
Measuring the Ranking Quality of Recommendations
in a Two-Dimensional Carousel Setting
Nicolò Felicioni1, Maurizio Ferrari Dacrema1, Fernando B. Pérez Maurera1,2 and
Paolo Cremonesi1

1Politecnico di Milano, Milan, Italy
2ContentWise, Milan, Italy

Abstract
Movie-on-demand and music streaming services usually provide the user with multiple recommenda-
tion lists, i.e., carousels, in a two-dimensional user interface, each generated according to different cri-
teria (e.g., TV series, popular artists, etc.). In this two-dimensional setting it is not appropriate to use
traditional ranking metrics designed for a single ranking list. It is well known that users do not explore
a two-dimensional interface one row at a time, but rather focus their attention in a triangular area at the
top-left corner. Furthermore, it is frequent for user interfaces to hide some items or lists due to space
constraints, which can be shown by performing certain actions (i.e., click, swipe). In this paper we
extend the widely used NDCG to a two-dimensional recommendation setting with a formulation that
allows to account both the two-dimensional user exploration behaviour and interface-specific design.
We also compare the proposed extension against single-list NDCG highlighting that they can lead to a
different choice of the optimal algorithm in offline evaluation.

Keywords
Recommender Systems, User Interface, Evaluation

1. Introduction

Traditionally, in the Information Retrieval and Recommender Systems domains, the objective
has been to provide the user with the best possible ranked list of results [1, 2, 3]. For this
reason, many metrics were developed to evaluate the quality of a one-dimensional ranked list.
A common assumption is that users will navigate the list according to its order, therefore it is
better for a correct recommendation to be at the beginning of the list.

There are however several scenarios that do not fit into these assumptions, mainly when
the results are presented in a two-dimensional grid rather than a single list. This is true both
in information retrieval [4] and in recommendation systems applications, in particular for
video-on-demand streaming services [5, 6, 7] and music streaming platforms [8, 9]. Those
services usually provide users with multiple rows of thematically coherent recommendations

IIR 2021 – 11th Italian Information Retrieval Workshop, September 13–15, 2021, Bari, Italy
" nicolo.felicioni@polimi.it (N. Felicioni); maurizio.ferrari@polimi.it (M. Ferrari Dacrema);
fernando.perez@contentwise.com (F. B. Pérez Maurera); paolo.cremonesi@polimi.it (P. Cremonesi)
� 0000-0002-3555-7760 (N. Felicioni); 0000-0001-7103-2788 (M. Ferrari Dacrema); 0000-0001-6578-7404
(F. B. Pérez Maurera); 0000-0002-1253-8081 (P. Cremonesi)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:nicolo.felicioni@polimi.it
mailto:maurizio.ferrari@polimi.it
mailto:fernando.perez@contentwise.com
mailto:paolo.cremonesi@polimi.it
https://orcid.org/0000-0002-3555-7760
https://orcid.org/0000-0001-7103-2788
https://orcid.org/0000-0001-6578-7404
https://orcid.org/0000-0002-1253-8081
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: The Netflix homepage, an example of carousel user interface in the multimedia streaming
domain.

(e.g., the most popular movies, a specific genre, new releases, and so on, see Figure 1). These
rows are referred to as widgets, shelves or as carousels.

A simple way to adapt one-dimensional ranking metrics to a two-dimensional interface is to
concatenate all recommendation lists into a single one. This strategy does not make realistic
assumptions and, we argue, is not appropriate. First, it is known that users do not explore each
carousel sequentially from the first to the last, as concatenating them assumes. Rather, users
start from the top-left corner of the screen and proceed to explore the items both to the right
and to the bottom [10, 11]. This effect is also known as "golden triangle" or "F-pattern". A visual
example from an information retrieval application [4] is shown in Figure 2. Another example
from a video streaming service [7] is shown in Figure 3. In addition to this user behaviour,
many websites and mobile applications present carousels that are swipeable [9], i.e., the user
can swipe horizontally or vertically to reveal more items as well as lists that were not previously
visible. This is a common way to overcome the limited space available in the user interface
allowing to fit more recommendations and carousels that the user can easily browse. However
this puts additional overhead on the user that has to actively interact with the system to access
the recommendations. Hence, it is preferable for a correct recommendation to be visible with
the least possible number of user actions, as also noticed in [12].

In order to take those factors into account, in this paper we propose to extend the one-
dimensional NDCG metric to consider both the two-dimensional user exploration behaviour
and the user interface characteristics. We show that the two metrics can lead to different results
when used to select which recommenders to use in the carousel interface.

The rest of the paper is organized as follows, in Section 2 we summarize the characteristics
of a carousel setting, in Section 3 we formulate an extended version of NDCG, in Section 4 we
perform an offline comparison of the results in a single list and carousel interface. Finally in
Section 5 we draw the conclusions.

Figure 2: When using a search engine users
concentrate their attention on the top-left
corner (golden triangle) [4].

Table 4: Number of interactions grouped by their type.

Interaction Type Count Percentage
View 6, 122, 105 58.54%
Access 4, 105, 530 39.26%
Purchase 221, 066 2.11%
Rating 9, 109 0.09%
Total 10, 457, 810 100%

Table 5: Number of interactions grouped by the item type.

Item Type Count Percentage
Episodes of TV series 9, 076, 428 86.79%
Movies 987, 518 9.44%
TV Movies and shows 162, 574 1.56%
Movies and clips in series 231, 290 2.21%
Total 10, 457, 810 100%

Table 6: Number of items grouped by their type.

Item Type Count Percentage
Episodes of TV series 123, 831 85.36%
Movies 13, 733 9.47%
TV Movies and shows 5, 722 3.94%
Movies and clips in series 1, 788 1.23%
Total 145, 074 100%

5.1 Analysis of the dataset
ContentWise Impressions contains 10, 457, 810 interactions; 307, 453
impressions with direct links to interactions; and 23, 342, 617 im-
pressions without direct link to interactions. The dataset also con-
tains 42, 153 users; 145, 074 items and 28, 881 series.

In Table 4, we highlight the distribution of the interactions when
grouped by interaction type, where 97.8% of the dataset is comprised
of view and access interactions. Similarly, in Table 5, we present
the distribution of interactions by item type, where 96.23% of the
interactions correspond to episodes of TV series and movies. Lastly,
in Table 6, we show the distribution of item types, where the same
episodes of TV series and movies item types represent 94.83% of the
total items.

We observed that users, items, and series, present long-tail distri-
butions. For users, 27.96% most popular users are associated with
80% of the interactions. For items, 12.06% most popular items corre-
spond with 80% of the interactions. For series, 4.05% most popular
series appear in 80% of the interactions.

The average number of interactions per user is 248 (22 if counting
direct interactions from impressions), where the maximum and the
minimum number of interactions made by a single user are 13, 517
and 2 (2, 886 and 1 if counting direct interactions from impressions),
respectively.

For items, the average number of interactions received per item
is 72 (25 if counting interactions from impressions), where the
maximum and the minimum number of interactions received by a

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Recommendation Position

0
1

2
3

4
5

R
ow

P
os

it
io

n

102

103

104

Figure 2: Heatmap of the number of interactions per posi-
tion on the screen. Most interacted items are located in the
�rst rows and on the �rst positions of the list. Values are
log-scaled.

single item are 23, 939 and 1 (6, 260 and 1 if counting interactions
from impressions), respectively.

For impressions with direct links to interactions, the average
number of interactions received per impression is 2, where the
maximum and the minimum number of interactions received by a
single item are 213 and 1, respectively.

In Figure 2, we show a heatmap that indicates the most interacted
positions of the recommendation lists based on the row position on
the screen. Speci�cally, we see that most interactions happen be-
tween the �rst three row positions, and the �rst ten item positions.

5.2 Comparison with other datasets
As previously mentioned in Section 2, currently, no impressions
datasets are publicly available to the community. As such, we gath-
ered and reported their statistics using the ones described on works
that used those datasets.

To the best of our knowledge, ContentWise Impressions is the
�rst dataset with impressions to be open-sourced. In previous
years, other articles have used private datasets[7, 14], which were
not released to the community. Others were disclosed under non-
redistribution clauses on challenges[1, 2, 13, 20], where only a few
researchers have access to them. Furthermore, ContentWise Im-
pressions provides both impressions present in the interactions
and without any associated interaction. Both LinkedIn PYMK Im-
pressions and LinkedIn Skill Endorsement [14] also present both
impressions. On the other hand, other datasets [1, 13] only provided
impressions present in the interactions.

Another advantage of ContentWise Impressions is that it is sub-
sampled in a way to be easily usable for research purposes without
requiring signi�cant computation resources. While researchers can
indeed preprocess and subsample bigger datasets, if needed, this
may result in di�erent articles relying on di�erent subsampling,

Figure 3: Visualization of the number of user
interactions on each position on a user interface [7].
A demarcation between the first and second half of
the columns is visible.

2. Characteristics of a Carousel Setting

The carousel interface layout and the way it is usually generated by video-on-demand and
music streaming platforms has important characteristics that distinguish it from a single-list
setup [13]:

Interface: A two dimensional user interface with multiple carousels. Some carousels or rec-
ommendations may be hidden due to limited page size and be accessible only via user
actions (i.e., click, swipe).

Recommendations: The lists shown to the users are generated with different algorithms or
by different providers and no single post-processing step is applied. While each individual
recommendation list does not contain duplicates, the same item may appear in multiple
carousels.12

User Behaviour: The user will focus on the top-left triangle of the screen rather than exploring
the carousels sequentially. Furthermore, they will explore the recommendations in
different ways according to which actions they need to perform in order to reveal them.3

While a carousel layout may seem similar to a traditional merge-list embedding, where
multiple recommendation list are combined into one, this is not the case. In a real scenario, there

1A significant example are content aggregators, which combine carousels from different providers: Netflix,
Youtube, Prime Video, etc.

2For example, in the Netflix homepage shown in Figure 1 the TV series Space Force appears both in the TV
Comedies and New Releases carousels.

3Usually users tend to navigate more easily with simple swipes rather than repeated mouse clicks, hence their
behaviour, as it is known, will change according to the device.

are multiple constraints. First, the carousels may be generated by different content providers,
each of them unaware of how the other lists are generated or by whom. This means that the
composition of the layout as well as the recommendations of the other providers are, in general,
not known. It is for this reason that different carousels may contain similar recommendations.
Furthermore, a content provider that wishes to select the optimal carousels to display has limited
degrees of freedom and can only alter the content and relative ordering of those it is tasked to
provide. Finding strategies to select the optimal carousel layout is a complex problem [14].

3. Extending one-dimensional NDCG

One of the most used metrics for ranked list evaluation is the Discounted Cumulated Gain (DCG),
as well as its Normalized version (NDCG) [15, 16]. This metric comes from the information
retrieval domain and is widely used to evaluate recommendation systems. The DCG metric
relies on two assumptions:

1. highly relevant results are more valuable for a user;
2. within a list of results, it is preferable to have relevant results in the first positions

Let 𝑐 be the recommendation list length, i.e., cutoff, and 𝑟𝑒𝑙(𝑖) the relevance of the item in
position 𝑖. The DCG is defined as the following discounted sum of gains:

𝐷𝐶𝐺 =
𝑐∑︁

𝑖=1

𝑔𝑎𝑖𝑛(𝑖) · 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡(𝑖)

The 𝑔𝑎𝑖𝑛 function is responsible for rewarding highly relevant results, while the 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡
function introduces a penalization that should increase the further the item is from the beginning
of the list.

One of the most used formulations for the DCG is the following [17]:

𝐷𝐶𝐺 =
𝑐∑︁

𝑖=1

2𝑟𝑒𝑙(𝑖) − 1

log2(𝑖+ 1)

Hence, 𝑔𝑎𝑖𝑛(𝑖) = 2𝑟𝑒𝑙(𝑖) − 1 and 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡(𝑖) = 1
log2(𝑖+1) . Notice that this formulation is

only one of many possible formulations for the DCG. Several other ways of rewarding and
discounting results have been proposed in previous research [18, 19]. In the following, we will
start from this formulation and extend it since it is one of the most used. Other types of gain
and discount functions can be extended in an analogous way. We leave the analysis of different
gains and discounts as future work.

In a two-dimensional scenario, the standard DCG definition could be naively adapted in
the following way. Let ℎ be the horizontal dimension of the interface (i.e., the length of each
carousel) and 𝑣 the vertical dimension of the interface (i.e., the number of carousels). The
carousels can be concatenated in a single list of length 𝑐 = 𝑣 · ℎ items on which the standard
DCG formulation can be applied. This strategy assumes that the users will explore all carousels
sequentially, from the first to the last, which, as previously discussed, is not consistent to the

user behaviour and does not account for the interface navigation constraints. Therefore, we
suggest researchers do not apply this strategy as it does not represent a realistic scenario.

Thus, inspired by [15], we make the following assumptions the two-dimensional DCG should
meet:

1. highly relevant results are more valuable for a user;
2. a relevant result is valuable to the user only when it is first seen;
3. within a grid of results, it is preferable to have relevant results close to the top-left corner
4. it is preferable that relevant items are immediately visible to the user or can be made

visible with few user actions

In order to account for this set of assumptions, we propose to extend the metric in the
following way:

2𝐷𝐶𝐺 =
𝑣∑︁

𝑖=1

ℎ∑︁
𝑗=1

𝑔𝑎𝑖𝑛(𝑖, 𝑗) · 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡(𝑖, 𝑗)

As in the one-dimensional version, the 𝑔𝑎𝑖𝑛 function is responsible for rewarding highly
relevant results, according to assumptions (1) and (2). The 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 function, instead, should
account for the penalty related to the position and number of user actions, according to assump-
tions (3) and (4).

Inspired by the one-dimensional version, we fix 𝑔𝑎𝑖𝑛(𝑖, 𝑗) = 2𝑟𝑒𝑙(𝑖,𝑗) − 1. Instead, the
𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 will depend on the position in the layout, allowing ample freedom on how to define it
in different use cases.

The normalized version of this metric, N2DCG will be defined as as𝑁2𝐷𝐶𝐺 = 2𝐷𝐶𝐺/𝐼2𝐷𝐶𝐺.
I2DCG will be the 2DCG of the ideal ranking. In a single list setting the ideal ranking is the list
which contains the relevant items in decreasing relevance from the beginning of the list. In the
generalized two-dimensional layout it contains the user’s most relevant items, ranked according
to decreasing relevance in positions with decreasing position discount. The ideal ranking meets
the following constraints: for any pair of cells (𝑖, 𝑗), (𝑘, 𝑙) of the matrix, 𝑔𝑎𝑖𝑛(𝑖, 𝑗) ≥ 𝑔𝑎𝑖𝑛(𝑘, 𝑙)
if 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡(𝑖, 𝑗) > 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡(𝑘, 𝑙).

Relevance As stated in assumption (2), a relevant item is valuable for the user only when it is
first encountered. This means that if a relevant item appears multiple times, each in a different
carousels, it should be considered as relevant only in its best position. We define such position
as the one with the highest discount. Function 𝑟𝑒𝑙(𝑖, 𝑗) should be modified accordingly.

Single List Discount It is possible to represent in this formulation the traditional single
list DCG by calculating the position of cell in coordinates 𝑖, 𝑗 if all carousels lists would be
concatenated:

𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑠𝑖𝑛𝑔𝑙𝑒𝐿𝑖𝑠𝑡(𝑖, 𝑗) = (𝑙𝑜𝑔2((𝑖− 1) · ℎ+ 𝑗 + 1))−1

As previously mentioned, this formulation is not grounded in a realistic scenario because it
does not reflect the user behaviour (see Figure 4a), therefore we argue it should not be applied.

1 2 3 4 5 6
Recommendation position

1
2

3
4

5
6

C
ar

ou
se

l p
os

iti
on

(a) Single list.

1 2 3 4 5 6
Recommendation position

1
2

3
4

5
6

C
ar

ou
se

l p
os

iti
on

(b) Golden triangle behaviour.

1 2 3 4 5 6
Recommendation position

1
2

3
4

5
6

C
ar

ou
se

l p
os

iti
on

(c) Golden triangle and user actions penalty.

Figure 4: A visual comparison of the two-dimensional penalty function under different assumptions.
Figure 4a refers to carousels concatenated in a single list. The other figures refer to the two-dimensional
penalty which accounts for the golden triangle behaviour only, see Figure 4b as well as the number of
user actions, see Figure 4c.

Golden Triangle Discount In order to account for the golden triangle behaviour, as per
assumption (3), the position discount should decrease as the distance of the cell from the
top-right corner increases:

𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒(𝑖, 𝑗) = (𝑙𝑜𝑔2(𝛼 · 𝑖+ 𝛽 · 𝑗))−1

The coefficients 𝛼, 𝛽 are two weights that can be used to account for different types of user
behaviors. For instance, let us assume a scenario where users are more inclined to explore the

...

...

...

...

...

Figure 5: An example interface where 3 carousels, with 4 items each, are visible. A horizontal swipe
reveals 4 items, while a vertical swipe reveals one additional carousel.

vertical dimension. In this case, 𝛼 should be set to a low value in order to penalize less the
vertical dimension. In order to make the discount start from 1, 𝛼 and 𝛽 should be ≥ 1 since
the base of the logarithm used is 2. Notice that this is true only because we are extending a
logarithmic discount function. For other discount functions [18, 19] the constraints can change.

The resulting discount is shown in Figure 4b (we set 𝛼 = 𝛽 = 1 for simplicity).

User Actions Discount Lastly, in order to account for assumption (4) the position discount
should decrease the more actions are required by the user to make that position visible. In
a carousel interface there is an initial rectangular portion of the recommendations that are
immediately shown to the user. We refer to the number of items visible as 𝑖𝑛𝑖𝑡ℎ and to the
number of carousels visible as 𝑖𝑛𝑖𝑡𝑣 , see Figure 5. In order to reveal more items, the user needs to
perform a certain action, i.e., click on a desktop, swipe on mobile devices. Each of these actions
will reveal a certain number of new items within the currently visualized recommendation lists.
Different platforms and devices will correspond to different swipe steps, i.e., the number of items
that will be revealed after a single swipe. We will call this quantity 𝑠𝑡𝑒𝑝ℎ ∈ {1, 2, . . . , 𝑖𝑛𝑖𝑡ℎ}.
For example, on Netflix every click will replace all items displayed on the clicked carousel, in
which case 𝑠𝑡𝑒𝑝ℎ = 𝑖𝑛𝑖𝑡ℎ. The same principle holds for the vertical dimension, where the user
can navigate performing actions that will each display 𝑠𝑡𝑒𝑝𝑣 new carousels.

Based on this definition, we now add to the triangle penalty a term to account for the number
of actions that the user will need to perform in order to visualize the item. To do so we define
some auxiliary functions. The first one is used to check whether at least a user action, i.e., swipe,
is needed to visualize that item in a certain position 𝑝 given that the interface initially shows
𝑖𝑛𝑖𝑡 positions:

isSwipeNeeded(𝑝, 𝑖𝑛𝑖𝑡) =

{︃
1, if 𝑝− 𝑖𝑛𝑖𝑡 > 0

0, otherwise

Then, we define a function to count the number of actions needed to visualize an item, given
that each action shows 𝑠𝑡𝑒𝑝 positions:

swipes(𝑝, 𝑖𝑛𝑖𝑡, 𝑠𝑡𝑒𝑝) = isSwipeNeeded(𝑝, 𝑖𝑛𝑖𝑡) ·
⌈︂
𝑝− 𝑖𝑛𝑖𝑡

𝑠𝑡𝑒𝑝

⌉︂

In the particular case where 𝑖𝑛𝑖𝑡 = 𝑠𝑡𝑒𝑝, calculating the number of swipes becomes simpler:

swipes(𝑝, 𝑠𝑡𝑒𝑝) =
⌊︂

𝑝

𝑠𝑡𝑒𝑝

⌋︂
The final discount will account for both the triangle discount and the number of user actions,

as previously defined:

𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑎𝑐𝑡𝑖𝑜𝑛𝑠(𝑖, 𝑗) = (𝑙𝑜𝑔2(𝛼 · 𝑖+ 𝛽 · 𝑗 + 𝛾 · swipes(𝑖, 𝑖𝑛𝑖𝑡𝑣, 𝑠𝑡𝑒𝑝𝑣))

+ 𝜆 · swipes(𝑗, 𝑖𝑛𝑖𝑡ℎ, 𝑠𝑡𝑒𝑝ℎ))−1

Notice that this formulation accounts for both vertical and horizontal swipes. The coefficients
𝛼, 𝛽, 𝛾, 𝜆 are four positive weights that can be used to account for different types of user
behaviors. The first two weights (𝛼 and 𝛽) control the general penalization of the vertical and
horizontal dimensions, respectively. As we previously said, they should be ≥ 1 in order for
the total discount to start from 1. Controlling 𝛾 and 𝜆, instead, it is possible to penalize more
or less the user actions needed to reveal a certain item. For example, it could be that items
presented together in the same carousel have a similar probability of interaction (see the first 10
elements of the first carousel in Figure 3). Hence, the horizontal dimension should be penalized
less. Another possibility is that, on a desktop device, the horizontal swipe done with a mouse
click will have a higher weight than the same swipe done with a touch on a mobile device.

For illustrative purposes, let us consider a possible scenario for a mobile device, where the
screen contains 4 carousels and 3 recommendations each. We set the horizontal and vertical
steps to 1, 𝛼, 𝛽, 𝛾, 𝜆 are set to 1 as well. The resulting discount is shown in Figure 4c.

4. Experiments

In this section we provide an example of the different behaviour of NDCG and N2DCG in an
offline experimental scenario. We consider a setting where given a set of recommendation
models and a certain number of carousels, the goal is to select which models to use to generate
each carousel. We show that the two metrics yield to different carousel layouts. In order to
represent a scenario where a carousel interface would be used, we selected the widely known
movie recommendations dataset MovieLens10M dataset [20], containing 70k users, 10k items
and 10M ratings.

The set of models that can be selected, i.e., M, contains several simple and widely known
models that have shown to provide competitive results in recent evaluations [21]. For Non-
Personalized models we selected a TopPopular recommender. As KNN models we included
ItemKNN [22] and UserKNN [23], both computing the similarity with cosine and shrinkage.
We included the Graph-based models P3𝛼 [24] and RP3𝛽 [25], which define a bipartite graph of
users and items and simulate a random walk. We added various Matrix Factorization models,
some developed for explicit interactions: PureSVD [2], FunkSVD [21] and Non-negative MF
(NMF) [26]; as well as others developed for implicit interactions: MF BPR [27], IALS [28]. We
included the widely known Item-Based machine learning models SLIM [29], SLIM BPR and the
more recent EASE𝑅 [30]. Finally, we included the Content-based model ItemKNN CBF, which
computes the item similarities from item features. using cosine similarity with shrinkage.

Optimizing NDCG Optimizing N2DCG

UserKNN SLIM
FunkSVD FunkSVD

NMF UserKNN
IALS MF BPR

MF BPR NMF
SLIM IALS

Table 1
Layouts obtained optimizing NDCG and N2DCG.

We split the data by randomly selecting 80% of interactions for the training set and 10% for
validation and test set. Each model was optimized on the validation data, following the best
practices and value ranges reported in [21], using a Bayesian search with 50 cases.

Since the purpose of this paper is not to propose an algorithm for the selection of carousels
but to show that the two metrics lead to different results, we rely on a simple greedy strategy.
At the beginning the page is empty and all candidate algorithms are evaluated independently on
the validation data. The model with the best recommendation quality is selected as first carousel.
The process repeats for the following carousels, however, in this case, the candidate model will
be evaluated by taking into account all the previous carousels. According to the definition of
relevance provided in Section 3, a correct recommendation of an item by the candidate model
may overtake another of the same item in a previous carousels if it has a better position discount.
For example, a correct recommendation at the end of the second carousel could be overtaken by
the same recommendation but at the beginning of the third carousel, if it has a better position
discount.

We repeated this procedure first optimizing NDCG, and then optimizing N2DCG. We consider
a hypothetical interface with a total of 6 carousels, each composed of 10 items. The interface
will initially show 3 carousels and 2 items. The user can display 1 additional item in a given
carousel with each horizontal swipe and 1 new carousel with a vertical swipe. For this interface,
we set 𝛼 = 𝛽 = 1 and 𝛾 = 𝜆 = 2, in order to penalize more the swipes.

The resulting layouts are shown in Table 1. As we can see, the layouts have almost completely
different orders of the chosen algorithms. For instance, optimizing N2DCG results in selecting
SLIM as the first carousel, while the same algorithm was selected at the bottom of the layout that
optimizes one-dimensional NDCG. UserKNN instead was the first algorithm when optimizing
NDCG, but it is only the third carousel during N2DCG optimization.

Notice also how the 6 algorithms selected in both procedures are the same, only the order
changes. Indeed, it is expected that NDCG and N2DCG will not produce completely different
layouts but will differ the longer and more pronounced the effects of user actions become.

5. Conclusions

In this paper we have described a user interface with multiple carousels, typical of movie-on-
demand and music streaming services, and based on its characteristics proposed an extended

version of the widely used NDCG metric. The proposed formulation accounts for the known
user behaviour of exploring the pages not one row at a time but focusing on the top-left corner
and then navigating in both directions. The proposed formulation also allows to penalize correct
recommendations that are only visible to the user after performing actions. Lastly, we show that
the two metrics can lead to the selection of a different carousel layout. Future works include
validating the proposed metric with user studies as well as applying it to select the optimal
carousel layout, by defining which is the best carousel to put in a certain position or which is
the best ordering of a given set of carousels. Also, further studies can be done on different gain
and discount functions, similar to previous research works conducted on the one-dimensional
DCG.

References

[1] J. L. Herlocker, J. A. Konstan, L. G. Terveen, J. Riedl, Evaluating collaborative filtering
recommender systems, ACM Trans. Inf. Syst. 22 (2004) 5–53. URL: https://doi.org/10.1145/
963770.963772. doi:10.1145/963770.963772.

[2] P. Cremonesi, Y. Koren, R. Turrin, Performance of recommender algorithms on top-n
recommendation tasks, in: X. Amatriain, M. Torrens, P. Resnick, M. Zanker (Eds.), Pro-
ceedings of the 2010 ACM Conference on Recommender Systems, RecSys 2010, Barcelona,
Spain, September 26-30, 2010, ACM, 2010, pp. 39–46. URL: https://doi.org/10.1145/1864708.
1864721. doi:10.1145/1864708.1864721.

[3] M. Sanderson, W. B. Croft, The history of information retrieval research, Proc. IEEE 100
(2012) 1444–1451. URL: https://doi.org/10.1109/JPROC.2012.2189916. doi:10.1109/JPROC.
2012.2189916.

[4] F. Chierichetti, R. Kumar, P. Raghavan, Optimizing two-dimensional search results pre-
sentation, in: I. King, W. Nejdl, H. Li (Eds.), Proceedings of the Forth International
Conference on Web Search and Web Data Mining, WSDM 2011, Hong Kong, China, Febru-
ary 9-12, 2011, ACM, 2011, pp. 257–266. URL: https://doi.org/10.1145/1935826.1935873.
doi:10.1145/1935826.1935873.

[5] C. Wu, C. V. Alvino, A. J. Smola, J. Basilico, Using navigation to improve recommendations
in real-time, in: S. Sen, W. Geyer, J. Freyne, P. Castells (Eds.), Proceedings of the 10th ACM
Conference on Recommender Systems, Boston, MA, USA, September 15-19, 2016, ACM,
2016, pp. 341–348. URL: https://doi.org/10.1145/2959100.2959174. doi:10.1145/2959100.
2959174.

[6] E. Elahi, A. Chandrashekar, Learning representations of hierarchical slates in collaborative
filtering, in: R. L. T. Santos, L. B. Marinho, E. M. Daly, L. Chen, K. Falk, N. Koenigstein, E. S.
de Moura (Eds.), RecSys 2020: Fourteenth ACM Conference on Recommender Systems,
Virtual Event, Brazil, September 22-26, 2020, ACM, 2020, pp. 703–707. URL: https://doi.
org/10.1145/3383313.3418484. doi:10.1145/3383313.3418484.

[7] F. B. Pérez Maurera, M. Ferrari Dacrema, L. Saule, M. Scriminaci, P. Cremonesi, Contentwise
impressions: An industrial dataset with impressions included, in: M. d’Aquin, S. Dietze,
C. Hauff, E. Curry, P. Cudré-Mauroux (Eds.), CIKM ’20: The 29th ACM International
Conference on Information and Knowledge Management, Virtual Event, Ireland, October
19-23, 2020, ACM, 2020, pp. 3093–3100. URL: https://doi.org/10.1145/3340531.3412774.
doi:10.1145/3340531.3412774.

[8] A. Gruson, P. Chandar, C. Charbuillet, J. McInerney, S. Hansen, D. Tardieu, B. Carterette,
Offline evaluation to make decisions about playlistrecommendation algorithms, in: J. S.
Culpepper, A. Moffat, P. N. Bennett, K. Lerman (Eds.), Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, WSDM 2019, Melbourne, VIC,
Australia, February 11-15, 2019, ACM, 2019, pp. 420–428. URL: https://doi.org/10.1145/
3289600.3291027. doi:10.1145/3289600.3291027.

[9] W. Bendada, G. Salha, T. Bontempelli, Carousel personalization in music streaming apps
with contextual bandits, in: R. L. T. Santos, L. B. Marinho, E. M. Daly, L. Chen, K. Falk,
N. Koenigstein, E. S. de Moura (Eds.), RecSys 2020: Fourteenth ACM Conference on
Recommender Systems, Virtual Event, Brazil, September 22-26, 2020, ACM, 2020, pp. 420–

https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/963770.963772
http://dx.doi.org/10.1145/963770.963772
https://doi.org/10.1145/1864708.1864721
https://doi.org/10.1145/1864708.1864721
http://dx.doi.org/10.1145/1864708.1864721
https://doi.org/10.1109/JPROC.2012.2189916
http://dx.doi.org/10.1109/JPROC.2012.2189916
http://dx.doi.org/10.1109/JPROC.2012.2189916
https://doi.org/10.1145/1935826.1935873
http://dx.doi.org/10.1145/1935826.1935873
https://doi.org/10.1145/2959100.2959174
http://dx.doi.org/10.1145/2959100.2959174
http://dx.doi.org/10.1145/2959100.2959174
https://doi.org/10.1145/3383313.3418484
https://doi.org/10.1145/3383313.3418484
http://dx.doi.org/10.1145/3383313.3418484
https://doi.org/10.1145/3340531.3412774
http://dx.doi.org/10.1145/3340531.3412774
https://doi.org/10.1145/3289600.3291027
https://doi.org/10.1145/3289600.3291027
http://dx.doi.org/10.1145/3289600.3291027

425. URL: https://doi.org/10.1145/3383313.3412217. doi:10.1145/3383313.3412217.
[10] Y. Kammerer, P. Gerjets, How the interface design influences users’ spontaneous trust-

worthiness evaluations of web search results: comparing a list and a grid interface,
in: C. H. Morimoto, H. O. Istance, A. Hyrskykari, Q. Ji (Eds.), Proceedings of the 2010
Symposium on Eye-Tracking Research & Applications, ETRA 2010, Austin, Texas, USA,
March 22-24, 2010, ACM, 2010, pp. 299–306. URL: https://doi.org/10.1145/1743666.1743736.
doi:10.1145/1743666.1743736.

[11] Q. Zhao, S. Chang, F. M. Harper, J. A. Konstan, Gaze prediction for recommender systems,
in: S. Sen, W. Geyer, J. Freyne, P. Castells (Eds.), Proceedings of the 10th ACM Conference
on Recommender Systems, Boston, MA, USA, September 15-19, 2016, ACM, 2016, pp. 131–
138. URL: https://doi.org/10.1145/2959100.2959150. doi:10.1145/2959100.2959150.

[12] K. Järvelin, S. L. Price, L. M. L. Delcambre, M. L. Nielsen, Discounted cumulated gain
based evaluation of multiple-query IR sessions, in: C. Macdonald, I. Ounis, V. Pla-
chouras, I. Ruthven, R. W. White (Eds.), Advances in Information Retrieval , 30th European
Conference on IR Research, ECIR 2008, Glasgow, UK, March 30-April 3, 2008. Proceed-
ings, volume 4956 of Lecture Notes in Computer Science, Springer, 2008, pp. 4–15. URL:
https://doi.org/10.1007/978-3-540-78646-7_4. doi:10.1007/978-3-540-78646-7_4.

[13] N. Felicioni, M. Ferrari Dacrema, P. Cremonesi, A methodology for the offline evaluation
of recommender systems in a user interface with multiple carousels, in: J. Masthoff,
E. Herder, N. Tintarev, M. Tkalcic (Eds.), Adjunct Publication of the 29th ACM Conference
on User Modeling, Adaptation and Personalization, UMAP 2021, Utrecht, The Netherlands,
June 21-25, 2021, ACM, 2021, pp. 10–15. URL: https://doi.org/10.1145/3450614.3461680.
doi:10.1145/3450614.3461680.

[14] M. Ferrari Dacrema, N. Felicioni, P. Cremonesi, Optimizing the selection of recommenda-
tion carousels with quantum computing, in: Proceedings of the Fifteenth ACM Conference
on Recommender Systems, 2021. doi:10.1145/3460231.3478853.

[15] K. Järvelin, J. Kekäläinen, IR evaluation methods for retrieving highly relevant documents,
in: E. J. Yannakoudakis, N. J. Belkin, P. Ingwersen, M. Leong (Eds.), SIGIR 2000: Proceedings
of the 23rd Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, July 24-28, 2000, Athens, Greece, ACM, 2000, pp. 41–48. URL:
https://doi.org/10.1145/345508.345545. doi:10.1145/345508.345545.

[16] K. Järvelin, J. Kekäläinen, Cumulated gain-based evaluation of IR techniques, ACM Trans.
Inf. Syst. 20 (2002) 422–446. URL: http://doi.acm.org/10.1145/582415.582418. doi:10.1145/
582415.582418.

[17] C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, G. N. Hullender,
Learning to rank using gradient descent, in: L. D. Raedt, S. Wrobel (Eds.), Machine Learning,
Proceedings of the Twenty-Second International Conference (ICML 2005), Bonn, Germany,
August 7-11, 2005, volume 119 of ACM International Conference Proceeding Series, ACM,
2005, pp. 89–96. URL: https://doi.org/10.1145/1102351.1102363. doi:10.1145/1102351.
1102363.

[18] E. Kanoulas, J. A. Aslam, Empirical justification of the gain and discount function for ndcg,
in: D. W. Cheung, I. Song, W. W. Chu, X. Hu, J. J. Lin (Eds.), Proceedings of the 18th ACM
Conference on Information and Knowledge Management, CIKM 2009, Hong Kong, China,
November 2-6, 2009, ACM, 2009, pp. 611–620. URL: https://doi.org/10.1145/1645953.1646032.

https://doi.org/10.1145/3383313.3412217
http://dx.doi.org/10.1145/3383313.3412217
https://doi.org/10.1145/1743666.1743736
http://dx.doi.org/10.1145/1743666.1743736
https://doi.org/10.1145/2959100.2959150
http://dx.doi.org/10.1145/2959100.2959150
https://doi.org/10.1007/978-3-540-78646-7_4
http://dx.doi.org/10.1007/978-3-540-78646-7_4
https://doi.org/10.1145/3450614.3461680
http://dx.doi.org/10.1145/3450614.3461680
http://dx.doi.org/10.1145/3460231.3478853
https://doi.org/10.1145/345508.345545
http://dx.doi.org/10.1145/345508.345545
http://doi.acm.org/10.1145/582415.582418
http://dx.doi.org/10.1145/582415.582418
http://dx.doi.org/10.1145/582415.582418
https://doi.org/10.1145/1102351.1102363
http://dx.doi.org/10.1145/1102351.1102363
http://dx.doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1645953.1646032

doi:10.1145/1645953.1646032.
[19] K. Zhou, H. Zha, Y. Chang, G. Xue, Learning the gain values and discount factors of

discounted cumulative gains, IEEE Trans. Knowl. Data Eng. 26 (2014) 391–404. URL:
https://doi.org/10.1109/TKDE.2012.252. doi:10.1109/TKDE.2012.252.

[20] F. M. Harper, J. A. Konstan, The movielens datasets: History and context, ACM Trans.
Interact. Intell. Syst. 5 (2016) 19:1–19:19. URL: https://doi.org/10.1145/2827872. doi:10.
1145/2827872.

[21] M. Ferrari Dacrema, S. Boglio, P. Cremonesi, D. Jannach, A troubling analysis of repro-
ducibility and progress in recommender systems research, ACM Trans. Inf. Syst. 39 (2021).
URL: https://doi.org/10.1145/3434185. doi:10.1145/3434185.

[22] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommenda-
tion algorithms, in: Proceedings of the 10th International Conference on World Wide Web
(WWW ’01), 2001, pp. 285–295.

[23] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl, Item-based collaborative filtering rec-
ommendation algorithms, in: V. Y. Shen, N. Saito, M. R. Lyu, M. E. Zurko (Eds.), Pro-
ceedings of the Tenth International World Wide Web Conference, WWW 10, Hong Kong,
China, May 1-5, 2001, ACM, 2001, pp. 285–295. URL: https://doi.org/10.1145/371920.372071.
doi:10.1145/371920.372071.

[24] C. Cooper, S. Lee, T. Radzik, Y. Siantos, Random walks in recommender systems: exact
computation and simulations, in: C. Chung, A. Z. Broder, K. Shim, T. Suel (Eds.), 23rd
International World Wide Web Conference, WWW ’14, Seoul, Republic of Korea, April
7-11, 2014, Companion Volume, ACM, 2014, pp. 811–816. URL: https://doi.org/10.1145/
2567948.2579244. doi:10.1145/2567948.2579244.

[25] B. Paudel, F. Christoffel, C. Newell, A. Bernstein, Updatable, accurate, diverse, and scalable
recommendations for interactive applications, ACM Trans. Interact. Intell. Syst. 7 (2017)
1:1–1:34. URL: https://doi.org/10.1145/2955101. doi:10.1145/2955101.

[26] A. Cichocki, A. H. Phan, Fast local algorithms for large scale nonnegative matrix and tensor
factorizations, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92-A (2009) 708–721.
URL: https://doi.org/10.1587/transfun.E92.A.708. doi:10.1587/transfun.E92.A.708.

[27] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, BPR: bayesian personalized
ranking from implicit feedback, in: J. A. Bilmes, A. Y. Ng (Eds.), UAI 2009, Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC,
Canada, June 18-21, 2009, AUAI Press, 2009, pp. 452–461. URL: https://dslpitt.org/uai/
displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1630&proceeding_id=25.

[28] Y. Hu, Y. Koren, C. Volinsky, Collaborative filtering for implicit feedback datasets, in:
Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008),
December 15-19, 2008, Pisa, Italy, IEEE Computer Society, 2008, pp. 263–272. URL: https:
//doi.org/10.1109/ICDM.2008.22. doi:10.1109/ICDM.2008.22.

[29] X. Ning, G. Karypis, SLIM: Sparse linear methods for top-n recommender systems, in:
Proceedings of the 11th IEEE International Conference on Data Mining (ICDM ’11), 2011,
pp. 497–506.

[30] H. Steck, Embarrassingly shallow autoencoders for sparse data, in: L. Liu, R. W. White,
A. Mantrach, F. Silvestri, J. J. McAuley, R. Baeza-Yates, L. Zia (Eds.), The World Wide Web
Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, ACM, 2019, pp. 3251–

http://dx.doi.org/10.1145/1645953.1646032
https://doi.org/10.1109/TKDE.2012.252
http://dx.doi.org/10.1109/TKDE.2012.252
https://doi.org/10.1145/2827872
http://dx.doi.org/10.1145/2827872
http://dx.doi.org/10.1145/2827872
https://doi.org/10.1145/3434185
http://dx.doi.org/10.1145/3434185
https://doi.org/10.1145/371920.372071
http://dx.doi.org/10.1145/371920.372071
https://doi.org/10.1145/2567948.2579244
https://doi.org/10.1145/2567948.2579244
http://dx.doi.org/10.1145/2567948.2579244
https://doi.org/10.1145/2955101
http://dx.doi.org/10.1145/2955101
https://doi.org/10.1587/transfun.E92.A.708
http://dx.doi.org/10.1587/transfun.E92.A.708
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1630&proceeding_id=25
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1630&proceeding_id=25
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1109/ICDM.2008.22
http://dx.doi.org/10.1109/ICDM.2008.22

3257. URL: https://doi.org/10.1145/3308558.3313710. doi:10.1145/3308558.3313710.

https://doi.org/10.1145/3308558.3313710
http://dx.doi.org/10.1145/3308558.3313710

	1 Introduction
	2 Characteristics of a Carousel Setting
	3 Extending one-dimensional NDCG
	4 Experiments
	5 Conclusions

