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Abstract
Recommender Systems have shown to be an effectiveway to alleviate the over-choice problem and provide
accurate and tailored recommendations. However, the impressive number of proposed recommendation
algorithms, splitting strategies, evaluation protocols, metrics, and tasks, has made rigorous experimental
evaluation particularly challenging. ELLIOT is a comprehensive recommendation framework that aims
to run and reproduce an entire experimental pipeline by processing a simple configuration file. The
framework loads, filters, and splits the data considering a vast set of strategies. Then, it optimizes
hyperparameters for several recommendation algorithms, selects the best models, compares them with
the baselines, computes metrics spanning from accuracy to beyond-accuracy, bias, and fairness, and
conducts statistical analysis. The aim is to provide researchers a tool to ease all the experimental
evaluation phases (and make them reproducible), from data reading to results collection. ELLIOT is
freely available on GitHub at https://github.com/sisinflab/elliot.
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1. Introduction and Background

Recommendation Systems (RSs) have risen to prominence in the recent decade as the go-to option
for personalized decision-support systems. Recommendation is a retrieval task inwhich a catalog
of products is scored, and the highest-scoring items are shown to the user. Both academia and
industry have focused their attention on RSs, as they were proven to supply customized goods
to users. This collaborative effort yielded a diverse set of recommendation algorithms, spanning
from memory-based to latent factor-based and deep learning-based approaches. However, the
RSs community has become increasingly aware that adequately evaluating a model is not limited
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to measuring accuracy metrics alone. Another aspect that has attracted much attention concerns
the evaluation of these models. While it is widely recognized the importance of beyond-accuracy
metrics, an additional effort needed to compare models rigorously and fairly with each other in
order to justify why one model performs differently from another. The problem of reproducing
the experiments recurs when the need to recompute the whole set of experiments emerges. Be it
a new experiment or not, it opens the doors to another class of problems: the number of possible
design choices often imposes the researcher to define and implement only the chosen (usually
limited) experimental setting. As highlighted in Konstan and Adomavicius [1], RS assessment is
an essential and developing research issue connected to reproducibility, which is a cornerstone
of the scientific process. Recently, academics have taken a closer look at this topic, also because
the relevance and effect of such discoveries would rise depending on how well we assess the
performance of a system. Some academics suggest that at least the following four steps should
be defined within the assessment procedure to improve replicability and allow fair comparisons
across various works (either frameworks, research papers, or published artifacts) [2]: data
splitting, item suggestions, candidate item creation, and performance monitoring, which may be
all done with data. These phases were completed with dataset collecting and statistical testing in
a recent study [3]. Depending on the performance dimension to examine, several of these phases
can be further classified, like performance measurement. Gunawardana and Shani [4] reviews
different performance characteristics of RSs, comparing some measures, e.g., accuracy, coverage,
confidence, trust, novelty, variety, and serendipity. However, to the best of our knowledge, no
public implementation that provides more than one or two of these aspects exists. Furthermore,
other dimensions such as bias (in particular, popularity bias [5]) and fairness [6] have lately
been explored by the community [7, 8].

Reproducibility is the keystone of modern RSs research. Dacrema et al. [9] and Rendle et al.
[10] have recently raised the need of comprehensive and fair recommender model evaluation.
However, the outstanding success and the community interests in Deep Learning (DL) rec-
ommendation models raised the need for novel instruments. LibRec [11], Spotlight [12], and
OpenRec [13] were the first open-source projects that made DL-based recommenders available
– with less than a dozen of available models without filtering, splitting, and hyper-optimization
tuning strategies. However, they do not provide a general tool for extensive experiments on the
pre-elaboration and the evaluation of a dataset. Indeed, after the reproducibility hype [9, 10],
DaisyRec [14] and RecBole [15] raised the bar of framework capabilities, making available both
large set of models, data filtering/splitting and, above all, hyper-parameter tuning features.

From the researcher’s point of view, our framework solves the issues mentioned above.
ELLIOT [16] natively provides widespread research evaluation features, like the analysis of
multiple cut-offs and several RSs. ELLIOT supplies, to date, 36 metrics, 13 splitting strategies,
and 8 prefiltering policies to evaluate the diverse tasks and domains. Moreover, the framework
offers, to date, 27 similarities, and 51 hyperparameter tuning combined approaches.

2. Elliot

ELLIOT (Figure 1) is an extendable framework with eight functional modules, each of which is
in charge of a different aspect of the experimental suggestion process. The user is only meant
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Figure 1: Overview of the modules involved in ELLIOT’s operation.

to input human-level experimental flow information via a configurable configuration file, so
what happens behind the scenes is transparent. Hence, ELLIOT allows the execution of the
whole pipeline. In the following, we detail each module and how to create a configuration file.

2.1. Data Preparation

Loading. Different data sources, such as user-item feedback, and extra side information, may be
required for RSs experiments. Hence, ELLIOT has a variety of Loading module implementations.
The researcher/experiment designer may create prefiltering and splitting custom methods that
can be saved and loaded to save time in the future. Additional data, such as visual [17, 18] and
semantic features [19, 20, 21, 22], can be handled through a specific data loader.
Prefiltering. ELLIOT offers data filtering options based on two different techniques. The first
is Filter-by-rating, whose purpose is to eliminate user-item interactions if the preference score
is below a certain level. It can be (i) a Numerical value, e.g., 3.5, (ii) a Distributional detail, e.g.,
global rating average value, or (iii) a user-based distributional (User Dist.) value, e.g., user’s
average rating value. The second, 𝑘-core, filters out users, items, or both, with less than 𝑘
recorded interactions. It can proceed iteratively (Iterative 𝑘-core) on both users and items until
the filtering condition is met, i.e., all the users and items have at least 𝑘 recorded interaction.
Finally, the Cold-Users filtering allows retaining cold-users only.
Splitting. ELLIOT implements three splitting strategies: (i) Temporal, (ii) Random, and (iii) Fix.
The Temporal method divides user-item interactions depending on the transaction timestamp,
either by setting the timestamp, selecting the best one [23, 24], or using a hold-out (HO)
mechanism. Hold-out (HO), 𝐾-repeated hold-out (K-HO), and cross-validation (CV ) are all part
of the Random methods. Finally, the Fix approach leverages an already split dataset.
Recommendation Models. The Recommendation module provides the functionalities to train
(and restore) the ELLIOT recommendation models and the new ones integrated by users. To
date, ELLIOT integrates around 50 recommendation models partitioned into two sets: (i) 38
popular models implemented in at least two of the other reviewed frameworks, (ii) other well-
known state-of-the-art recommendation models implemented in less than two frameworks, like,
MultiDAE [25], graph-learning, e.g., NGCF [26], visual [27], e.g., VBPR [28], adversarial-robust,
e.g., AMR [29], and MSAPMF [30], content-aware, e.g., KaHFM [19], and KGFlex [31].
Hyper-parameter Tuning. According to Rendle et al. [10], Anelli et al. [32], hyperparame-



ter optimization has a significant impact on performance. Grid Search, Simulated Annealing,
Bayesian Optimization, and Random Search are all offered by ELLIOT. Additionally, it supports
four different traversal techniques in the search space. Grid Search is automatically inferred
when the user specifies the available hyperparameters.

2.2. Performance Evaluation

Metrics. ELLIOT provides a set of 36 evaluation metrics, partitioned into seven families:
Accuracy [33, 34], Error, Coverage, Novelty [35], Diversity [36], Bias [37, 38, 39, 40, 41], and
Fairness [42, 43]. It is worth mentioning that ELLIOT is the framework that exposes both the
largest number of metrics and the only one considering bias and fairness measures. Moreover,
the practitioner can choose any metric to drive the model selection and the tuning.
Statistical Tests. All other cited frameworks do not support statistical hypothesis tests, prob-
ably due to the need for computing fine-grained (e.g., per-user or per-partition) results and
retaining them for each recommendation model. Conversely, ELLIOT helps computing two
statistical hypothesis tests, i.e., Wilcoxon and Paired t-test, with a flag in the configuration file.

2.3. Framework Outcomes

When the training of recommenders is over, ELLIOT uses the Output module to gather the
results. Three types of output files can be generated: (i) Performance Tables, (ii) Model Weights,
and (iii) Recommendation Lists. Performance Tables come in the form of spreadsheets, including
all the metric values generated on the test set for each recommendation model given in the
configuration file. Cut-off-specific and model-specific tables are included in a final report (i.e.,
considering each combination of the explored parameters). Statistical hypothesis tests are also
presented in the tables, as well as a JSON file that summarizes the optimal model parameters.
Optionally, ELLIOT stores the model weights for the sake of future re-training.

2.4. Preparation of the Experiment

ELLIOT is triggered by a single configuration file written in YAML (e.g., refer to the toy
example sample_hello_world.yml). The first section details the data loading, filtering, and
splitting information defined in Section 2.1. The models section represents the recommendation
models’ configuration, e.g., Item-𝑘NN. Here, the model-specific hyperparameter optimization
strategies are specified, e.g., the grid-search. The evaluation section details the evaluation
strategy with the desired metrics, e.g., nDCG in the toy example. Finally, save_recs and top_k
keys detail, for example, the Output module abilities described in Section 2.3.

3. Conclusion and Future Work

ELLIOT is a framework that perform the entire recommendation process from an RS researcher’s
perspective. It requires the practitioner/researcher to write a configuration file to conduct a
rigorous and reproducible experimental evaluation. The framework provides several functional-
ities: loading, prefiltering, splitting, hyperparameter optimization strategies, recommendation

https://github.com/sisinflab/elliot/blob/master/config_files/sample_hello_world.yml


models, and statistical hypothesis tests. To the best of our knowledge, ELLIOT is the first
recommendation framework providing an entire multi-recommender experimental pipeline
based on a simple configuration file. We plan to extend ELLIOT in various directions to include:
sequential recommendation scenarios, adversarial attacks, reinforcement learning-based recom-
mendation systems, differential privacy facilities, sampled evaluation, and federated/ distributed
recommendation.
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