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Abstract
In this paper, we combine lexical and neural ranking models for case law retrieval. In this task, the query is a full case
document, and the candidate documents are prior cases that are potentially relevant to the current case. Most documents
are longer than 1024 tokens, which makes retrieval and classification with Transformer-based models problematic. We
create shorter query documents with different methods: term extraction, noun phrase extraction, entity extraction, and
automatic summarization using Longformer-Encoder-Decoder (LED). We then combine the summaries with five different
ranking models: a BM25 ranker, statistical language modelling, the Deep Relevance Matching Model (DRMM), a Vanilla BERT
ranker, and a Longformer ranker. We optimised all models and combined the best lexical ranker with neural retrieval models
using different ensemble classifiers. We evaluate our methods on the retrieval benchmarks from COLIEE’20 and COLIEE’21.
We beat state-of-the-art models for case law retrieval with both benchmark sets. Our experiments show the importance of
tuning lexical retrieval methods, summarizing query documents, and combining lexical and neural models into one ranker
for effective case law retrieval. In addition, training and optimizing our rankers is much faster than passage-level retrieval
models (a few hours compared to several days for training).
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1. Introduction
In countries with common law systems, finding support-
ing precedents to a new case, is vital for a lawyer to
fulfill their responsibilities to the court. However, with
the large amount of digital legal records – the number
of filings in the U.S. district courts for total cases and
criminal defendants was 544,460 in 20201 – it takes a sig-
nificant amount of time for legal professionals to scan for
specific cases and retrieve the relevant sections manually.
Studies have shown that attorneys spend approximately
15 hours in a week seeking case law [1].

This workload necessitates the need for information
retrieval (IR) systems specifically designed for the legal
domain. The Competition on Legal Information Extrac-
tion/Entailment (COLIEE) is a workshop that has been
organized since 2014 as a series of evaluation competi-
tions related to case law [2]. COLIEE defines four tasks.
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In this paper, we address legal case retrieval (Task 1).
One of the challenges of case law retrieval in COL-

IEE’20 is that the input is a long case document with a
median length of 2,815 words instead of a keyword query.
Four approaches to this problem exist. The first is the use
of unsupervised keyword extraction methods to create
short queries from the long query document [3]. A vari-
ant is the unsupervised extraction of phrases or entities
as query terms [4]. The second approach, proposed by
Tran et al. [5], is to train a supervised phrase scoring
model for 𝑛-gram phrases to select the phrases that are
semantically closest to an expert-written summary. The
third approach, proposed by Rossi and Kanoulas [6], is
to use document summarization methods for creating
shorter query documents. The fourth approach, success-
fully employed by Shao et al. [4] and Westermann et al.
[7], is to analyze the documents on the level of individual
paragraphs and then aggregate the paragraph scores in a
document ranking.

In this paper, we use automatic summarization for
creating query documents. We experiment with term
extraction, noun phrase extraction, and supervised text
summarizers. As opposed to prior work, we approach
the task as an abstractive summarization problem. The
current state of the art in abstractive summarization is
the use of Transformer models [8, 9]. However, the input
of pre-trained available models of these architectures
is limited to 1024 tokens, and the majority of case law
documents in our collection is longer than that. Beltagy
et al. [10] proposed Longformer-Encoder-Decoder (LED),
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which is a Transformer variant that supports much longer
inputs. In this paper, we evaluate the effectiveness of LED
for case law retrieval.

We evaluate summarization with multiple ranking
models: probabilistic lexical ranking (BM25), statistical
language modelling, the Deep Relevance Matching Model
(DRMM), and Transformer-based architectures including
the Vanilla BERT model from Contextualized Embed-
dings for Document Ranking (CEDR) [11]. Although we
summarize the query documents, the lengths of the doc-
uments in the retrieval collection still causes problems
for Transformer-based ranking architectures, which are
limited to 512 tokens as the input length. To solve that
problem, we implemented a Vanilla Longformer ranker
[10], with 4096 tokens as the input length, in a pair-wise
ranking setting similar to Vanilla BERT. After we have
optimized each individual ranker, we experiment with en-
semble methods that combine lexical rankers with neural
rankers.

Our contributions are four-fold: (1) We deliver a fine-
tuned Longformer-Encoder-Decoder (LED) for abstrac-
tive summarization of legal documents; (2) we deliver
a pairwise Longformer ranker for long documents; (3)
We show that summarizing query documents with LED
improves all ranking models; (4) We show that the com-
bination of a lexical ranker and a Vanilla BERT ranker in
a simple ensemble classifier outperforms all baselines on
COLIEE’20 and an optimized BM25 ranker with keyword
queries beats the state-of-the-art models on COLIEE’21.

2. Related Work

2.1. Case law retrieval
Locke et al. [3] investigate query generation from legal
decisions using unsupervised keyword extraction models.
They find that the best performing model is Kullback-
Leibler divergence for informativeness (KLI) [12] and that
the automatically generated queries were more effective
than the average Boolean queries from experts.

The majority of the work addressing case law retrieval
takes place in the context of COLIEE, the Competition
on Legal Information Extraction and Entailment [13, 2].
Rossi and Kanoulas [6] proposed a pairwise ranking
model based on BERT. They apply automatic summa-
rization using TextRank, to make the input document
length suitable for use in the BERT-based ranker. The
most successful team in COLIEE 2019 is Tran et al. [14, 5]
(‘JNLP’). They train a phrase scoring model that extracts
𝑛-gram phrases (𝑛 ≥ 5) to summarize the documents.
The weights are calculated based on the phrase score
framework that was trained on COLIEE’18 summaries.
The authors achieved the state-of-the-art result on COL-
IEE’19, thereby showing the importance of query docu-

ment summarization.
In COLIEE’20, the two best-performing teams use

paragraph-level analyses to cope with the challenge of
long documents. Shao et al. [4] (‘TLIR’) participate with
their method BERT-PLI [15], which models paragraph-
level interactions. They combine BERT-PLI with lexical
matching features using word-entity duet model. The
features are different lexical rankers (BM25, probabilistic
language modelling) – without optimization – on the full
document content, and entities extracted by NLTK. They
reach competitive results. The method by Westermann
et al. [7] (‘cyber’) selects the top-30 candidate documents
using a paragraph similarity score based on the universal
sentence encoder, and then applies an SVM model to the
TF-IDF representations of the query document and the
candidate documents.

We use the supervised phrase-based summarization of
Tran et al. [14, 5] as comparison for our summarization
task, and the highest F-score obtained in COLIEE’20 by
Westermann et al. [7] as comparison for our retrieval
task.

2.2. Summarization of long documents
Kanapala et al. [16] and Van de Luijtgaarden [17] give
an extensive overview of research on legal document
summarization up to 2019. Here we focus on the recent
abstractive summarization models.

Pre-trained encoder-decoder Transformer models (e.g.
BART [8] and T5 [9]) have achieved strong results in
abstractive summarization tasks. However, pre-trained
models of these architectures are limited to texts that
are shorter than 1024 tokens. Legal documents are com-
monly longer than that; 72% of the query documents in
COLIEE’20 are. Recently, Beltagy et al. [10] proposed
Longformer-Encoder-Decoder (LED), which is a Trans-
former variant that supports sequence-to-sequence tasks
for longer documents (up to 16k tokens). The authors
show that LED outperforms the state-of-the-art models
on the arXiv dataset. In this paper, we evaluate the effec-
tiveness of LED for case law retrieval.

2.3. Transformer-based document
ranking

The typical approach in neural IR is two-step retrieval,
where a first set of documents is retrieved using a tra-
ditional ranker (e.g. BM25) and those document are re-
ranked by a neural model that is trained on the relevance
assessments [18, 11, 19].

MacAvaney et al. [11] propose a joint approach that
integrates the classification vector of BERT into existing
neural models like the Deep Relevance Matching Model
(DRMM), resulting in Contextualized Embeddings for
Document Ranking (CEDR). They fine-tune a pretrained



BERT model with a linear combination layer stacked atop
the [CLS] token as the Vanilla BERT ranker with pairwise
cross-entropy loss and the Adam optimizer. The authors
demonstrate that Vanilla BERT and CEDR outperform
the state-of-the-art baselines in ad-hoc rankings. How-
ever, local-interaction neural ranking architectures like
DRMM are not scalable to long documents or need heavy
interaction between word pairs in query and document.
Therefore, we will compare our method to the Vanilla
BERT ranker.

More recent work has addressed the challenges of rank-
ing for long documents. Hofstätter et al. [20] propose a
local attention Transformer model that uses a moving
window over the document terms and for each term at-
tends only to other terms in the same window. They
obtain results significantly better than other state-of-the-
art models on the TREC Deep learning track. Sekulić
et al. [19] take a full-document approach by training a
Longformer model for ranking in ad-hoc retrieval. The
results they report on the MS MARCO set are low com-
pared to the leaderboard results. Our Longformer ranker
is similar to [19], but instead of implementing the ranker
as a one-versus-all classifier, we train and evaluate it in a
pair-wise setting and we evaluate it for case law retrieval.

3. Methods

3.1. Summarization
We experiment with three approaches to creating shorter
query documents: (1) term extraction, (2) noun phrase
or entity extraction, and (3) abstractive summarization.

Summarization through term extraction We
adopted Kullback-Leibler divergence for Informativeness
(KLI), similar to Locke et al. [3] in the implementation of
Verberne et al. [21]. For each term 𝑡 in a query document,
we computed the KLI score:

𝐾𝐿𝐼(𝑡) = 𝑃 (𝑡|𝐷)× log
𝑃 (𝑡|𝐷)

𝑃 (𝑡|𝐶)
(1)

where 𝑃 (𝑡|𝐷) is the probability of 𝑡 in the query doc-
ument 𝐷 and 𝑃 (𝑡|𝐶) is the probability of 𝑡 in a back-
ground language model. We use all candidate documents
as the background collection to compute 𝑃 (𝑡|𝐶). We
only consider unigrams as terms and we lowecase them.2

We then selected the top-10% of the total number of
terms in the document with the highest KLI score as a
the query.

2We tried to extract n-gram phrases (2<𝑛<=5) with 𝛾 = 0.8
but obtained the best results with unigrams.

Entity and phrase extraction Inspired by Shao et al.
[4], we used NLTK3 to extract noun phrases and named
entities from the content of query documents and candi-
date documents and used the extracted strings entities
as the representation documents (see Section 4.4 for the
combinations we experimented with).

Abstractive summarization We experimented with
the pre-trained LED model4 of Beltagy et al. [10] which
can process documents up to 16k tokens as input. Also,
we fine-tuned LED on the COLIEE’18 dataset, in which
more than 80% of documents have summaries.5 After
removing duplicates, 6, 257 unique documents are left
for which a summary is available. For evaluation pur-
poses, we trained the model in a k-fold cross-validation
setting (𝑘 = 10) for one epoch per fold, each with batch
size 1. We kept the other hyperparameters (optimizer,
dropout, weight decay) identical to [10] and set the global
attention on the first <s> token. We only summarized
query documents with LED for the lexical rankers since
they do not have limitation for input length. On other
hand, since Transformer-based neural models are limited
in input length for the candidate document content, we
also experiment with summarizing candidate documents
besides query documents for the best Transformer-based
neural model in our experiments.

3.2. Ranking models
As introduced in section 3.2.1, we rank the 200 candidate
documents for each query document in COLIEE’20 with
multiple retrieval models. We optimise the hyperparam-
eters of each method on a validation set (see Section 4.3).
In the following, we will introduce each neural ranker
that we use for legal case retrieval.

3.2.1. Lexical rankers

BM25 We indexed the COLIEE’20 collection with Elas-
ticSearch. The collection has 200 candidate documents
for each query that need to be ranked. We used BM25
with the default parameter values 𝑘 = 1.2 and 𝑏 = 0.75,
as well as with optimized hyperparameter values.

Language Modelling We used the built-in similar-
ity functions of Elasticsearch for the implementation of
Language Modelling (LM) with two different smoothing:
Dirichlet smoothing and Jelinek Mercer (JM) smoothing.
We only report the results for JM smoothing since we got

3https://www.nltk.org/api/nltk.chunk.html?#nltk.chunk.util.
tree2conlltags and https://www.nltk.org/api/nltk.chunk.html#
module-nltk.chunk.named_entity

4https://huggingface.co/allenai/led-large-16384-arxiv
5In COLIEE’19 and COLIEE’20 the large majority (82%) of the

candidate cases do not have a summary.
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similar results by these two smoothing methods. We also
optimised the hyperparameter value (𝜆) for Language
Modelling with Jelinek Mercer smoothing (LM JM).

3.2.2. Neural rankers

Deep Relevance Matching Model (DRMM) As the
DRMM architecture [18] is based on a local interaction
input matrix, only a limited query length is possible. We
took the top 10% of query terms sorted by the KLI score
for each query document. Then, we selected the average
resulting number of terms, 70, as the maximum length
of query. Thus, we used the top-70 query terms as query
in DRMM. For calculating cosine similarity in the local
interaction matrix, we trained word2vec on the query
candidates’ texts as suggested by the DRMM authors.
Furthermore, we optimize the network configuration of
DRMM to find the best combination of layers and neu-
rons in legal case retrieval on COLIEE (see details in
Section 4.3).

Vanilla BERT ranker For Vanilla BERT, we fine-tuned
a pre-trained BERT model (BERT-Base, Uncased) with
a linear combination layer stacked atop the classifier
[CLS] token on the COLIEE dataset in pairwise cross-
entropy loss setting using the Adam optimizer. We used
the implementation of MacAvaney et al. [11] (CEDR). We
represent the query as sentence A and the document as
sentence B in the BERT input:

“[CLS] query document [SEP] candidate document [SEP]"

We truncate the query and candidate document text since
the BERT tokenizer is limited to 512 tokens.

Vanilla Legal BERT ranker For Vanilla Legal BERT,
we used LEGAL-BERT [22] which was pre-trained on
legal data.

Vanilla Longformer ranker Since the input length
is limited in Vanilla BERT, we implemented the Vanilla
Longformer in CEDR [11] as a ranker which can receive
4096 tokens instead of 512 and has more chances to work
effectively than Vanilla BERT. In Longformer, the [CLS]
and [SEP] tokens are replaced by the tokens <s>, and
</s> respectively. As suggested in the Longformer paper
[10] we calculate the loss based on the <s> token with the
addition of global attention to the <s> token. Inspired
by Sekulić et al. [19] we feed the query document as
sequence A and the candidate document as sequence B
to the tokenizer, which yields the following input to the
model:

“<s> query document </s> candidate document </cls>".

Our code is integrated with Vanilla BERT in CEDR
[11], and is available for future work.6

3.2.3. Ensemble models

For combining the advantages of neural rankers and lex-
ical rankers in one integrated system, we train ensemble
models that take the scores of multiple rankers as fea-
tures. We experiment with three different classifiers for
this purpose: SVM with a linear kernel, SVM with an RBF
kernel, Naive Bayes, and Multi Layer Perceptron (MLP).
We experiment with different combinations of rankers’
scores to find the best combination of rankers for having
an effective ranking.

4. Experiments and results

4.1. Data
For our experimental evaluation, we work with data from
the COLIEE competitions in 2018, 2020, and 2021.

The COLIEE’18 data contains human-written sum-
maries of the case documents, which we use for the train-
ing evaluation of our summarization models (Section 4.2).
For our retrieval experiments (Section 4.3), we use data
from COLIEE’20 and ’21.7 The Federal Court of Canada
provided case laws with metadata for task 1. The meta-
data contains references to the noticed cases that are
the golden relevance labels for the query document. In
COLIEE’20, there is a pool of 200 candidates for each
query document and the competitors should re-rank a
limited number of documents per query. The pool of
candidates includes the noticed cases and non-relevant
candidates, which are selected randomly. In contrast, in
COLIEE’21, the whole collection should be considered
per query without having a pool of candidates. This dif-
ference makes task 1 in COLIEE’21 more difficult than in
COLIEE’20.

We use the COLIEE’20 data to evaluate all ranking
models and ensembles described in Section 3. In the
COLIEE’20 data, there are 520 query documents in the
train set and 130 in the test set; with 104,000 candidate
documents in the train set and 26, 000 in the test set. The
average length of the documents in the test set is 3,232
words, with outliers upto 10, 827. After we have found
the best-performing rankers and ensemble, we evaluate
those on the COLIEE’21 data and compare the results
to the best results reported in the competition. In the
COLIEE’21 data, there are 650 query documents in the
train set and 250 in the test set, with 4, 415 documents
as candidate documents for both train set and test set.

6https://anonymous.4open.science/r/vanilla_
longformer-D552/README.md

7https://sites.ualberta.ca/~rabelo/COLIEE2020/ and
https://sites.ualberta.ca/~rabelo/COLIEE2021/
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Table 1
Summarization results in terms of ROUGE for COLIEE’18. Summary length is 10% of the original text

Model\Metric
ROUGE-1 ROUGE-2 ROUGE-SU6
Pre Rec F1 Pre Rec F1 Pre Rec F1

JNLP [5] 0.482 0.409 0.405 0.186 0.152 0.152 0.258 0.199 0.167
Pre-trained LED on arXiv [10] 0.634 0.164 0.260 0.299 0.072 0.116 0.332 0.078 0.127
Fine-tuned LED 0.620 0.304 0.408 0.295 0.138 0.188 0.319 0.147 0.201

The average length of the candidate documents is 1, 274,
with outliers upto 76, 818 words.

4.2. Summarization experiments
We set the local attention window size to 512 tokens. To
limit memory use, we use gradient checkpointing and set
the input size in training to 8,192 tokens which covers
more than 86% of COLIEE’18 documents completely
(the longer documents are truncated at 8,912 tokens). We
set the maximum length to generate a summary for an
unseen document as 10% of the length of the original
text.

We evaluate our fine-tuned LED to the pre-trained
LED [10], and compare it to the summarizer of Tran et al.
[5] (JNLP) on the COLIEE’18 data. Table 1 shows that
our fine-tuned summarizer outperforms the baseline in
terms of F-measure for ROUGE-1, ROUGE-2 and ROUGE-
SU6 on the COLIEE’18 dataset. The pre-trained LED
summarizer obtains the highest precision-ROUGE scores,
and the JNLP baseline the highest recall-ROUGE scores.

4.3. Retrieval experiments
As the validation set for optimizing the rankers we use a
held-out subset (10% of the training set). We optimize the
rankers for each document representation. In the text be-
low, we refer to noun phrase representations as Q NP and
C NP for the query/candidate documents respectively,
and to entity representations as Q Entities and C Enti-
ties. We use Precision@k, Recall@k and F-measure@k
as evaluation metrics, following the COLIEE evaluation
mechanism.8 We select the best cut-off 𝑘 for each method
based on the validation set and use that on test set.

BM25 We found 𝑘 = 6 as the optimal cut-off for rank-
ing with the whole text, and 𝑘 = 4 for summarized
input. For the optimization we searched the following
grid: 𝑏 ∈ {0, 0.1, 0.2, ·, 1} and 𝑘1 ∈ {0, 0.1, 0.2, ·, 3}.
For BM25 with KLI the best parameters were 𝑏 = 0.9,
and 𝑘1 = 2.8.9

8See https://sites.ualberta.ca/~rabelo/COLIEE2020/
9We found 𝑏 = 0.6, 0.8, 0.8 and 𝑘1 = 1.8, 1.4, 1.4 as the

best parameters for BM25 (Q NP C NP, Q words C NP, and Q NP C
words) respectively.

LM We found 𝑘 = 6 as the optimal cut-off for all vari-
ants of LM JM. For the optimization, we searched the
following values: 𝜆 ∈ {0, 0.1, 0.2, ·, 1}.10

DRMM We optimize the word2vec model and also
tune the network configuration (e.g., numbers of lay-
ers and hidden nodes) on the validation set. 𝑘 = 6 is
the optimal cut-off value. We trained six word2vec and
fasttext models for three configurations from the litera-
ture [18, 23, 24]. We also used the pre-trained word2vec
on google-news and pre-trained fasttext on Wikipeda.
We found that word2vec which was pre-trained accord-
ing to the DRMM configuration gave the best results. For
the network configuration, we use a four-layer architec-
ture throughout all experiments, i.e., one histogram input
layer (30 nodes), two hidden layers in the feed-forward
matching network (128 nodes for both layers), and one
output layer (1 node) with the term gating network for
the final matching score. We set the maximum query
length to 70 tokens as explained in Section 3.2.2.

Vanilla BERT ranker We truncate the documents
such that the concatenated query document (truncated
at 100 words), candidate document, and the separator
tokens do not exceed 512 tokens. We re-rank the top-30
BM25 results. Since the 𝑅@30 is about 95% for BM25,
our ranker has the possibility to achieve 95% recall while
still having a reasonable runtime. 𝑘 = 6 was the optimal
cut-off for the arXiv-LED summarizer queries, and 𝑘 = 4
for the fine-tuned LED summarizer queries. We train
each model for 100 epochs, each with 32 batches of 16
training pairs, with the initial learning rate of 3 * 10−5,
followed by a power 3 polynomial decay.

Vanilla Longformer ranker The local window size
is set to 512. We fine-tune the pre-trained Longformer
using pairwise hinge loss. Positive and negative training
documents are selected from the relevance judgments.
We truncate the document such that the sequence of
the concatenated query document (summary), candidate
document, and the separator tokens do not exceed 4,096

10We found 𝜆 = 0.1 as the best parameters for LM JM with
KLI. We found 𝜆 = 0.1, 0.6, 0.4 as the best parameters for LM JM
(Q entities D entities, Q words D entities, and Q entities D words)
respectively.

https://sites.ualberta.ca/~rabelo/COLIEE2020/


Table 2
Lexical retrieval results for the ranking of 200 candidate doc-
uments in COLIEE’20. Q refers to query content and C refers
to candidate document content. SummaryQ means that the
summary of the query document is used as query. NP refers
to the extracted noun phrases (NP) using NLTK. Q/C NP
means that the extracted noun phrases from query and can-
didate document are used as the query and candidate docu-
ment content in the ranker’s input.

Method Extractor/Sumarizer P % R % F1 %

BM25 original text 47.69 67.48 56.06
BM25 optimized original text 57.31 59.15 58.21
BM25 KLI (1-gram) 58.85 62.28 60.51
BM25 optimized KLI (1-gram) 67.00 61.17 63.95
BM25 summaryQ arXiv-LED 48.65 69.03 57.07
BM25 optimised summaryQ arXiv-LED 54.20 64.91 59.07
BM25 summaryQ fine-tuned LED 49.72 68.59 57.65
BM25 optimised summaryQ fine-tuned LED 55.71 63.18 59.21
BM25 optimized Q entities & C words 62.05 50.62 55.75
BM25 optimized Q words & C entities 48.77 58.89 53.35
BM25 optimized Q NP & C NP 55.77 58.05 56.88

LM JM original text 46.54 62.25 53.26
LM JM KLI (1-gram) 58.00 61.85 59.86
LM JM optimized KLI (1-gram) 66.24 60.28 63.11
LM JM arXiv-LED 49.20 68.55 57.28
LM JM fine-tuned LED 49.68 68.44 57.57
LM JM optimized Q NP & C words 61.94 50.30 55.51
LM JM optimized Q words & C NP 47.65 57.94 52.29
LM JM optimized Q NP & C NP 55.19 57.67 56.40

tokens. We again re-rank the top-30 BM25 results. for
the arXiv-LED summarizer queries, and 𝑘 = 4 for the
fine-tuned LED summarizer queries. We use the same
training configuration as for Vanilla BERT.

Ensemble classifier We used the Scikit-learn [25] li-
brary for training the ensemble classifiers and kept the
hyperparameters as default. We used the classifier pre-
diction (relevant/non-relevant) to obtain the returned
set of documents that we evaluate. Note that the cut-off
parameter 𝑘 is not needed in this approach because the
final ranking only includes documents that are predicted
relevant by classifier.

4.4. Retrieval results
COLIEE’20 results The ranking results for the lexical
and neural ranking models are shown in Table 2 and
Table 3, respectively. The best lexical ranker is BM25, but
LM JM with KLI is very close. The best neural ranker in
terms of recall and F1 is DRMM. The best single ranker
overall is BM25 with an F1 score of 63.95%. The highest
precision is obtained by BM25 with KLI queries and the
highest recall with BM25 with arXiv-LED. This indicates
that lexical matching is important for this dataset. Table 2
also shows the (mostly positive) effect of optimizing the
parameters of BM25, an effort that is not taken by most
of the COLIEE participants.

The results of the ensemble models are shown in Ta-

Table 3
Neural retrieval results for the ranking of 200 candidate doc-
uments in COLIEE’20. Q refers to query content and C refers
to candidate document content. SummaryQ/SummaryQC
means that the summary of the query/both query and can-
didate document (generated by fine-tuned LED) are used as
the content in the ranker’s input.

Method Extractor/Sumarizer P % R % F1 %

DRMM original text 27.05 37.16 31.31
DRMM KLI (1-gram) 47.95 67.43 56.05
Vanilla BERT original text 36.92 50.16 42.53
Vanilla BERT summaryQ arXiv-LED 40.26 57.02 47.19
Vanilla BERT summaryQ fine-tuned LED 49.23 62.22 54.96
Vanilla BERT summaryQC fine-tuned LED 29.10 45.50 35.49
Vanilla Legal BERT summaryQ fine-tuned LED 46.77 61.54 53.14
Vanilla Legal BERT summaryQC fine-tuned LED 40.26 58.34 47.64

Longformer original text 30.38 39.00 34.15
Longformer summaryQ arXiv-LED 35.10 43.40 38.81
Longformer summaryQ fine-tuned LED 39.04 44.20 41.46

Table 4
Results of ensemble classifiers and comparison with the Cy-
ber team which is the best team on COLIEE’20 [7]. Precision
and recall are not reported for the COLIEE’20 best result

Method Features P % R % F1 %

Naive Bayes Best BM25 & best Vanilla BERT 72.95 83.66 76.02
SVM linear Best BM25 & best Vanilla BERT 71.74 83.77 74.61
SVM RBF Best BM25 & best Vanilla BERT 70.11 83.24 72.37
MLP Best BM25 & best Vanilla BERT 70.68 83.46 73.20

Cyber (first team in COLIEE’20) - - 67.74

Table 5
Retrieval results for the ranking of documents of COLIEE’21.
Precision and recall are not reported for the COLIEE’21 best
result. 𝑘 is the optimal cut-off value for each method on this
data.

Method Extractor/Sumarizer P % R % F1 %

BM25 original text (𝑘 = 7) 7.77 19.59 11.13
BM25 KLI (1-gram) (𝑘 = 6) 9.83 19.80 13.13
BM25 optimized KLI (1-gram) (𝑘 = 4) 17.00 25.36 20.35
Vanilla BERT fine-tuned LED (𝑘 = 7) 2.11 5.46 3.04

TLIR (first team in COLIEE’21) - - 19.17

ble 4. With our ensemble models we improve over the
best benchmark result (the Cyber team) by a large margin.
The best ensemble model in terms of F1 on the validation
set is a combination of the best BM25 ranker (BM25-
optimised + KLI) and the second-best neural ranker
Vanilla BERT (Vanilla BERT + SummaryQ (fine-tuned
LED)). This indicates that BERT can add more to the com-
bination with BM25 than the best neural model DRMM
can.

COLIEE’21 results For evaluating the generalizability
of our results, we evaluated the best methods on the COL-
IEE’21 data. As explained in Section 4.1, the COLIEE’21
task is more difficult than the COLIEE’20 task because it
requires retrieval from a full document collection instead



of re-ranking 200 documents. We optimised the BM25
parameters and the cut-off value 𝑘 on the COLIEE’21
validation set. As shown in Table 5, we beat the state-
of-the-art result (TLIR team) with the optimized BM25
ranker. The poor result of Vanilla BERT on COLIEE’21
shows us that neural retrieval has more challenges for
ranking the whole collection than with re-ranking the
top-200. We also applied ensemble classifiers combining
BM25 and Vanilla BERT but they could not improve the
effectiveness; we suppose that it is caused by the lower
performance of Vanilla BERT on COLIEE’21.

5. Discussion
The effect of summarization The results show that
summarizing the query document improves all rankers.
This holds for the KLI term extraction, noun phrase ex-
traction, and the LED summarizer. This shows the impor-
tance of summarization for making the query documents
shorter. Our results show that the best summarizing
methods for neural ranking and lexical ranking are LED
(fine-tuned) and keyword extraction (KLI) respectively.
However, summarizing the candidate documents does
not improve the neural ranking performance. Another
observation is that fine-tuning the summarizer improves
the ranking in terms of F-measure for all rankers. We see
the largest effect from summarization for Vanilla BERT.

Analysis of unexpected results One unexpected re-
sult is that our Longformer ranker does not outperform
the Vanilla BERT ranker. We speculate that this is because
longformer receives more tokens as the input learning,
which makes it more difficult to estimate the relevance
between document and query, while the size of the train-
ing set is relatively small: In COLIEE’20, we have only
2, 680 relevant labels and Longformer could not converge
during training – it did not find the optimal loss after
100 epochs. For future work, we will further pre-train
Longformer on legal documents. This requires a GPU
with 32GB Ram which is not easily accessible.

Our results also show that DRMM could not beat BM25
for case law retrieval. Some prior work has also indicated
that for some datasets, DRMM is close to BM25 in quality
and that sometimes BM25 works better than DRMM [26,
27, 28], especially when BM25 is properly optimized.

The third unexpected result is that the best Vanilla
Legal BERT (summaryQ) does not outperform the best
Vanilla BERT model. We suppose this can be related to
language similarity between COLIEE cases and part of
the data that BERT Base was trained on (Wikipedia, and
more than thousand thousands books) because cases in
COLIEE contain stories of applicant’s lives and this is
almost the bigger part of each document.

Analysis weights of classifiers As suggested in [29],
we interpret the importance of Vanilla BERT feature in
the ensemble classifiers based on the coefficient value in
fitted SVM (linear). For Vanilla BERT the coefficient is
higher (0.56) than BM25’s coefficient (0.43).

Analysis hyperparameters of BM25 The optimal
value for 𝑏 in the literature is between 0.3 − 0.9 [30,
31, 32] and we found 𝑏 = 0.9 for the optimised BM25
with KLI. There are documents in COLIEE that, because
of their length, contain multiple topics, and it was sug-
gested before that documents that includes a variety of
topics benefit from using a larger 𝑏 so that unrelated top-
ics to a user’s search are penalized.11 The normal range
for 𝑘1 is between 0 and 3 and for long documents that
contain diverse information the 𝑘1 should tend to larger
numbers [32]. We found the optimal value for 𝑘1 = 2.8
for BM25 with KLI which makes sense because of the
long documents in COLIEE.

Using noun phrases or named entities We experi-
mented with noun phrases and named entities as doc-
ument representation, inspired by Shao et al. [4]. Our
experiments show that the effectiveness of using named
entities instead of original content is much lower than
of using noun phrases: The F1 score for BM25 optimised
+ Q entities C entities is 22.71% while F1 for BM25 op-
timised + Q NP C NP is 56.88%. Although the use of
named entities was suggested in prior work, they do not
play an important role in case law documents, at least not
so much that using them as document representations
leads to effective retrieval.

Future work Some prior work has obtained good re-
sults with passage-level analysis for long document rank-
ing [24, 33]. We think it is a promising direction to com-
bine these passage-level with document-level methods
to design a more effective legal case retrieval system
for future work. One challenge is that this approach
is computationally expensive since each paragraph of
the query document needs to be compared with each
paragraph of the candidate documents. We have query
documents with up to 1,139 paragraphs in COLIEE. For
future work we will focus on combining lexical document
retrieval with efficient paragraph-level retrieval. We will
also evaluate how we can use COGLTX [5] to recognize
the important sentences from the query cases and docu-
ment cases without having the limitation in length as a
pre-processing step. Inspired by [33], another direction
is working on neural models for legal case retrieval on
ranking instead of re-ranking because in coliee’21 there
are 4, 415 candidates per query (whole collection).

11https://www.elastic.co/blog/practical-bm25

https://www.elastic.co/blog/practical-bm25-part-3-considerations-for-picking-b-and-k1-in-elasticsearch


6. Conclusions
In this paper, we addressed the challenge of long doc-
uments in case law retrieval. We experimented with
the Longformer-Encoder-Decoder (LED) for abstractive
summarization of case law documents in the COLIEE
benchmark data. The fine-tuned LED outperforms the
2019 baseline in terms of F-measure for all three ROUGE
metrics.

Second, we implemented a pairwise Longformer
ranker for long documents and compared it to four
other ranking models on the COLIEE’20 benchmark data:
BM25, LM, DRMM, and Vanilla BERT. We found how-
ever that BM25 outperforms all neural rankers on this
task and that the Longformer ranker is outperformed by
BERT.

Third, we evaluated the merits of query document sum-
marization for the BM25, BERT and Longformer rankers.
We found that summarizing the query document im-
proves the quality of each of the rankers compared to us-
ing the original document. For BM25, we also compared
the LED-summary to statistical query term extraction
(KLI), and we found that summarization gives a higher
recall, but term extraction gives a higher precision.

Fourth, we showed the effectiveness of combining an
optimised BM25 ranker and a BERT ranker, outperformin-
ing the state of the art on two benchmark sets. We con-
clude that retrieval for long query documents in legal
case retrieval can be helped by optimising lexical models,
automatic summarization, and a combination of both.
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