
Recommending Third-party Library Updates with
LSTM Neural Networks
Phuong T. Nguyen

1
, Juri Di Rocco

1
, Riccardo Rubei

1
, Claudio Di Sipio

1
and

Davide Di Ruscio
1

1Università degli studi dell’Aquila, 67100 L’Aquila, Italy

Abstract
During the lifecycle of a software project, oftentimes developers have the need to update third-party

libraries (TPLs) from an old version to a newer one. This aims to keep their code up-to-date with the

latest functionalities offered by the libraries. In practice, choosing the next version for a library is a

daunting task since it is crucial to maintain a harmonious relationship with other libraries. We propose

DeepLib, a novel approach to the recommendation of an upgrade plan for software projects with respect

to library usage. We mine migration history to build matrices and train deep neural networks, which are

eventually used to forecast the subsequent versions of the related libraries. We evaluate the framework

on a dataset from the Maven Central Repository. The results show promising outcomes: DeepLib can

recommend the next version for the library of interest, earning a high prediction accuracy.

Keywords
Mining software repositories, Third-party library updates, Deep learning, LSTM

1. Introduction

When working with coding tasks, developers usually make use of third-party libraries (TPLs)

that offer desired functionalities [1, 2, 3], e.g., database administration, log management, and

file utility to name a few. Reusing existing TPLs allows developers to leverage well-founded

programming utilities without re-implementing software functionalities from scratch. This

indeed helps them save time as well as increase productivity. Nevertheless, libraries evolve,

many API functions are added, and many others are removed or deprecated. In this way, it

is necessary to migrate an old library to a new one to enforce the new functionalities of the

project. However, choosing the wrong version of a library may break the mutual dependencies

among different libraries, resulting in unavoidable disruptions [4]. To upgrade a library, a

developer needs to be knowledgeable of both versions’ documentation and choose the right

matching between methods. In fact, due to the fear of incompatibility and breaking changes [5],

developers are highly reluctant to upgrade TPLs [4, 6]. In this respect, it is essential to have the

proper machinery to assist them in choosing suitable updates.

IIR 2021 – 11th Italian Information Retrieval Workshop, September 13–15, 2021, Bari, Italy
" phuong.nguyen@univaq.it (P. T. Nguyen); juri.dirocco@univaq.it (J. Di Rocco);

riccardo.rubei@graduate.univaq.it (R. Rubei); claudio.disipio@graduate.univaq.it (C. Di Sipio);

davide.diruscio@univaq.it (D. Di Ruscio)

� 0000-0002-3666-4162 (P. T. Nguyen); 0000-0002-7909-3902 (J. Di Rocco); 0000-0002-5077-6793 (D. Di Ruscio)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:phuong.nguyen@univaq.it
mailto:juri.dirocco@univaq.it
mailto:riccardo.rubei@graduate.univaq.it
mailto:claudio.disipio@graduate.univaq.it
mailto:davide.diruscio@univaq.it
https://orcid.org/0000-0002-3666-4162
https://orcid.org/0000-0002-7909-3902
https://orcid.org/0000-0002-5077-6793
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


We propose DeepLib, a novel approach to recommendation of library updates, exploiting

cutting-edge deep learning (DL) techniques. By analyzing the migration history of mined

projects, we build matrices containing libraries and their versions in chronological order, which

are fed to the recommendation engine. In addition, a long short-term memory recurrent net-

work [7] (LSTM) was built to predict a set of versions. As output, DeepLib delivers the next

version for a single library lib that the developer wants to upgrade. To the best of our knowledge,

there exist no comparable tools providing this type of recommendation. Thus, we cannot com-

pare our system with any reusable baselines, but evaluate it employing extensive experiments

on a considerably large dataset from the Maven Central Repository. The experimental results

show that DeepLib can effectively suggest the next version for a single library, demonstrating

its feasibility in the field.

Structure. Section 2 presents a motivating example, and background to LSTMs. We introduce

the proposed approach in Sect. 3, and present the evaluation materials and methods in Sect. 4.

Afterwards, Sect. 5 reports and analyzes the experimental results, as well as the probable threats

to validity. The related work is reviewed in Sect. 6 and the paper is concluded in Sect. 7.

2. Motivations and Background

Section 2.1 describes a motivating example, afterwards, Sect. 2.2 briefly recalls background

related to long short-term memory recurrent neural networks.

2.1. Motivating example

While working with a software project, developers often need to upgrade the constituent third-

party libraries from an old version to a newer one, aiming to approach the latest functionalities

offered by the libraries. Hereafter, we consider the following terms: (i) library or dependency:

A software module which is developed by a third party, and provides tailored functionalities.

A library evolves over the course of time by offering new functionalities or bug fixes [4]; (ii)
repository or client: A software project that is hosted in OSS platforms, e.g., GitHub, Maven

and that makes use of some TPLs.

We consider in Table 1 a running example with maintainers working on the repository

named org.apache.hadoop:hadoop-auth1
which depends on a set of four libraries as follows:

lib1: log4j:log4j; lib2: org.slf4j:slf4j-log4j12; lib3: org.apache.httpcomponents:httpclient; and lib4:

commons-codec:commons-codec.

The latest version of the hadoop-auth repository is 3.0.0-alpha3 (the green row), and we

assume that the maintainers want to upgrade the libraries. However, they do not know for

sure which version should be used for the constituent libraries, i.e., all the cells are filled with

a question mark (?). One may think of a simple heuristic that migrates a library to the next

version or the latest one. However, we see that such a heuristic does not work in every case. In

particular, there are two additional possible changes that developers can perform on library

dependencies: (i) removal of a library; and (ii) downgrade migration, as we explain as follows.

▷ Removal of a library. In the table, the repository versions are listed in chronological order,

i.e., using their timestamp. A cell with 0 implies that the library in the column is not included

1

https://bit.ly/2WP3ysS

https://bit.ly/2WP3ysS


Table 1
Migration path of the org.apache.hadoop:hadoop-auth repository.

Client version lib1 lib2 lib3 lib4 Timestamp

2.0.2-alpha 1.2.17 1.6.1 0 1.4 2012-10-02T00:44:04
2.3.0 1.2.17 1.7.5 4.2.5 1.4 2014-02-11T13:55:58
2.4.1 0 1.7.5 4.2.5 1.4 2014-06-21T06:08:34
2.5.1 0 0 4.2.5 0 2014-09-05T23:05:15
2.6.0 1.2.17 0 4.3.1 0 2014-11-13T22:35:37
2.7.2 1.2.17 1.7.10 4.2.5 1.4 2016-01-14T21:32:14
3.0.0-alpha3 1.2.17 1.7.10 4.5.2 1.4 2017-05-26T20:39:35
* ? ? ? ?

Table 2
Background for LSTMs.

An LSTM cell [9, 10] Formula

σ

ft

bf

σ

ut

bu

tanh

ct

bt

σ

× +

× Wt

×

tanh softmax

ct−1

ht−1

xt

ct

ht

ŷt
• 𝜎(𝑥) = (1 + 𝑒𝑥𝑝(−𝑥))−1

• tanh(𝑥) = 2 · 𝜎(2𝑥)− 1

• 𝑓𝑡 = 𝜎(𝑊𝑓 · 𝑖𝑡 + 𝑏𝑓 )

• 𝑢𝑡 = 𝜎(𝑊𝑢 · 𝑖𝑡 + 𝑏𝑢)

• 𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 · 𝑖𝑡 + 𝑏𝑐)

• 𝑊𝑡 = 𝑐𝑡−1 · 𝑓𝑡 +𝑁𝑡 · 𝑢𝑡

by the repository version represented in the row. The presence of a library is subject to change

from version to version. For instance, lib1 has been used by version 2.0.0-alpha, 2.0.2-alpha,

and 2.3.0. When the repository is upgraded from 2.3.0 to 2.4.1, lib1 is removed. However, the

library is then re-introduced when moving from 2.5.1 to 2.6.0. Thus, we see that the ability to

recommend a 0 is also useful.

▷ Downgrade migrations. We can see that the upgrading is not always done upward, i.e.,

moving the library to a higher version since there are also backward migrations. For instance,

when the client moves from 2.6.0 to 2.7.2, lib3 is downgraded from version 4.3.1 to 4.2.5. However,

the library is then updated to version 4.5.2 by client 3.0.0-alpha3.

In the following subsection, we review an LSTM neural network dealing with time series

data as a base for further presentations.

2.2. Long short-term memory neural networks

Recurrent neural networks (RNNs) [8] are a family of neural networks specialized in dealing

with sequence data. An RNN stores information about past events to predict future occurrences.

However, a main drawback of RNNs is that they cannot learn long-term dependencies well.

Thus, long short-term memory recurrent neural networks (LSTMs) have been proposed to

transcend the limitation [7]. LSTMs learn better long-term dependencies by memorizing the

input sequence of data. Moreover, they have the mechanisms to remove or add information to

remember worthy information and discard useless ones.



We refer to Table 2 to illustrate how an LSTM works. Given that 𝑖𝑡 = [ℎ𝑡−1, 𝑥𝑡] is the

concatenation of ℎ𝑡−1 the hidden state vector from the previous time step, and 𝑥𝑡 is the current

input vector, then two states are propagated to the next cell, i.e., cell state 𝑐𝑡 and hidden state ℎ𝑡.
The output of the previous unit, together with the current input, is fed as the input data for a

cell. The sigmoid function is used to discard useless information and retain useful information.

𝑊× and 𝑏× are the weight and bias matrices for different network entry, hidden state matrix.

Softmax is used as the activation function, converting a set of real numbers to probabilities

which sum to 1.0 [11]. Given C classes, and 𝑦𝑘 is the output of the k
𝑡ℎ

neuron, the final prediction

is the class that gets the maximum probability, i.e., 𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝𝑘 , 𝑘 ∈ {1, 2, .., 𝐶}, where 𝑝𝑘
is computed as follows: 𝑝𝑘 = 𝑒𝑥𝑝(𝑦𝑘)/

∑︀𝐶
𝑘=1 𝑒𝑥𝑝(𝑦𝑘).

3. DeepLib: Forecasting the next versions for third-party
libraries

DeepLib is built on top of an LSTM to accept as input a set of versions and returns the future

version for each library. Given a set of projects, we populate a matrix by reading each client

and filling the correct version for all libraries. We obtain a matrix where each row represents a

client with its versions. From the matrix, we insert one more column on the right side. For each

client, the last cell is filled with the version of the library by the next client.

Figure 1(b) depicts the migration matrix for lib1 for the motivating example in Table 1. The

left side depicts the original migration matrix, and the right side is the resulting migration

matrix for lib1. For instance, the first row contains the versions of the four libraries, i.e., (1.2.15,
1.6.1, 0, 1.4) while the last column is the future version of lib1, i.e., 1.2.17, which is actually the

version of lib1 by the next client (Version 2.0.2). This can be interpreted as follows: “Given that
in the current client we use 1.2.15 for lib1, 1.6.1 for lib2, no lib3, and version 1.4 for lib4, then in the
next version of the client we should adopt 1.2.17 for lib1.”

Since LSTMs only work with numbers, we need to encode each library version using a unique

number. Moreover, the 𝜎 and tanh functions (cf. Section 2.2) accept values in the [0..1] range,

we also need to normalize all the numbers to meet this requirement. The right most part of

Fig. 1(b) depicts the migration matrix after the encoding and normalizing phases.
2

Figure 1(a) explains how DeepLib works: The data to feed the system is a tuple of the form

𝑥𝑡=<lib𝑣11 , lib𝑣12 , lib𝑣13 , lib𝑣14 > and 𝑦𝑡=<lib𝑣21 >, which captures the migration path of a client.

DeepLib uses input features from recent events, i.e., X = {𝑥𝑡}, 𝑡 ∈ 𝑇 𝑝
to forecast the future

version of each libraries, Y = {𝑦𝑡}, 𝑡 ∈ 𝑇 𝑓
, where 𝑇 𝑝

and 𝑇 𝑓
are time in the past and the future,

respectively. By each time step 𝑡, only one vector 𝑥𝑡 is fed to the LSTM cell.

The conceived architecture is depicted in Fig. 2. DeepLib has been implemented on top of

the Keras framework
3

and trained using Google Colab. Data is fetched from OSS platforms

1 , e.g., GitHub and Maven with Crawler 2 . The collected data is then aligned, sorted, and

transformed into a suitable format to store in CSV files by Converter 3 . It is necessary

2

Matrix encoding and normalizing is conveniently done with the LabelEncoder() and MinMaxScaler() utilities

embedded in Python.

3

https://keras.io/

https://keras.io/


LSTM LSTM LSTM LSTM

x0

(0.500, 0.333, 0.000, 1.000)

(t0)

1.000

h0

x1

(1.000, 0.333, 0.000, 1.000)

(t1)

1.000

h1

x2

(1.000, 1.000, 0.333, 1.000)

h2

(t2)

0.000

x3

(0.000, 1.000, 0.333, 1.000)

(t3)

0.000

h3

(a) Architecture of DeepLib













original matrix migration matrix for lib1

C
lie
nt

lib
1

lib
2

lib
3

lib
4

2.0.0 1.2.15 1.6.1 0 1.4

2.0.2 1.2.17 1.6.1 0 1.4

2.3.0 1.2.17 1.7.5 4.2.5 1.4

2.4.1 0 1.7.5 4.2.5 1.4

2.5.1 0 0 4.2.5 1.4

2.6.0 1.2.17 0 4.3.1 0

C
lie
nt

lib
1

lib
2

lib
3

lib
4

ne
xt

1

2.0.0 1.2.15 1.6.1 0 1.4 1.2.17

2.0.2 1.2.17 1.6.1 0 1.4 1.2.17

2.3.0 1.2.17 1.7.5 4.2.5 1.4 0

2.4.1 0 1.7.5 4.2.5 1.4 0

2.5.1 0 0 4.2.5 1.4 1.2.17

2.6.0 1.2.17 0 4.3.1 0 ?

Ve
ct
or

lib
1

lib
2

lib
3

lib
4

ne
xt

1

x0 0.500 0.333 0.000 1.000 1.000

x1 1.000 0.333 0.000 1.000 1.000

x2 1.000 1.000 0.333 1.000 0.000

x3 0.000 1.000 0.333 1.000 0.000

x4 0.000 0.000 0.333 1.000 1.000

x5 1.000 0.000 1.000 0.000 ?

(b) Migration matrices for lib1

Figure 1: Network configuration and data representation.

Google Drive

Migration

1

OSS platforms

Developer

 Converter

3

Crawler

LSTM

5

Google Colab

2

 Parser

4

6

Figure 2: System architecture.

to upload the data to Google Drive for further processing. The Parser component 4 builds

migration matrices for LSTM 5 which eventually provides library updates 6 .

4. Evaluation

We evaluate DeepLib to study its capability to provide a developer with accurate recommenda-

tions featuring suitable upgrades. In Sect. 4.1 we introduce the datasets, while in Sect. 4.2 we

describe the settings and evaluation metrics.

4.1. Data extraction

We rely on a dataset collected from more than 1,000 public Maven repositories. The dataset

consists of migration history for the top ten popular libraries. Given a set of libraries, we

crawled all of their versions together with the list of clients and their corresponding release

date. Moreover, we mined dependency links from a client to the used libraries with Maven

Dependency Graph, a graph-based representation of the collected artifacts in Maven and their



Table 3
Summary of the datasets.

Library Alias 𝜂𝑉 𝜂𝐶 𝜂𝑀

junit:junit L01 29 101,541 2,073
org.slf4j:slf4j-api L02 74 44,233 16,187
org.scala-lang:scala-library L03 228 25,417 19,508
com.google.guava:guava L04 90 24,532 8,921
org.mockito:mockito-core L05 259 20,762 855
com.android.support:appcompat-v7 L06 59 19,772 1,194
commons-io:commons-io L07 25 19,198 3,332
ch.qos.logback:logback-classic L08 75 18,655 3,100
org.commons:commons-lang3 L09 18 17,224 3,915
org.clojure:clojure L10 67 15,954 234

relationships. Then, additional steps were performed to remove unuseful clients, using the

following constraints: A client should (i) have more than one version; (ii) migrate at least one

library among the considered libraries; and (iii) use at least four of the given libraries. This

allows us to keep the resulting matrices not too sparse. Table 3 reports the main characteristics

of the datasets: each row features an input library with its name, the number of versions (𝜂𝑉 ),

the number of clients that use at least one version of the library (𝜂𝐶 ), the number of clients that

migrate from one version to another (𝜂𝑀 ).

4.2. Settings and metrics

▷ Experimental settings. We opted for the ten-fold cross-validation technique [12], each

dataset (cf. Section 4.1) is split into 𝑘=10 equal parts, so-called folds. For each validation round,

one fold is used as testing data, and the remaining 𝑘-1 folds are combined to form the training

data. The evaluation simulates a real development scheme: the system needs to provide the active
projects with recommendations using the data from a set of existing projects.
▷Metrics. We evaluate how well DeepLib recommends versions that eventually match with

those stored in the ground-truth data. We compute accuracy according to each library (𝐴𝑐𝑐𝑙𝑖𝑏):
the metric measures the ratio of clients with correct predictions (𝛿) to the total number of clients

(n), i.e., 𝐴𝑐𝑐𝑙𝑖𝑏 =
𝛿
𝑛 . Moreover, we compute correlation efficients using the Spearman 𝜌 and the

Kendall 𝜏 , and measure the effect size with Cliff’s delta [13].

5. Results

Section 5.1 reports an example recommended by DeepLib, and Sect. 5.2 analyzes the results.

5.1. Explanatory example

Fig. 3 shows the recommendation for the com.hubspot:SingularityService repository.
4

The left

side depicts the list of versions for the libraries of the client numbered 0.4.2, which invokes

four libraries, i.e., L02, L04, L08, and L09 (cf. Table 3). The remaining cells are filled with 0,

indicating that the corresponding libraries are not present. The top row on the right depicts the

real versions of all libraries for the next client 0.6.1. The scenario is challenging as it requires

4

https://bit.ly/2MnvnXn

https://bit.ly/2MnvnXn


Client 0.4.2 Client 0.6.1

ground truth

prediction

L01 L02 L03 L04 L05 L06 L07 L08 L09 L10

0 1.7.10 0 17 0 0 0 1.1.2 3.3.2 0

L01 L02 L03 L04 L05 L06 L07 L08 L09 L10

0 1.7.12 0 17 0 0 0 1.1.3 3.4 0

0 1.7.12 0 18 0 0 0 1.1.3 3.4 0

Figure 3: Recommendation for the com.hubspot:SingularityService repository.

Table 4
Acc𝑙𝑖𝑏 obtained by DeepLib.

Cross validation

L01 0.975 0.956 0.988 0.991 0.954 0.954 0.962 0.965 0.986 0.970 0.970
L02 0.558 0.728 0.792 0.667 0.347 0.635 0.656 0.742 0.611 0.515 0.625
L03 0.748 0.824 0.741 0.856 0.908 0.944 0.902 0.670 0.552 0.669 0.781
L04 0.767 0.735 0.805 0.776 0.678 0.608 0.766 0.776 0.954 0.857 0.772
L05 0.961 0.989 0.988 0.972 0.976 0.623 0.952 0.994 0.966 0.974 0.939
L06 0.997 0.994 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.999
L07 0.952 0.981 0.970 0.969 0.945 0.947 0.952 0.960 0.990 0.961 0.963
L08 0.889 0.950 0.958 0.922 0.967 0.971 0.921 0.924 0.992 0.967 0.946
L09 0.937 0.952 0.967 0.966 0.960 0.852 0.966 0.900 0.984 0.952 0.944
L10 0.994 1.000 0.998 1.000 1.000 0.993 0.987 1.000 1.000 1.000 0.997

a big migration step, i.e., upgrading almost all the constituent libraries at once. We expect

DeepLib to provide proper recommendations to assist developers in migrating their clients, as

big migrations may make the prediction more challenging.

The second row of Fig. 3 presents the versions suggested by DeepLib for client 0.6.1. The tool

recommends correct migration for L02, L08, and L09. It only mispredicts for L04, by providing

18 instead of 17, the correct one. Moreover, DeepLib accurately predicts all the zeros, i.e., the

libraries that are not invoked. This seems to be trivial at first sight, however as we pointed in

Section 2.1, recommending a zero makes sense. In summary, we see that our tool can provide

relevant recommendations to the repository, even when a big migration step is required.

5.2. Result analysis

We performed experiments on the considered datasets using the ten-fold cross-validation

technique. The prediction results are shown in Table 4. For each library, besides the accuracy

for each fold from F01 to F10, we also averaged out the scores to get the final accuracy, which

is shown in the last column of the tables. Moreover, the cells with an accuracy smaller than

0.700 are marked using the light red color, signaling an inferior performance.

Overall, the table demonstrates that DeepLib can provide accurate predictions for almost all

the libraries. For instance, with L01, by all the testing rounds DeepLib always gets an accuracy

larger than 0.90, and the average accuracy is 0.970. This also applies to other libraries, such

as L05 or L07. Especially, by L06 and L10 we see a maximum accuracy for most of the folds:

DeepLib gets an average accuracy of 0.999 with L06.

Finding 1. Being fed with proper data, DeepLib recommends the next version for a single library,

obtaining a high accuracy for the majority of the libraries.

We see that DeepLib gets an encouraging result for most of the libraries. Nevertheless, it fails
in some certain cases. It is necessary to find out the rationale behind such a setback, as this



helps reveal the pitfalls that one can avoid when deploying DeepLib. According to Table 3, there

are three variables: number of versions (𝜂𝑉 ), number of clients (𝜂𝐶 ), and number of migrations

(𝜂𝑀 ). We perform quantitative analyses to study the relationships between these variables and

the average accuracy, using the Spearman 𝜌 and the Kendall 𝜏 , and measure the effect size with

Cliff’s delta [13].

There is a low correlation between accuracy and 𝜂𝑉 , and this is enforced by both coefficients,

i.e., 𝜌 = −4.84×10−1
and 𝜏 = −3.03×10−1

. Moreover, the difference is statistically significant,

i.e., p-value= 7.78× 10−3
and 5.98× 10−9

. The table also shows that the effect is large by the

considered relationships, i.e., Cliff’s delta is 1.0. This essentially means that the more versions a

library has, the lower accuracy DeepLib obtains. A similar trend is seen with the relationship

between accuracy and 𝜂𝑀 . In particular, 𝜌 = −8.48 × 10−1
and 𝜏 = −6.71 × 10−1

, which

means accuracy is disproportionate to the number of migrations. The difference is statistically

significant and the effect size is large. Altogether, this suggests that it is more difficult for

DeepLib to provide good recommendations for a library associated with a large number of

migrations.

We suppose that this happens due to the structure of the networks, i.e., if there are more

versions or migrations, the network fails to absorb all the patterns. Such a limitation can

be overcome with deeper networks, i.e., by padding additional hidden units to DeepLib. To

validate the hypothesis, we increased the number of network units from 40 to 100 and reran the

experiments on the libraries with which DeepLib gets a low accuracy by most of the folds, i.e.,

L02, L03. As expected, we see a gain in accuracy by these libraries. For the sake of clarity, we

report the change in accuracy with respect to Table 4 as follows: Acc𝑙𝑖𝑏(𝐿02): 0.625 → 0.632,

Acc𝑙𝑖𝑏(𝐿03): 0.772 → 0.781.

Finding 2. DeepLib suffers a deficiency in performance on libraries with a large number of versions

and/or migrations. However, depending on the input data, the system’s performance can be enhanced

with deeper networks.

5.3. Threats to validity

Threats to internal validity are related to the factors in the approach and evaluation that could

have affected the final results. A possible threat is that the datasets might not fully reflect

real-world development scenarios as we could consider only popular libraries. To mitigate the

threats, we crawled a wide range of clients across several repositories. Still, we believe that

considering data from other sources, e.g., GitHub, can help eliminate the threat.

The main threat to external validity concerns the generalizability of our findings. DeepLib has

been evaluated on projects collected from Maven, since we have suitable software to fetch the

data. We anticipate that our tool is also applicable to other platforms, as long as they support

versioning. We plan to generalize DeepLib to data from GitHub in our future work.

6. Related Work
We review notable recommender systems by focusing on those related to the adoption of TPLs

and API migrations.



Ouni et al. [14] develops LibFinder that uses a multi-objective algorithm to detect semantic

similarity in source code. CrossRec [2, 15] assists developers in selecting suitable TPLs. The

system exploits a collaborative filtering technique to recommend libraries by relying on the set

of dependencies, which have been included in the project being developed. LibSeek [16] employs

the matrix factorization (MF) technique to predict relevant TPLs for mobile apps. It adopts an

adaptive weighting scheme to reduce the skewness caused by popular libraries. Furthermore, the

MF-based algorithm is used to integrate neighborhood information by computing the similarity

of libraries contained in the matrix.

Req2Lib [17] has been recently proposed to recommend TPLs given textual description of

project requirements. The tool employs a seq2seq LSTM which is trained with description

and libraries belonging to configuration file. Additionally, a domain-specific embedding model

obtained from Stack Overflow is used to encode words in high-dimensional vectors. Xu et al.
propose Meditor [18] to analyze GitHub commits to extract migration-related (MR) changes

by mining pom.xml files. Once MR updates have been found, the tool employs the WALA

framework to check their consistency by analyzing the developer’s context and apply them

directly. Apiwave [19] infers and retrieves relevant information related to TPLs, i.e., popularity

and migration data. The tool uses two different modules to discover the popularity by ana-

lyzing import statements of projects, i.e., the removal of certain API decreases its popularity.

Additionally, the system can infer migration data from each API replacement.

Differently from the aforementioned approaches, DeepLib can learn from what other projects

have done to recommend the next upgrades that maintainers should operate on one or more

libraries already in their project. DeepLib recommends also removals of dependencies according

to existing migrations. Migrating the source code that might get affected by the recommended

upgrades is not in the scope of this paper, and we plan it as future work.

7. Conclusion and Future Work

To reduce the burden related to the identification of the upgrades that need to be operated on

the current system we proposed DeepLib, a novel approach to recommendation of the next

version for the used TPLs by considering migration histories of several OSS projects. Our

proposed tool is able to extract relevant migration data and encode it in matrices. Then, deep

learning techniques are employed to provide recommendations that are relevant for the current

configuration. As future work, we plan to evaluate DeepLib on specific ecosystems including

that of Android apps. Moreover, we also intend to investigate the possibility of applying the

technique to support the migration of source code, which can be affected by the proposed

upgrade plans.

8. Acknowledgments

The research described in this paper has been carried out as part of the CROSSMINER Project,

which has received funding from the European Union’s Horizon 2020 Research and Innovation

Programme under Grant 732223.



References

[1] S. Raemaekers, A. van Deursen, J. Visser, Semantic versioning and impact of breaking

changes in the maven repository, Journal of Systems and Software 129 (2017) 140 – 158.

URL: http://www.sciencedirect.com/science/article/pii/S0164121216300243. doi:https:
//doi.org/10.1016/j.jss.2016.04.008.

[2] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, M. Di Penta, CrossRec: Supporting Software

Developers by Recommending Third-party Libraries, Journal of Systems and Software

(2019) 110460. URL: http://www.sciencedirect.com/science/article/pii/S0164121219302341.

doi:https://doi.org/10.1016/j.jss.2019.110460.

[3] J. Di Rocco, D. Di Ruscio, C. Di Sipio, P. T. Nguyen, R. Rubei, Development of recom-

mendation systems for software engineering: the CROSSMINER experience, Empiri-

cal Software Engineering 26 (2021) 69. URL: https://doi.org/10.1007/s10664-021-09963-7.

doi:10.1007/s10664-021-09963-7.

[4] E. Derr, S. Bugiel, S. Fahl, Y. Acar, M. Backes, Keep me updated: An empirical study of

third-party library updatability on android., in: B. M. Thuraisingham, D. Evans, T. Malkin,

D. Xu (Eds.), ACM Conference on Computer and Communications Security, ACM, 2017,

pp. 2187–2200. URL: http://dblp.uni-trier.de/db/conf/ccs/ccs2017.html#DerrBFA017.

[5] J. Huang, N. Borges, S. Bugiel, M. Backes, Up-to-crash: Evaluating third-party library

updatability on android, in: 2019 IEEE European Symposium on Security and Privacy

(EuroS P), 2019, pp. 15–30. doi:10.1109/EuroSP.2019.00012.

[6] R. G. Kula, D. M. German, A. Ouni, T. Ishio, K. Inoue, Do developers update their library de-

pendencies?: An empirical study on the impact of security advisories on library migration,

Empirical Software Engineering 23 (2018) 384–417. doi:10.1007/s10664-017-9521-5.

[7] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997)

1735–1780. URL: https://doi.org/10.1162/neco.1997.9.8.1735. doi:10.1162/neco.1997.
9.8.1735.

[8] S. Alemany, J. Beltran, A. Pérez, S. Ganzfried, Predicting hurricane trajectories using a

recurrent neural network, in: The Thirty-Third Conference on Artificial Intelligence, AAAI

2019, The Ninth Symposium on Educational Advances in Artificial Intelligence, EAAI

2019, AAAI Press, 2019, pp. 468–475. URL: https://doi.org/10.1609/aaai.v33i01.3301468.

doi:10.1609/aaai.v33i01.3301468.

[9] C. Olah, Understanding LSTM Networks, 2020. URL: https://colah.github.io/posts/

2015-08-Understanding-LSTMs/.

[10] L. Iovino, P. T. Nguyen, A. D. Salle, F. Gallo, M. Flammini, Unavailable transit feed

specification: Making it available with recurrent neural networks, IEEE Transactions

on Intelligent Transportation Systems 22 (2021) 2111–2122. doi:10.1109/TITS.2021.
3053373.

[11] W. Rawat, Z. Wang, Deep convolutional neural networks for image classification: A

comprehensive review, Neural Comput. 29 (2017) 2352–2449. URL: https://doi.org/10.1162/

neco_a_00990. doi:10.1162/neco_a_00990.

[12] R. Kohavi, A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model

Selection, in: 14th International Joint Conference on Artificial Intelligence, Morgan

Kaufmann Publishers Inc., San Francisco, 1995, pp. 1137–1143.

http://www.sciencedirect.com/science/article/pii/S0164121216300243
http://dx.doi.org/https://doi.org/10.1016/j.jss.2016.04.008
http://dx.doi.org/https://doi.org/10.1016/j.jss.2016.04.008
http://www.sciencedirect.com/science/article/pii/S0164121219302341
http://dx.doi.org/https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1007/s10664-021-09963-7
http://dx.doi.org/10.1007/s10664-021-09963-7
http://dblp.uni-trier.de/db/conf/ccs/ccs2017.html#DerrBFA017
http://dx.doi.org/10.1109/EuroSP.2019.00012
http://dx.doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1609/aaai.v33i01.3301468
http://dx.doi.org/10.1609/aaai.v33i01.3301468
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://dx.doi.org/10.1109/TITS.2021.3053373
http://dx.doi.org/10.1109/TITS.2021.3053373
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1162/neco_a_00990
http://dx.doi.org/10.1162/neco_a_00990


[13] R. J. Grissom, J. J. Kim, Effect sizes for research: A broad practical approach, 2nd edition

ed., Lawrence Earlbaum Associates, 2005.

[14] A. Ouni, R. G. Kula, M. Kessentini, T. Ishio, D. M. German, K. Inoue, Search-based software

library recommendation using multi-objective optimization, Inf. Softw. Technol. 83 (2017)

55–75. URL: https://doi.org/10.1016/j.infsof.2016.11.007. doi:10.1016/j.infsof.2016.
11.007.

[15] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, Mining software repositories to support

OSS developers: A recommender systems approach, in: Proceedings of the 9th Ital-

ian Information Retrieval Workshop, Rome, Italy, May, 28-30, 2018., 2018. URL: http:

//ceur-ws.org/Vol-2140/paper9.pdf.

[16] Q. He, B. Li, F. Chen, J. Grundy, X. Xia, Y. Yang, Diversified third-party library prediction

for mobile app development, IEEE Transactions on Software Engineering (2020) 1–1.

[17] Z. Sun, Y. Liu, Z. Cheng, C. Yang, P. Che, Req2Lib: A Semantic Neural Model for Software

Library Recommendation, in: 2020 IEEE 27th International Conference on Software Analy-

sis, Evolution and Reengineering (SANER), 2020, pp. 542–546. doi:10.1109/SANER48275.
2020.9054865, iSSN: 1534-5351.

[18] S. Xu, Z. Dong, N. Meng, Meditor: Inference and Application of API Migration Edits, in:

2019 IEEE/ACM 27th Int. Conf. on Program Comprehension (ICPC), 2019, pp. 335–346.

doi:10.1109/ICPC.2019.00052.

[19] A. Hora, M. T. Valente, Apiwave: Keeping track of API popularity and migration, in:

2015 IEEE Int. Conf. on Software Maintenance and Evolution (ICSME), 2015, pp. 321–323.

doi:10.1109/ICSM.2015.7332478.

https://doi.org/10.1016/j.infsof.2016.11.007
http://dx.doi.org/10.1016/j.infsof.2016.11.007
http://dx.doi.org/10.1016/j.infsof.2016.11.007
http://ceur-ws.org/Vol-2140/paper9.pdf
http://ceur-ws.org/Vol-2140/paper9.pdf
http://dx.doi.org/10.1109/SANER48275.2020.9054865
http://dx.doi.org/10.1109/SANER48275.2020.9054865
http://dx.doi.org/10.1109/ICPC.2019.00052
http://dx.doi.org/10.1109/ICSM.2015.7332478

	1 Introduction
	2 Motivations and Background
	2.1 Motivating example
	2.2 Long short-term memory neural networks

	3 DeepLib: Forecasting the next versions for third-party libraries
	4 Evaluation
	4.1 Data extraction
	4.2 Settings and metrics

	5 Results
	5.1 Explanatory example
	5.2 Result analysis
	5.3 Threats to validity

	6 Related Work
	7 Conclusion and Future Work
	8 Acknowledgments

