) systems over RDF induced
from question-query pairs using some machine learning technique suf-
fer from a lack of controllability, making the governance and incremen-
tal improvement of the system challenging, not to mention the initial
effort of collecting and providing training data. As an alternative, we
present a model-based QA approach that uses an ontology lexicon in
lemon format and automatically generates a lexicalized grammar used
to interpret and parse questions into SPARQL queries. The approach
gives maximum control over the QA system to the developer as every
lexicon extension increases the coverage of the grammar, and thus of
the QA system, in a predictable way. We describe our approach to gen-
erating grammars from lemon lexica and show how these grammars
generate specific questions that we index to support fast QA perfor-
mance in a prototype that answers questions with respect to DBpedia.

Keywords: question answering, RDF, grammar generation

1 Introduction

As the amount of structured data on the Web increases, there is an increas-
ing demand for interfaces that simplify the access and browsing of data by
end-users. Approaches to QA over RDF data based on machine learning (see
[3] for an overview of deep learning methods applied to QALD and [1] for
an overview of recent work on natural language interfaces to databases)
face however a number of limitations with respect to the governance and

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0)

2 M. F. Elahi et al.

maintenance of the QA system. First of all, the provisioning of training data
represents a substantial effort and although transfer learning from an exist-
ing dataset to another domain can be applied [5], typically one needs at least
a small amount of training data from the target domain to obtain decent per-
formance. Most importantly, QA models induced from training data are not
controllable in the sense that it is a priori unclear which questions the model
will interpret correctly. Further, the impact of adding a single or a few train-
ing examples is not predictable in terms of which additional questions the
model will be able to cover.

In order to overcome the problems related to machine learning-based
approaches to question answering over RDF, we explore a model-based ap-
proach to QA in which a developer of the QA system provides a lexicon in
lemon format [7] specifying how the vocabulary elements are realized in
natural language. The main benefit of the approach is that it is fully con-
trollable in the sense that it can be predicted what the impact of extending
the lexicon will have in terms of the questions covered by the system. To
realize the system, we build on our previous work showing how question an-
swering grammars can be automatically generated from lemon lexica [2].
Building on earlier results showing that if the questions of the QALD-73

dataset are reformulated in terms of questions that the grammar can cover,
we can achieve F-Measures of up to 62.5%, in this paper, we present a
QA system that builds on the grammar generation functionality described
in previous work. As the main contribution, we show that our approach
can scale to large numbers of questions and that the performance of the
system is practically in real-time from an end user perspective. We apply
our approach to DBpedia and describe the implementation of a QA system
that can answer more than 1.8 million questions. The system is available at
https://scdemo.techfak.uni-bielefeld.de/quegg/.

2 Generating Grammars from Ontology Lexica

Our approach automatically generates lexicalized regular grammars from
lexical entries in a lemon lexicon [7] for different parts-of-speech and syntac-
tic behaviours. The approach to grammar generation for (relational) nouns
(e.g. ‘capital of’), transitive verbs (e.g. ‘(to) direct’), intransitive verbs sub-
categorizing a prepositional argument (e.g. ‘(to) flow through’), and inter-
sective adjectives (e.g. ‘Spanish’) were described in previous work [2]. For
the sake of self-containedness, we describe the generation of grammar rules
for (relational) nouns and the newly deployed gradable adjectives (e.g. ‘high/
higher/highest’).

The lemon entry for the relational noun ‘capital (of)’ states that the entry
has a NounPPFrame [4] that corresponds to a copulative construction ‘X is

3 http://qald.aksw.org/

RDF QA based on grammars automatically generated from lemon models 3
Overall Diagram

What is the largest city in United States?
select ?o{res:United_States dbo:largestCity ?o}

Sparql endpoint

Prefix Tree

user input text

-What is the largest city in
United States?
-What is the largest city in
United Arab Emirates?
...

grammar rule
generator

Rule 1

Automatic QA Grammar Generation

QA System

Rule 2

Question/Sparql
pairs
..

Question/Sparql
pairs
..

New York city

Fig.1. The architecture of the QueGG question answering system

the capital of Y’ (see [2]). The grammar generation approach for the lemon
entry generates the following questions: 1) ‘What is the capital of X?’, 2)
‘What was the capital of X’, 3) ‘Which city is the capital of X?’, 4) ‘Which
city was the capital of X?’. The X position can be either a particular country,
e.g. ‘Germany’, or a noun phrase, e.g. ‘country where German is spoken’. A
second grammar rule for relational nouns not shown in detail here (see [2])
generates noun phrases such as ‘the capital of X’. The code for our grammar
generation is available on GitHub.4

Gradable adjectives are modelled along the proposal of McCrae et al. [6]
and are represented using the lemonOILS5 ontology. The lexical entry high is
expressed through the concept oils:CovariantScalar, indicating that the
adjective is covariant with its bound property dbo:elevation. The lexical
entry allows our approach covering the following questions: 1) ‘How high is
X?’ and 2) ‘What is the highest X?’. At position X, the label of individuals of
type ArchitecturalStructure can be inserted.

3 System Architecture and Implementation

The core component of the model-based QA system (Figure 1) is the gram-
mar generator, which takes a lemon lexicon as input and automatically cre-
ates lexicalized grammar rules, as shown in Section 2, from which pairs of
concrete questions and SPARQL queries can be instantiated. The QA com-
ponent is a web application that maintains a server-side index of question-
query pairs, as well as a user-facing web application. The former builds an
efficient data structure in order to index the question data for later retrieval.
The latter is able to a) assist the user in finding the right question through

4 https://github.com/fazleh2010/question-grammar-generator
5 http://lemon-model.net/oils

4 M. F. Elahi et al.

Frame type #Entries #Grammar rules #Questions

NounPPFrame 211 424 1060234
TransitiveFrame 32 107 585845
IntransitivePPFrame 52 106 151040
AdjectiveAttributiveFrame 33 130 41425
AdjectiveGradableFrame 8 24 9150

Total 336 791 1847694

Table 1. Frequencies of entries with a certain frame type

auto-complete functionality and b) present results given by the SPARQL end-
point in a comprehensive manner.

The index of question-query pairs is a server-side prefix tree built from
pre-generated questions. While initial inserts are O(n) expensive, the struc-
ture allows very quick lookups. The tree is populated with lower-cased char-
acter sequences of questions. Costly tree maintenance is alleviated indexing
content in stages: an initial bulk import and subsequent updates. All appli-
cation launches, as well as new data insertions, then rely on a previously
stored state. All input in the application’s query field is periodically pushed
to the server, where the tree is then queried for question nodes matching the
(lower-cased) input in order to generate auto-complete suggestions. Incom-
plete questions yield a number of suggestions by means of a breadth-first
search limited to a maximum depth of five levels. This produces the most
relevant completion paths for the given query. If the maximum number of
suggestions was not reached by this search, a second one adds specific ques-
tions to the list. When a user reaches a specific question or enters enough
information to promote an answerable leaf node to the top of the suggestion
list, the system attempts to resolve it. The SPARQL query associated with
the active question is sent to the endpoint and various metadata is rendered
alongside the answer.

We apply our system to the DBpedia dataset (Release 2016-10; core,
links, and English core-i18n) using 336 manually created lexical entries;
spreadsheets available at https://scdemo.techfak.uni-bielefeld.de/quegg-
resources/. Every row added to these spreadsheets increases the cover-
age of the grammar and generates tens of thousands of new questions. Ta-
ble 1 shows the number of grammar rules and questions generated for each
syntactic type. Altogether, the approach generates 791 grammar rules and
about 1.8 million questions. The source code can be obtained via GitHub.6.
The user-based evaluation of the system involved 161 students (University
of Bielefeld) that were asked to enter 5 questions7 given in German into the

6 https://github.com/ag-sc/QueGG-web
7 https://forms.gle/B5cjuX5rncxHi1Bx6

RDF QA based on grammars automatically generated from lemon models 5

English-language QA interface. We evaluate two performance indicators: a)
Effectiveness: the accuracy and completeness with which participants can
ask a question to the system and b) Answer Satisfaction: whether partici-
pants find the returned answers acceptable.The results show that the tool
is intuitively usable, achieving effectiveness and satisfaction rates between
71%–99% and 46%–95%, respectively. The average SUS (System Usability
Scale) score obtained is 62.06, which indicated room for improvement.

4 Conclusions

We presented an approach to developing QA systems over RDF datasets that
relies on the automatic generation of grammars from corresponding lemon
lexica that describe how elements of the dataset are verbalized in natural
language. In contrast to machine learning based approaches that induce a
model from question-query pairs, our approach is declarative in that the de-
veloper of the system defines questions that can be covered by the system by
providing a lemon lexicon. The approach is controllable since the introduc-
tion of a lexical entry increases the question coverage in a fully predictable
way. We have described how an efficient QA system can be implemented on
the basis of the automatically generated grammars by indexing the ques-
tions and queries using a prefix tree. Our proof-of-concept implementation
over DBpedia covers 1.8 million questions generated from 336 lemon entries.
In future work we intend to start a community project where the community
can contribute both to the extension of the lexicon and the set of grammar
rules but also to adapt the grammar generation to other languages.

References

1. Affolter, K., Stockinger, K., Bernstein, A.: A comparative survey of recent natural
language interfaces for databases. VLDB Journal 28, 793–819 (2019)

2. Benz, V., Cimiano, P., Elahi, M.F., Ell, B.: Generating Grammars from lemon lexica
for Questions Answering over Linked Data: a Preliminary Analysis. In: NLIWOD
workshop at ISWC. vol. 2722, pp. 40–55. CEUR-WS.org (2020)

3. Chakraborty, N., Lukovnikov, D., Maheshwari, G., Trivedi, P., Lehmann, J., Fischer,
A.: Introduction to Neural Network based Approaches for Question Answering
over Knowledge Graphs. CoRR abs/1907.09361 (2019)

4. Cimiano, P., Buitelaar, P., McCrae, J.P., Sintek, M.: LexInfo: A declarative model
for the lexicon-ontology interface. JWS 9(1), 29–51 (2011)

5. Maheshwari, G., Trivedi, P., Lukovnikov, D., Chakraborty, N., Fischer, A., Lehmann,
J.: Learning to Rank Query Graphs for Complex Question Answering over Knowl-
edge Graphs. In: ISWC Conference. pp. 487–504 (2019)

6. McCrae, J.P., Quattri, F., Unger, C., Cimiano, P.: Modelling the Semantics of Adjec-
tives in the Ontology-Lexicon Interface. In: CogALex Workshop (2014)

7. McCrae, J.P., Spohr, D., Cimiano, P.: Linking lexical resources and ontologies on
the semantic web with lemon. In: ESWC Conference. pp. 245–259 (2011)

