
Potluck: Semi-Ontology Alignment for Casual Users
David F. Huynh, Robert C. Miller, David R. Karger

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar St., Cambridge, MA 02139, USA

{dfhuynh, rcm, karger}@csail.mit.edu

Abstract. Potluck is a web user interface (Figure 1) that lets casual users—
those without programming skills and data modeling expertise—repurpose
heterogeneous Semantic Web data. It lets users merge, navigate, visualize, and
clean up data all at the same time, using direct visual manipulation. This itera-
tive process of integrating the data while constructing useful visualizations is
desirable when the user is unfamiliar with the data at the beginning —a com-
mon case—and wishes to get immediate value out of the data without having
to spend the overhead of completely and perfectly integrating the data first.

Keywords: mash up, drag and drop, faceted browsing, simultaneous editing,
ontology alignment, end-user programming, semantic web, RDF.

1 Introduction
A central theme of the Semantic Web is of casual users collecting, merging, and
repurposing information from multiple sources. But most tools that support this
vision—descriptive logics, reasoners, and graph-based visualizers—posit data
that has extensive schema information, and are far too sophisticated for casual us-
ers. We describe Potluck, a tool that allows casual users—who may not even know
what an ontology is—to collect messy semantic web data from multiple sources,
merge it into a coherent ontology, and visualize and navigate it effectively.

Potluck provides an instant gratification demonstration of the Semantic Web’s
benefits. Users who find multiple useful sources of semantic web data can instant-
ly merge them into a single blob in their web browser. That the data is structured
means faceted navigation and structured visualization of the data are immediately
available. Then, rather than thinking hard about proper ontologies or writing func-
tional descriptions of data transformation, users visually manipulate the data until
it looks right for their purposes. Through direct manipulation, they align ontolo-
gies (unknowingly), clean up instances, create useful facets for navigation, and
produce useful merged views for visualization. The end result can be saved as
RDF that another user can consume for yet other purposes. Potluck eliminates the
artificial separation between understanding and cleaning the collected data and
using it to solve the user’s problem, letting her tackle both at once.

Unlike automated alignment tools that rely on extensive ontological markup,
Potluck works with “raw” RDF—it needs no schematic information beyond what
is implicit in the properties used in the data. This offers several benefits:

Far more raw • RDF is available than “cooked”. For example, DBpedia contains
almost 100M triples, but almost no schema information. Users can use Potluck
to interact with a subset of this data.

By demonstrating that users can interact with raw • RDF, Potluck shows that pub-
lishing Semantic Web data is easy: authors can publish data instances without
having to picking the right ontologies.
Even providers who • want to create nice ontologies are likely to do it “wrong”
for some users. Potluck lets these users correct the “errors” themselves.

Potluck is therefore an effective deployment tool for the Semantic Web, answer-
ing the well known “chicken and egg” complaint that good semantic web tools
and good semantic web data are stuck waiting for each other.

2 Scenario
Before describing the user interface of Potluck, we motivate it with a scenario
that illustrates various idiosyncrasies of personal mash-up construction. Let us be
optimistic that within a decade, the Semantic Web will be prevalent and RDF data
will be everywhere. This scenario argues that even in this future world, users will
still face problems making mash-ups between data sources.

In 2017, a historian named Henry is documenting the first cases of a rare genet-
ic disease called GD726. These first cases occurred in the Valentine family in the
1820s. He wants to include in his final report a genealogical tree of the Valentine
family, annotated with the disease’s infliction, as well as a comprehensive table of
the Valentines’ data in an appendix.

Like most historians, Henry is not a programmer but he is experienced in man-
aging data in his work. The proliferation of RDF means that he does not need pro-
gramming skills to scrape HTML himself: all information needed for his research
has been converted into RDF by various independent organizations and individu-
als. Henry thinks it would be trivial to pool the RDF together and call it done.

Henry tracks down various birth certificate and death certificate issuing offices
where the Valentines lived for their RDF data. Some offices use dc:date in their
data to mean “birth date,” some to mean “death date,” and some “certificate issu-
ing date.” Thus, considering all dc:dates the same would be disastrous.

Henry also tracks down hospital records, which contain hospital:tod
(short for “time of death”). Hence, hospital:tod is equivalent to some of the
dc:dates. It would be hard to match hospital:tod with dc:date based on
string analysis alone, yet match for some of the cases only.

The records all have geographical location names, but these names are not fully
qualified. Those responsible for digitizing them thought that since all locations
were within their country, the country name was redundant. Consequently, Henry
needs to append the country name to all location names in order to map them.

People’s names are encoded in two different forms: “first-name last-name” in
some data sets and “last-name, first-name” in others. Nick names are also present
(e.g., “Bill” instead of “William”, and “Vicky” instead of “Victoria”).

The hospital records also pose problems. While most of their admittance dates
are in ISO 8601 format, a few are of the kind “Easter Day 1824.” Such sloppiness
has been observed in industrial and institutional databases, and should be ex-
pected on the Semantic Web.

Despite all these problems, there is one good thing about the data: Henry can
reliably get the mother and father of each Valentine through the gen:mother
and gen:father predicates, which seem to be very widely adopted. This helps
Henry construct a genealogical tree visualization. However, as males and females
both have equal chance of passing on GD726, Henry wants to treat gen:mother
and gen:father the same while tracing the disease through the family. Unfor-
tunately, adding an owl:sameAs equivalence between those two predicates will
break his genealogical tree.

Figure 1. Potluck’s user interface shows data mixed from two different sources. Fields are
rendered as draggable “field tags,” color-coded to indicate their origins.

While all parties involved in this scenario acted logically and responsibly, Hen-
ry still ends up with a mess of RDF. To fix up the data, Henry must be able to:

Merge • dc:dates into several groups (the birth dates and the death dates) even
though they all use the same predicate URI.
Merge • gen:mother and gen:father together in some situations while keep-
ing them separate in other situations. This precludes the simple approach of
adding owl:sameAs statements in the data model to implement equivalences.
Edit the data efficiently to unify its syntax.•
Fix up the data iteratively as he learns more and more about the data.•

3 User Interface
We now describe Potluck’s user interface, showing how it addresses the problems
in the scenario above. The reader is encouraged to view a screencast to under-
stand Potluck’s interactivity: http://people.csail.mit.edu/dfhuynh/research/media/
iswc2007/. Potluck starts up with a text box where the user can paste in several
URLs of Exhibit-powered web pages and click a button to yield the results in
Figure 1, which lists data records from the original web pages. The records are in-
terleaved by origins —the pages from which they have been extracted—to ensure
that some records of each data set are always visible.

Fields are rendered as field tags: , , and . Field tags are color-
coded to indicate their origins: blue from one source and pink from another. Three
core fields, label, type, and origin, are assigned to all records and their tags
are colored gray. Fields from different origins having the same name are consid-
ered different—a crucial choice for dc:date in the above scenario.

Figure 3. A screen shot of Potluck showing several columns and facets of merged fields.
The records’ details have been collapsed to make space for the columns.

Creating columns and facets. A field tag can be dragged and dropped onto
the gray column to the left (Figure 1) to create a new column listing that field, or
onto the gray box to the right to create a facet for filtering by that field. Figure 2
shows a newly created column. A column or facet can be moved by dragging its
field tag and dropping the tag between other columns or facets. Deleting a column
or facet (by clicking its) removes the column or facet from the display but does
not delete the corresponding field’s data.

Merging fields. A field tag can be dropped onto an existing column or facet to
make that column or facet contain data for both the original field and the newly
dropped field. Such an operation creates a merged field, whose field tag is rendered
as a visual juxtaposition of the original tags in a pill-shaped form .
Figure 3 shows several columns and facets of merged fields. Merged field tags can
be dragged and dropped like elemental field tags can to create new columns and
facets, or to merge into other existing columns and facets.

Creating a merged field does not disturb the
elemental fields. Thus, in the scenario, it would
be easy to have gen:mother and gen:father
merged together for one purpose while keep-
ing them separate for another purpose, all at the
same time. Furthermore, the merging operation
is not transitive, so that, say, merging fields
mother and father together (to mean par-
ent) and then mother and grandmother to-
gether (to mean female ancestor) does not
force all three fields to be merged into mother/
father/grandmother.

Simultaneous editing. The edit link next to
each field value opens up the Simultaneous Ed-
iting dialog box where the values of that field
can be edited en masse (Figure 4). The concept
of simultaneous editing originated from LAPIS
[6], a text editor that displays several keyboard
cursors simultaneously on a text document,
generalizes the user’s editing actions at one
cursor, and applies them to the text at the rest of
the cursors. Based on the user’s mouse clicks,
LAPIS guesses how to divide the text document
into records (often into lines or paragraphs) and
where the cursors should be placed within those
records (e.g., after the second word of the third
sentence in each paragraph). Whereas LAPIS
has to guess what a record is for the purpose
of simultaneous editing, Potluck already has
the field values conveniently separate. Potluck
groups field values into columns by structural

Figure 2. Potluck renders a new
column to the left when
is dropped into the New Column
drop target. Since the second re-
cord is not from the same origin
as the dropped field, its cell in that
column shows .

similarity, e.g., the phone numbers in the second column all have area code 212.
These columns serve to visually separate out values of different forms, call out
outliers (such as “Easter Day 1824” in the scenario), and let the user edit different
forms differently. The user can click on any field value to give it keyboard focus,
and editing changes made to it are applied to other values in the same column in
a similar way. The multiple cursors in Figure 4 give visual feedback of the simul-
taneous editing operations in progress.

Simultaneous editing is useful for correcting inconsistencies between data sets
that occur many times, such as prefixing area codes to phone numbers; for refor-
matting a field, such as changing “first-name last-name” into “last-name, first-
name”; and for making a new field out of an existing field, such as extracting
building numbers (32) from within office numbers (32-582).

Faceted browsing [8] lets a set of records be filtered progressively along sev-
eral dimensions in any arbitrary order. It is useful in Potluck as Potluck often han-
dles multidimensional data. Exploration through such data is needed for selecting
out just the desired subset and for isolating records that need cleaning up.

Potluck extends faceted browsing for the mash-up task in which data arrives
from many sources. First, if within a facet there are records missing the corre-
sponding field, the facet explicitly shows a choice for filtering to them (Figure 5).
This visual element, not present in conventional faceted browsing interfaces, also
serves to remind the user that, if that field is an elemental field instead of a merged

Figure 4. The Simultaneous Editing dialog box lets the user change several similar values
simultaneously by editing any one of them.

Figure 5. If inside a facet there are re-
cords missing the corresponding field,
the facet shows as a
choice to get to those records.

Figure 6. The origin facet does not remove
choices for which there are no records. More-
over, it pops up messages to call the user’s at-
tention to those filtered out origins.

field, the field is not present for records in other data sets. Second, whenever a
facet choice causes all records from an origin to be filtered out completely, that
origin remains in the origin facet and a warning message is displayed (Figure 6).

Visualizations. Potluck currently provides two visualizations: a tabular view
and a map view. Figure 7 shows the map view in which any field containing street
addresses or latitude/longitude pairs can be dropped onto the map view to plot the
records. The map markers can also be color-coded using drag and drop. Faceted
browsing is supported concurrently so that the user can construct a map while
browsing through the data at the same time.

4 Related Work
We discuss related work at greater length in our ISWC paper [4]. End-user tools
such as Dapper [1] scrape information from multiple HTML pages. The prolif-
eration of structured data on the Web will hopefully eliminate the need to scrape
fragile HTML, allowing tools such as Piggy Bank [3] and Tabulator [2] to collect
it from multiple already-structured Semantic Web sources. Even so, the data still
has to be cleaned up and aligned before it can appear coherent to the user and thus
become useful. The amount of broken HTML code on the present Web forebodes
messy real-world RDF in the future, broken perhaps not just in syntax but also in
semantics. Previous tools have largely ignored this problem, assuming that once
data is in RDF, visualizations and browsing techniques previously designed to
work on individual coherent data sets can be applied readily on mashed up data.

Figure 7. Potluck’s map view allows plotting and color-coding records by dropping field
tags into drop target areas. Faceted browsing is also offered during map construction.

An exception to these tools is WebScripter [7], which offers casual users data
alignment features to create coherent tables of data collected from several sourc-
es. However, WebScripter does not encourage users to browse and visualize the
data while aligning it, and offers no features for fixing data at the syntactic level,
and it has not been formally evaluated on actual users.

Research data-alignment tools have been built mostly for experts and research
has focused primarily on data modeling theories and automated agents for ontol-
ogy alignment (surveyed in [5]) rather than on user interfaces for making practical
use of aggregated data. They implicitly assume that users work with the data in
delineated stages, first aligning the data and cleaning it up, and then using it in
some other tools. We believe that users actually work iteratively on data, switch-
ing from aligning and cleaning up the data to using the data, and back, as they get
to know the data better over time. Potluck explicitly supports this approach.

5 Conclusion
This paper presented Potluck, a tool for casual users—those without programming
skills and data modeling expertise—to “mash up” data by themselves. Potluck is
novel in its use of drag and drop for merging fields, its integration and extension
of faceted browsing for focusing on subsets of data to align, and its application of
the simultaneous editing technique for cleaning up data syntactically. Potluck also
lets the user construct rich visualizations of data in-place as the user aligns and
cleans up the data. This iterative process of integrating the data while constructing
useful visualizations is desirable when the user is unfamiliar with the data at the
beginning—a common case—and wishes to get immediate value out of the data
without having to spend the overhead of completely and perfectly integrating the
data first. It thus offers instant gratification to end users who want to do something
with their data without stopping to solve ontology alignment problems.

6 Acknowledgements
This work was supported by the National Science Foundation (award number
IIS-0447800), Nokia, and the Biomedical Informatics Research Network. Any
opinions, findings, conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the funders.

7 References
[1] Dapper: The Data Mapper. http://www.dapper.net/.
[2] Berners-Lee, T., et al. Tabulator: exploring and analyzing linked data on the Semantic Web. SWUI 2006.
[3] Huynh, D., S. Mazzocchi, D. Karger. Piggy Bank: Experience the Semantic Web Inside Your Web

Browser. ISWC 2005.
[4] Huynh, D., R. Miller, and D. Karger. Potluck: Data Mash-Up for Non-programmers. ISWC 2007.
[5] Kalfoglou, Y. and M. Schorlemmer. Ontology Mapping: The State of the Art. The Knowledge Engi-

neering Review, Volume 18, Issue 1, 2003.
[6] Miller, R. and B. Myers. Multiple Selections in Smart Text Editing. IUI 2002.
[7] Yan, B., M. Frank, P. Szekely, R. Neches, and J. Lopez. WebScripter: Grass-roots Ontology Align-

ment via End-User Report Creation. ISWC 2003.
[8] Yee, P., K. Swearingen, K. Li, & M. Hearst. Faceted Metadata for Image Search and Browsing. CHI

2003.

