
Exploring Datasets via Cell-Centric Indexing
Jeff Heflin1, Brian D. Davison1 and Haiyan Jia2

1Computer Science & Engineering, Lehigh University, 113 Research Dr., Bethlehem, PA, 18015, USA
2Journalism and Communication, Lehigh University, 33 Coppee Dr., Bethlehem, PA, 18015, USA

Abstract
We present a novel approach to dataset search and exploration. Cell-centric indexing is a unique indexing strategy that
enables a powerful, new interface. The strategy treats individual cells of a table as the indexed unit, and combining this
with a number of structure-specific fields enables queries that cannot be answered by a traditional indexing approach. Our
interface provides users with an overview of a dataset repository, and allows them to efficiently use various facets to explore
the collection and identify datasets that match their interests.

Keywords
cell-centric indexing, dataset search, exploratory interface,

1. Introduction
The twenty-first century has experienced an informa-
tion explosion; data is growing exponentially and users’
information retrieval needs are becoming much more
complicated [1]. Given people’s increasing interests in
datasets, there is a need for user-friendly search services
for data journalists, scientists, decision makers, and the
general public to locate datasets that can meet their data
needs.

Even though users, under many circumstances, are
not experts in the domain in which they search, they
should be able to easily use such an application; the query
process should be responsive and efficient. The result
should provide a general picture of what the dataset is
about, and offer enough information for the searcher to
know how likely the dataset will contain data that they
look for.

Traditional database management systems group data
by tables and then organize this data into rows and
columns. When users are aware of the database schema,
they can construct queries, but what if users are simply
trying to find which tables in a large data lake are rel-
evant to their needs? One approach is to simply index
information about the table in various fields: e.g., title,
description, columns, etc. While this approach may be
sufficient for some queries, in many cases the user will

DESIRES 2021 – 2nd International Conference on Design of
Experimental Search & Information REtrieval Systems, September
15–18, 2021, Padua, Italy
" heflin@cse.lehigh.edu (J. Heflin); davison@cse.lehigh.edu (B. D.
Davison); haiyan.jia@lehigh.edu (H. Jia)
~ http://www.cse.lehigh.edu/~heflin/ (J. Heflin);
http://www.cse.lehigh.edu/~brian/ (B. D. Davison);
https://journalism.cas.lehigh.edu/content/haiyan-jia (H. Jia)
� 0000-0002-7290-1495 (J. Heflin); 0000-0002-9326-3648 (B. D.
Davison); 0000-0002-8388-7860 (H. Jia)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

not be able to determine if the table is a perfect match
until they have downloaded the (potentially large) table.

Studies have shown that understanding what is inside
the content of a dataset, rather than simply the dataset
descriptions and metadata, could be critical for their eval-
uation of whether any of the search results sufficiently
matches the search need, especially for non-expert users.
For instance, a recent user study [2] has revealed that
query refinement, as a result of unsatisfying search re-
sults, is negatively associated with user experience with
the dataset search tools. What reduces the need for query
refinement is a preview of the dataset content, which
helps users gauge the relevance of the datasets. Simi-
larly, an experimental study that explores novel dataset
search engine prototypes has found that interfaces with
a content preview feature were perceived as more usable.
In particular, non-expert users reported greater benefits
from the content preview, as they rated the interfaces
with higher levels of usefulness, ease of use, usability,
and technology adoption intention, than expert users
[3]. These indicate the strong need for understanding
the actual content of datasets, even at the cell level.

To enable sufficient query refinement for schema-
optional queries, we present the novel concept of cell-
centric indexing. The key idea is that we use individuals
cells of a table as the fundamental unit and build inverted
indices on these cells. These indices provide different
fields that index both the content of the cell and its con-
text. For our purposes, the context includes other cell
values in the same row, the name of the column (if avail-
able), and metadata about the containing dataset. This
approach allows us to refine our search by row descrip-
tors, column descriptors or both at the same time. In
essence we free the data from how it is structured, and
schema information, when available, is merely one of the
many ways to locate the data of interest. Thus, we take
the view that fundamentally, users are searching for spe-
cific data (i.e., particular cells or collections thereof), and

mailto:heflin@cse.lehigh.edu
mailto:davison@cse.lehigh.edu
mailto:haiyan.jia@lehigh.edu
http://www.cse.lehigh.edu/~heflin/
http://www.cse.lehigh.edu/~brian/
https://journalism.cas.lehigh.edu/content/haiyan-jia
https://orcid.org/0000-0002-7290-1495
https://orcid.org/0000-0002-9326-3648
https://orcid.org/0000-0002-8388-7860
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

the tables are merely artifacts of how the data is stored.
We recognize that this approach also has downsides.

In particular, an index of cells (and their contexts) will
incur substantial storage overhead in comparison to an
index of dataset metadata. Moreover, if the desired search
result is one or more datasets, at run-time there will be
additional processing to assemble the cell-specific results
to enable the retrieval and ranking at that level of granu-
larity. However, our cell-centric approach gives us some
additional flexibility and we believe that good system de-
sign, appropriate data structures, and efficient algorithms
can ameliorate the costs.

This paper incorporates material previously presented
in a poster [4] and a workshop [5]. Our contributions of
this paper are:

• We propose cell-centric indexing as an innovative
approach to an information retrieval system. A
cell-centric index enables a user to find data with-
out having to know the pre-existing structure of
each table;

• We describe the mechanisms of one implementa-
tion of a cell-centric dataset search engine. We
describe the structure and method of data storage
and querying of our server; and,

• We describe a novel prototype interface that lever-
ages cell-centric indexing in order to give users
summaries of a dataset repository in terms of ti-
tles, content, and column names. The user can
filter on any of these facets to generate more spe-
cific summaries.

The rest of the paper is organized as follows: we first
discuss related work, briefly describe the idea of cell-
centric indexing and its advantages and disadvantages,
introduce the structure of our server and the methodol-
ogy involved in querying, and finally describe a prototype
interface.

2. Related Work
Scholars have investigated exploratory search to help
searchers succeed in an unfamiliar area by proposing
novel information retrieval algorithms and systems; some
of them propose innovative user interfaces, while oth-
ers try to predict the user’s information need and to
use the prediction to better facilitate the subsequent in-
teraction. Chapman et al. [6] have reviewed different
approaches to dataset search. Google’s dataset search
[7] is an example of a traditional approach to indexing
web datasets: the system crawls the Web and indexes
dataset that have metadata expressed in the schema.org
(or a related) format. The only required properties are
name and description.

Derthick et al. [8] describe a visual query language
that dynamically links queries and visualizations. The
system helps a user to locate information in a multi-
object database, illustrates the complicated relationship
between attributes of multiple objects, and assists the
user to clearly express their information retrieval needs
in their queries. Similarly, Yogev et al. [9] demonstrate an
exploratory search approach for entity-relationship data,
combining an expressive query language, exploratory
search, and entity-relationship graph navigation. Their
work enables people with little to no query language
expertise to query rich entity-relationship data.

In the domain of web search, Koh et al. [10] devise a
user interface that supports creativity in education and
research. The model allows users to send their query to
their desired commercial search engine or social platform
in iterations. As the system goes through each iteration,
it will combine the text and image results into a compo-
sition space. Addressing a similar problem, Bozzon et
al. [11] design an interactive user interface that employs
exploratory search and Yahoo! Query Language (YQL)
to empower users to iteratively investigate results across
multiple sources.

A tag cloud is a common and useful visualization of
data that represents relative importance or frequency via
size. Some researchers have adapted this idea to visualize
query results. Fan et al. [12] focus on designing an in-
teractive user interface with image clouds. The interface
enables users to comprehend their latent query inten-
tions and direct the system to form their personalized
image recommendations. Dunaiski et al. [13] design and
evaluate a search engine that incorporates exploratory
search to ease researchers’ scouting for academic publica-
tions and citation data. Its user interface unites concept
lattices and tag clouds to present the query result in
a readable composition to promote further exploratory
search. On the other hand, Zhang et al. focus their work
on knowledge graph data [14]. They combine faceted
browsing with contextual tag clouds to create a system
that allows users to rapidly explore graphs with billions
of edges by visualizing conditional dependencies between
selected classes and other data. Although they don’t use
tag clouds, Singh et al. [15] also display conditional de-
pendencies in their data outline tool. For a given pivot
attribute and set of automatically determined compare
attributes, they show conditional values, grouped into
clusters of interaction units.

Other scholars have investigated query languages and
models. Ianina et al. [1] concentrate on developing an
exploratory search system that facilitates the user hav-
ing a way to conduct long text queries, while minimiz-
ing the risk of returning empty results, since the itera-
tive “query–browse–refine” process [16] may be time-
consuming and require expertise. Meanwhile, Ferré and
Hermann [17] focus more on the query language, LISQL,

and they offer a search system that integrates LISQL and
faceted search. The system helps users to build complex
queries and enlightens users about their position in the
data navigation process.

Yet another approach is to predict the user’s search
intent so that better search results can be presented. Pel-
tonen et al. [18] utilize negative relevance feedback in
an interactive intent model to direct the search. Negative
relevance feedback predicts the most relevant keywords,
which are later arranged in a radar graph where the
center denotes the user, to represent the user’s intent.
Likewise, Ruotsalo et al. [19] propose a similar intent
radar model that predicts a user’s next query in an inter-
active loop. The model uses reinforcement learning to
control the exploration and exploitation of the results.

3. Cell-Centric Indexing
We define a table as 𝑇 = ⟨𝑙,𝐻, 𝑉 ⟩ where 𝑙 is the label
of the table, 𝐻 = ⟨ℎ1, ℎ2, ..., ℎ𝑛⟩ is a list of the column
headers, and 𝑉 is an𝑚×𝑛matrix of the values contained
in the table. 𝑉𝑖,𝑗 refers to the value in the 𝑖-th row and
the 𝑗-th column, which has the heading ℎ𝑗 . We note
that this model can be easily extended to include other
metadata, as appropriate.

A naïve approach to indexing a collection of datasets
would be to simply treat each table as a document, and
have separate fields for the label, column headings, and
(possibly) values. When terms are used consistently and
the user is familiar with the terminology, this may work
well. However, this approach has several weaknesses:

• Any query on values has lost context of what
column the value appears in and what identify-
ing information might be present elsewhere in
the same row. For example, a table that contains
capitals like (Paris, France) and (Austin, Texas)
is unlikely to be relevant to a query about “Paris
Texas” but would otherwise match.

• It is difficult to determine which new terms can
be used to refine the query. Users would need
to download some of the datasets and choose
distinctive terms from the most relevant ones.

• A user’s constraint could be represented in dif-
ferent tables in very different ways. If the user
is looking for “California Housing Prices”, there
may be a table with some variant of that name,
there may be a “Real Estate Prices” table with
rows specific to California, or there may be a
“Housing Prices” table that has a column for each
state, including California. A user should be able
to explore the collection to see how the data is
organized and what terminology is used.

We have proposed cell-centric indexing as a novel way
to address the problems above. Rather than treating the

table as the indexed object, each datum (cell in the table)
is an indexed object. In its simplest form, we propose
four fields: content: the value of the cell, title: the label of
the dataset the cell appears in, columnName: the header
of the column the cell appears in, and rowContext: the
values in all cells in the same row as the indexed cell. For-
mally, a cell value𝑉𝑖,𝑗 from table𝑇 = ⟨𝑙,𝐻, 𝑉 ⟩ can be in-
dexed with: content = 𝑉𝑖,𝑗 , title = 𝑙, columnName = ℎ𝑗 ,
and rowcontext =

⋃︀𝑛
𝑘=1 𝑉𝑖,𝑘 . This index would allow

users to find all cells that have a column header token in
common regardless of dataset, or all cells that appear in
the same row as some identifying token, or look for the
occurrence of specific values in specific columns.

However, in this form, users still need to know which
keywords to use and which fields to use them in. A cell-
centric index alone is not helpful to a user who is not
already familiar with the collection of datasets. In order
to support the user in exploring the data, we propose
the abstraction conditional frequency vectors (CFVs). Let
𝐼 be a set of items, 𝐷 be a set of descriptors (e.g., tags
that describe the items), and 𝐹 ⊆ 𝐼 ×𝐷 be a set of item
and descriptor pairs ⟨𝑥𝑖, 𝑑𝑖⟩. Let 𝑄 be a query, where
𝑄(𝐹) ⊆ 𝐹 represents the pairs for only those items that
match 𝑄. Then a CFV for 𝑄 and 𝐹 is a set of descriptor-
frequency pairs where the frequency is the number of
times that the corresponding descriptor occurs within
𝑄(𝐹): {⟨𝑑, 𝑓⟩ | 𝑓 = #{⟨𝑥, 𝑑⟩| ⟨𝑥, 𝑑⟩ ∈ 𝑄(𝐹)}}. For
cell-centric indexing, the items 𝐼 are the set of all cells re-
gardless of source dataset, and 𝐹𝑖 pairs cells with terms
from the 𝑖-th field. For example, if a cell 𝑐5 was in a
column titled "Real Estate Price," then 𝐹𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒 in-
cludes the pairs ⟨𝑐5, 𝑟𝑒𝑎𝑙⟩, ⟨𝑐5, 𝑒𝑠𝑡𝑎𝑡𝑒⟩, and ⟨𝑐5, 𝑝𝑟𝑖𝑐𝑒⟩.
Typically, we sort the CFV in terms of descending fre-
quency.

4. System Architecture
The architecture of the system is depicted in Figure 1. At
the core of our system is an Elasticsearch server. Elastic-
search [20] is a scalable, distributed search engine that
also supports complex analytics. Our system has two
main functions: 1) parse collections of datasets, map
them into the fields of a cell-centric index, and send index-
ing requests to Elasticsearch; and, 2) given a user query,
issue a series of queries to Elasticsearch and construct
histograms (CFVs) for each field. The Query Processor
translates our high-level query API into specific Elastic-
Search queries, and assembles the results into CFVs.

4.1. Index Definition
In Elasticsearch, a mapping defines how a document will
be indexed: what fields will be used and how they will
be processed. In cell-centric indexing the cell is the

Figure 1: High-level system architecture

document, and our index must have fields that describe
cells. Our mapping is summarized in Table 1. In addition
to the four fields mentioned in Section 3, we have fields
for the fullTitle (used to identify which specific datasets
match the query) and metadata such as tags, notes, or-
ganization, and setId. The setId allows us to distinguish
between different datasets with the same title, and to get
an accurate count of how many datasets match a query.
Note, that content is divided into two fields: content and
contentNumeric, for reasons that will be described below.
For each field, we give its type and, if applicable, the
analyzer used to process text from the field.

We use three types of fields: text, keyword, and double.
Text type fields are tokenized and processed by word
analyzers, whereas keyword type fields are indexed as
is (without tokenization or further processing). Double
type fields are used to store 64-bit floating point numbers.
Most of our fields are text fields, but contentNumeric is a
double field, which allows it to store both integer and real
numeric values, and both fullTitle and setid are keyword
fields, since we want users to be able to view the complete
name of the dataset in the result, and there is no need to
parse setIds.

All text fields require an analyzer which determines
how to tokenize the field and if any additional processing
is required. We use two built-in Elasticsearch analyzers:
the stop analyzer divides text at all non-letter characters
and removes 33 stop words (such as “a”, “the”, “to”, etc.).
For most fields, we use the stop analyzer, but we use
the wordDelimiter analyzer for the colunnName field. In
addition to dividing text at all non-letter characters, it
also divides text at letter case transitions (e.g., “birthDate”
is tokenized to “birth” and “date”). This analyzer does
not remove stop words.

4.2. Indexing a Dataset
The system loads each dataset using the following pro-
cess:

1. Read the metadata, which can include title, tags,
notes and organization. If the original table is for-
matted as CSV, then this data might be contained
in a separate file in the same directory, or as a row
in a repository index file. If the table is formatted
using JSON, the metadata may be specified along
with the content, and there may be many datasets
described in a single file.

2. Read the column headings ⟨ℎ1, ℎ2, ..., ℎ𝑛⟩
3. For each row in the dataset:

a) Read the row values: ⟨𝑣1, 𝑣2, ..., 𝑣𝑛⟩
b) Create rowContext by concatenating the

values in the row. Note, to avoid creat-
ing different large context strings for each
value in the row, we create a single row-
Context. This means that each value is also
part of its own row context. This decision
helps make the system more efficient. An
additional efficiency consideration is that
each value included in rowContext is trun-
cated to the first 100 characters.

c) Build an index request for each cell value
𝑣𝑖. If the content is numeric (integer or
real), it will be indexed in the contentNu-
meric field; otherwise it is indexed in the
content field. The columnName field will
be indexed with the corresponding header
ℎ𝑖. The title is indexed twice, once as a
tokenized field that can be used in queries,
and again as a keyword field that preserves
the order of the title and can be used to
precisely identify the dataset the cell origi-
nated from. All other metadata fields are
indexed in a straight-forward way.

Field Type Analyzer
columnName text wordDelimiter

content text stop
contentNumeric double N/A
rowContext text stop

title text stop
fullTitle keyword N/A
tags text stop
notes text stop

organization text stop
setid keyword N/A

Table 1
Elasticsearch mappings used to implement cell-centric index-
ing

Figure 2: Initial pre-query histograms

d) For efficiency, index requests are batched
and sent to the server in bulk. Synchro-
nization is disabled in ElasticSearch during
bulk loading to avoid excessive delays.

4.3. Querying the index
Our Query Processor takes a conjunctive, fielded query
and returns a histogram for each response field. The re-
sponse fields are fields that contain information that helps
the user understand the characteristics of cells that match
the query. Currently, response fields are title, column-
Name, content, rowContext, and fullTitle. Given a query
𝑞, the query process is:

1. Issue query 𝑞 requesting term aggregations for ti-
tle, columnName, content, rowContext and fullTi-
tle, Term aggregations are a feature of Elastic-
search that return a list of terms that appear in the
selected documents, along with their frequency,
i.e., CFV’s for 𝑞.

2. Calculate the min 𝑎 and max 𝑏 for matching con-
tentNumeric data.

3. Select a representative set𝑁 of matching numeric
content by issuing a percentile query against the
contentNumeric field that excludes the top and
bottom 5 percent of the data.

4. Calculate the mean 𝜇 and standard deviation 𝜎
of set 𝑁 .

5. If 𝑎 < 𝜇− 1.5𝜎 and 𝑏 > 𝜇+ 1.5𝜎 (i.e., numeric
data is not particularly skewed), build an aggrega-
tion query for contentNumeric data using ranges
calculated from 𝜇 and 𝜎: the lowest range is [𝑎,
𝜇 – 1.5𝜎] and the highest is [𝜇 + 1.5𝜎, 𝑏], where
there are 3 intermediate ranges of uniform size
with the middle range 𝜇 – 0.5𝜎, 𝜇 + 0.5𝜎]. If data
are skewed, the ranges are shifted appropriately.

6. Issue an Elasticsearch histogram aggregation
query with the calculated ranges. Treat each
range as a content term, and insert these terms
and their frequencies into the the content CFV.

7. Return CFVs for each response field.

Much of the processing above allows the system to
dynamically determine buckets for numeric content that
provide a useful picture of its distribution. Unlike textual
terms, numeric terms exhibit greater variability. His-
tograms built using distinct numeric strings are unlikely
to have significant value. For example, “135”, “135.0” and
“1.35E+2” are all equivalent, while many users might con-
sider “135.0001” to be close enough. To address this, we
create ranges over numeric values. Our approach com-
putes the mean and standard deviation over the middle
90% of data, thus removing the influence of outliers, and
then specifies the buckets to have a width of one standard
deviation with one bucket centered over the mean. Once
the histogram of numeric ranges is created, its data is
merged with the content histogram to produce a single
histogram that shows frequencies of textual terms and

Figure 3: Search results with query: title=olympics

numbers within ranges that depend both on the dataset
and the query.

5. Prototype User Interface
An example of a typical use case is demonstrated using
Figures 2-4. In this specific case, the user wants to find a
dataset containing data on Kenya’s performance in the
2004 Athens Olympics. Initially, the user is presented
with the graphs in Fig. 2. These histograms show the
most frequent title and column terms in the collection
of indexed datasets. However, the example histograms
do not initially show anything regarding the Olympics.
By using the “More Items” button at the bottom of the
title histogram the user can find the term Olympics and
add it directly to their query. After this term is added the
screen changes to that shown in Fig. 3. The user can now
look through all 4 histograms and decide which term best
helps them get to their desired data. Once again using
the “More Items” button, the term Athens can be found

in the content histogram. Once this is added the user
might direct themselves to the full title histogram shown
in Fig. 4. There the user can find a dataset titled “Kenya
at the Olympics Medalists”. To gain access to the dataset
the user must add the full title to their query. Once a
full title is in the query a button appears that performs a
Google query of the full title. Since this specific dataset is
from WikiTables, the Google query will provide a link to
the Wikipedia page containing the table. We now discuss
specific interface components in more detail.

5.1. Pre-query Histograms
Before any search parameters are set, the user is shown
two pre-query histograms that return up to the 50 most
frequent title and column name tokens within the current
repository (see Fig. 2). Column name and title histograms
provide a good overview and are vital in allowing the
user to explore the datasets without prior knowledge of
the contents. The pre-query histograms are presented to
the user when there are no active queries, such as when

the page is initially loaded or when all queries have been
deleted. Clicking on a histogram bar will automatically
add the corresponding term to the query and generate
the standard set of histograms.

5.2. Results Histograms
The standard screen displays the user’s current query
and five histograms. Each histogram is associated with a
field, and tokens are sorted in descending frequency of co-
occurrence with the query. The length of a bar indicates
how many cells match the query. As with the pre-query
histograms, clicking on a bar adds the associated term to
the query, and generates a new result histogram. Below
each histogram is an option to provide more results on the
histogram. Initially, each histogram presents the top 10
results, however, the top 25 results are pre-fetched which
allows the newly requested results to be automatically
added to the histogram.

Due to the connection between the count of matched
cells and bar length, there is the possibility that the first
bar will be significantly larger than all remaining bars,
making them difficult to see or select. To combat this,
we compare the counts of the two most frequent results.
If the first result contains 10 times more hits than the
second most frequent we change the scale of the his-
tograms to logarithmic, thus making it easier to visualize
distinctions in skewed distributions.

Figure 3 shows the response of our prototype inter-
face to the query with title=“olympics”. It displays a
CFV for each field as a histogram; the longer the red bar,
the more frequently that term co-occurs with the query.
As we can see, 318 datasets contain matches, and after
“olympics,” the most common title word is “summer.” The
most frequently-occurring terms in the column names of
matching cells are “RANK” and “attempts”. The content
histogram combines terms with numeric ranges. In par-
ticular, the first, second, and fifth rows were all inserted
by the numeric range processing (as described previously
in Sect. 4.3). For this query, there are many cells with
values between 0 and 4, and slightly fewer with values
between 4 and 21. The next most common content val-
ues are the terms “olympics” and “summer.” Note, the
figure does not show the histogram for full titles that
corresponds to this query (but is still part of the proto-
type interface). As discussed in the next paragraph, this
histogram indicates how many matching cells are in each
dataset.

The user can refine their query and create new his-
tograms by clicking on any terms in the result. For ex-
ample, if the user clicks on “athens” in the content his-
togram (after scrolling down), the system will display
a new set of histograms summarizing the datasets that
have “athens” as a content field and “olympics” in the ti-
tle; in other words the query will be title=“olympics” and

Figure 4: Results of Full Title Histogram with query:
title=olympics, content=athens

content=“athens”. For this refinement, we show the Full
Title histogram (see Fig. 4). In this histogram, the bars
represent the number of cells in a data set that match the
user’s query. The user can add this bar to the query to get
specific information about the distribution of terms in
the chosen dataset. Additionally, this enables the option
to search for the dataset, which is accomplished using a
Google query of the dataset’s full title.1 The user can con-
tinue to explore the dataset collection by adding terms
to and removing terms from the query.

6. Conclusion
We have proposed cell-centric indexing as an innova-
tive approach to information retrieval of tabular datasets.
Such indices support richer queries about tables that do
not require the user to know the pre-existing structure
of each table. They also provide the potential for new
exploratory interfaces, and we describe one that gives
users summaries of a dataset repository in terms of ti-
tles, content, and column names. The user can filter on
any of these facets to generate more specific summaries.
Future work will test the effectiveness of this novel ap-
proach in facilitating dataset searches especially amongst
non-expert users.

Acknowledgments
This material is based upon work supported by the Na-
tional Science Foundation under Grant No. III-1816325.
Lixuan Qiu and Drake Johnson contributed to early drafts
of this paper. We thank Alex Johnson, dePaul Miller,
Keith Register, and Xuewei Wang for contributions to
the system implementation.

1Many of our dataset collections do not have a URL recorded,
which is why we do not simply link to the dataset as a result.

References
[1] A. Ianina, L. Golitsyn, K. Vorontsov, Multi-objective

topic modeling for exploratory search in tech news,
in: A. Filchenkov, L. Pivovarova, J. Žižka (Eds.), Ar-
tificial Intelligence and Natural Language, Springer,
2017, pp. 181–193. Communications in Computer
and Information Science, vol 789.

[2] H. Borchart, Effects of content preview on query
refinement in dataset search, Senior Project Re-
port, Cognitive Science Program, Lehigh University,
Bethlethem, PA, 2021.

[3] L. Miller, Facilitating dataset search of non-expert
users through heuristic and systematic information
processing, Honors Thesis, Cognitive Science Pro-
gram, Lehigh University, Bethlethem, PA, 2020.

[4] D. Johnson, K. Register, B. D. Davison, J. Heflin, An
exploratory interface for dataset repositories using
cell-centric indexing, in: Proceedings of the 2020
IEEE International Conference on Big Data (IEEE
BigData 2020), 2020, pp. 5716–5718. Poster paper.

[5] L. Qiu, H. Jia, B. D. Davison, J. Heflin, An architec-
ture for cell-centric indexing of datasets, in: Pro-
ceedings of PROFILES’20: 7th International Work-
shop on Dataset PROFILing and Search, 2020, pp.
82–96. Held with ISWC 2020.

[6] A. Chapman, E. Simperl, L. Koesten, G. Konstan-
tinidis, L.-D. Ibáñez, E. Kacprzak, P. Groth, Dataset
search: a survey, The VLDB Journal 29 (2020) 251–
272.

[7] N. Noy, M. Burgess, D. Brickley, Google dataset
search: Building a search engine for datasets in an
open Web ecosystem, in: Proceedings of The Web
Conference, 2019, pp. 1365–1375.

[8] M. Derthick, J. Kolojejchick, S. F. Roth, An in-
teractive visual query environment for exploring
data, in: Proceedings of the 10th Annual ACM
Symposium on User Interface Software and Tech-
nology, UIST ’97, Association for Computing Ma-
chinery, New York, NY, USA, 1997, p. 189–198.
doi:10.1145/263407.263545.

[9] S. Yogev, H. Roitman, D. Carmel, N. Zwerdling, To-
wards expressive exploratory search over entity-
relationship data, in: Proceedings of the 21st Inter-
national Conference on World Wide Web, WWW
’12 Companion, Association for Computing Machin-
ery, New York, NY, USA, 2012, p. 83–92. doi:10.
1145/2187980.2187990.

[10] E. Koh, A. Kerne, R. Hill, Creativity support: In-
formation discovery and exploratory search, in:
Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’07, Association for
Computing Machinery, New York, NY, USA, 2007,
p. 895–896. doi:10.1145/1277741.1277963.

[11] A. Bozzon, M. Brambilla, S. Ceri, P. Fraternali, Liq-
uid query: Multi-domain exploratory search on
the web, in: Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, As-
sociation for Computing Machinery, New York,
NY, USA, 2010, p. 161–170. doi:10.1145/1772690.
1772708.

[12] J. Fan, D. A. Keim, Y. Gao, H. Luo, Z. Li,
Justclick: Personalized image recommendation via
exploratory search from large-scale flickr images,
IEEE Transactions on Circuits and Systems for
Video Technology 19 (2008) 273–288.

[13] M. Dunaiski, G. J. Greene, B. Fischer, Exploratory
search of academic publication and citation data
using interactive tag cloud visualizations, Sciento-
metrics 110 (2017) 1539–1571.

[14] X. Zhang, D. Song, S. Priya, J. Heflin, Infrastructure
for efficient exploration of large scale linked data
via contextual tag clouds, in: International Seman-
tic Web Conference, Springer, 2013, pp. 687–702.

[15] M. Singh, M. J. Cafarella, H. V. Jagadish, Dbex-
plorer: Exploratory search in databases, in: E. Pi-
toura, S. Maabout, G. Koutrika, A. Marian, L. Tanca,
I. Manolescu, K. Stefanidis (Eds.), Proceedings
of the 19th International Conference on Extend-
ing Database Technology, EDBT 2016, Bordeaux,
France, March 15-16, 2016, OpenProceedings.org,
2016, pp. 89–100. doi:10.5441/002/edbt.2016.
11.

[16] R. W. White, R. A. Roth, Exploratory Search: Be-
yond the Query-Response Paradigm, Synthesis Lec-
tures on Information Concepts, Retrieval, and Ser-
vices, Morgan & Claypool Publishers, 2009. doi:10.
2200/S00174ED1V01Y200901ICR003.

[17] S. Ferré, A. Hermann, Semantic search: Reconciling
expressive querying and exploratory search, in:
International Semantic Web Conference, Springer,
2011, pp. 177–192.

[18] J. Peltonen, J. Strahl, P. Floréen, Negative rele-
vance feedback for exploratory search with visual
interactive intent modeling, in: Proceedings of
the 22nd International Conference on Intelligent
User Interfaces, IUI ’17, Association for Computing
Machinery, New York, NY, USA, 2017, p. 149–159.
doi:10.1145/3025171.3025222.

[19] T. Ruotsalo, J. Peltonen, M. J. A. Eugster,
D. Głowacka, P. Floréen, P. Myllymäki, G. Jacucci,
S. Kaski, Interactive intent modeling for exploratory
search, ACM Trans. Inf. Syst. 36 (2018). doi:10.
1145/3231593.

[20] C. Gormley, Z. Tong, Elasticsearch: the definitive
guide: a distributed real-time search and analytics
engine, O’Reilly Media, Inc., 2015.

http://dx.doi.org/10.1145/263407.263545
http://dx.doi.org/10.1145/2187980.2187990
http://dx.doi.org/10.1145/2187980.2187990
http://dx.doi.org/10.1145/1277741.1277963
http://dx.doi.org/10.1145/1772690.1772708
http://dx.doi.org/10.1145/1772690.1772708
http://dx.doi.org/10.5441/002/edbt.2016.11
http://dx.doi.org/10.5441/002/edbt.2016.11
http://dx.doi.org/10.2200/S00174ED1V01Y200901ICR003
http://dx.doi.org/10.2200/S00174ED1V01Y200901ICR003
http://dx.doi.org/10.1145/3025171.3025222
http://dx.doi.org/10.1145/3231593
http://dx.doi.org/10.1145/3231593

	1 Introduction
	2 Related Work
	3 Cell-Centric Indexing
	4 System Architecture
	4.1 Index Definition
	4.2 Indexing a Dataset
	4.3 Querying the index

	5 Prototype User Interface
	5.1 Pre-query Histograms
	5.2 Results Histograms

	6 Conclusion

