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Abstract
GeeseDB is a Python toolkit for solving information retrieval research problems that leverage graphs as data structures. It
aims to simplify information retrieval research by allowing researchers to easily formulate graph queries through a graph
query language. GeeseDB is built on top of DuckDB, an embedded column-store relational database designed for analytical
workloads. GeeseDB is available as an easy to install Python package. In only a few lines of code users can create a first
stage retrieval ranking using BM25. Queries read and write Numpy arrays and Pandas dataframes, at zero or negligible data
transformation cost (dependent on base datatype). Therefore, results of a first-stage ranker expressed in GeeseDB can be used
in various stages in the ranking process, enabling all the power of Python machine learning libraries with minimal overhead.
Also, because data representation and processing are strictly separated, GeeseDB forms an ideal basis for reproducible IR
research.
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1. Introduction
In recent years there has been a lot of exciting new infor-
mation retrieval research that makes use of non-text data
to improve the effectiveness of search systems. Consider
for example dense representations for retrieval [1, 2, 3],
knowledge graphs to leverage entity information [4, 5, 6],
and non-textual learning-to-rank features [7, 8]. All these
research directions have improved the effectiveness of
search systems by making use of more diverse data. De-
spite the fact that search systems consider more diverse
sources of data, the usage of this data is often imple-
mented through the use of a coupled architecture. In par-
ticular, first-stage retrieval is often carried out with dif-
ferent software compared to later retrieval stages where
these novel reranking techniques tend to be used. In our
view, researchers could benefit from a system where re-
trieval stages are more tightly integrated, that facilitates
the exploration on how to use non-content data for rank-
ing, and serves the data in a format suitable for reranking
with e.g. transformers or tree based methods.

In order to fulfill these needs we propose GeeseDB1, a
prototype Python toolkit for information retrieval that
leverages graphs as data structures, allowing metadata
and graphs to be easily included in the ranking pipeline.
The toolkit is designed to quickly set up first stage re-
trieval, and make it easy for researchers to explore new
ranking models quickly. In short, GeeseDB aims to pro-
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vide the following functionalities:

• GeeseDB is an easy-to-install, self-contained
Python package available through pip install
with as few as possible dependencies. It contains
topics and relevance judgements for several stan-
dard IR collections out-of-the-box, allowing re-
searchers to quickly start developing new ranking
models.

• First stage (sparse) retrieval is directly supported.
In only a few lines of code it is possible to load
documents and create a first stage ranking.

• Data is served in a usable format for later retrieval
stages. GeeseDB allows to directly run queries
on Pandas data frames for efficient data transfer
to sequential reranking algorithms.

• Data exploration is supported through querying
data with SQL, but more interestingly, also using
a graph query language, making the exploration
of new research avenues easier. This prototype
supports a subset of the graph query language
Cypher [9], a graph query language originally
proposed for Neo4j, similar to the property graph
database model query language as described by
Angles [10].

GeeseDB began as a project after identifying the opportu-
nities for graph queries to improve reproducible IR [11] at
the Open-Source IR Replicability Challenge SIGIR work-
shop [12]. Prior work observed many BM25 implementa-
tions [13, 14], that resulted in wildly varying effectiveness
scores, and the variety of systems participating in this
workshop also found varying BM25 effectiveness scores
between them. Is this really a problem? Several valid



reasons could explain these differences in effectiveness;
document pre-processing, parameter tuning, or even in-
terpretation of the theory to arrive at the exact ranking
formula to be used. When using these scores as a baseline
however, the effectiveness gain of novel methods could
be exaggerated due to the (coincidental) choice for an
implementation of the baseline that gives low effective-
ness. Indeed, Yang et al. [15] showed empirically that
the comparison against weak baselines is a real problem,
that can obfuscate the real gain in effectiveness.

A method introduced into the community to help sim-
plify the comparison between open source search sys-
tems has been the introduction of the Common Index
File Format (CIFF) [16]. CIFF is a binary data exchange
format that can be used by search systems to share their
index structures. This way, researchers ensure that the
exact same pre-processing has been applied when com-
paring different systems to each other. Experiments in
[16] show how differences in (BM25) effectiveness scores
between different implementations do decrease when
their indexes are exchanged using CIFF. GeeseDB there-
fore adopts the CIFF index format to exchange data be-
tween systems.

A second approach to improve the reproducibility of
IR research results has been adopted less widely. By mak-
ing use of a database system, the way how data is stored
and the plans on how this data is processed are explicitly
separated. This enables easier inspection on differences
between ranking formulas. In that perspective, it may
be not so surprising that the only two systems that pro-
duced the exact same effectiveness scores for their BM25
rankings in the studies mentioned above, were the two re-
lational database systems used to rank documents; even
though their execution engines were completely different
and implemented by different teams. Also, in the work by
Kamphuis et al. [17], using a shared database back-end
for a series of retrieval experiments, testing a number of
previously proposed ‘improvements’ of BM25, demon-
strated that these differences between variants turn out
insignificant once everything but the ranking formula is
fixed.

Given these findings, we fully subscribe to the posi-
tion that the declarative specification of ranking in a
database query language offers the potential to improve
reproducibility in IR research. SQL queries that express
more complex ranking functions than the default combi-
nation of term frequency and document frequency, can
however easily become overly tedious to write, elaborate
and error-prone. As the way forward, GeeseDB there-
fore introduces the property graph data model with a
graph query language to express IR retrieval models in a
more compact manner. We show in this work that this
is especially useful when introducing representations of
documents and queries that include information beyond
just text.

2. Design
At the core of GeeseDB lies the full text search design
presented by Mühleisen et al. [14]. In this work, a column-
store database for IR prototyping is proposed, which uses
the database schema described in Figure 1, consisting
of three database tables. (One for all term information,

Term Document

FK1

FK2

doc_id int NOT NULL

term_id int NOT NULL

term_frequency int NOT NULL
Terms

PK term_id int NOT NULL

term_id int NOT NULL

doc_frequency int NOT NULL

Documents

PK doc_id int NOT NULL

length int NOT NULL

collection_id varchar NOT NULL

Figure 1: Database schema by Mühleisen et al. [14] for full
text search in relational databases

one for all document information, and one that contains
the information on how terms relate to documents; the
information that is found in a posting list of an inverted
index). Using these three tables they show that BM25 can
be easily expressed as a SQL query, with latencies that
are on par with custom-build IR engines. In GeeseDB we
use the exact same relational schema for full text search.
Instead of seeing the document data and term data as
tables that relate to each other through a many-to-many
join table, it is also possible to consider this schema as a
bipartite graph. In this graph both documents and terms
are considered as nodes, connected to each other through
edges. If a term occurs in a document there exists an edge
between that term and document. GeeseDB uses the data
model of property graphs; labeled multigraphs where
both edges and nodes can have property-value pairs. The
database schema as described in Figure 1 would then
translate to the property graph schema shown in Fig-
ure 2. A small example of a graph represented by this

Documents

+collection_id: varchar
+length: int

Terms

+string: varchar
+document frequency: int

+ tf: int

Figure 2: Graph schema representing bipartite document-
term graph

schema is shown in Figure 3, document nodes contain
document specific information (i.e. document length and
the collection identifier), term nodes contain informa-
tion relevant to the term (i.e. the term string and the



term’s document frequency), and the the edges between
document and terms nodes contain term frequency in-
formation (i.e. how often is the term mentioned in the
document represented the respective nodes it connects).
If one wants to also store position data, this graph can

doc 1

length: 2
collection_id: "a"

 

doc 2

length: 2
collection_id: "b"

 

doc 3

length: 5
collection_id: "c"

 

term 1

string: "dog"
doc frequency: 1

 

term 2

string: "cat"
doc frequency: 3

 

term 3

string: "music"
doc frequency: 2

 

TF: 1

TF: 1

TF: 1

TF: 1

TF: 3

TF: 2

Figure 3: Example term-document graph that maps to rela-
tional database schema

easily be changed to a graph where the edges store the
position of a term. If a term would appear multiple times
in a document, the property graph model would allow
for multiple edges to exist between two nodes. The graph
schema that we described by Figure 2 maps one-to-one
to the relational database schema described by Figure 1,
so nodes are represented by normal relational tables that
represent specific data units (terms, documents), while
edges are represented by many-to-many join tables. So,
even though we think of the data as graphs, in the back-
end they are represented as relational tables. When using
GeeseDB for search we expect at least the document-term
graph to be present, of course new node types can be
introduced in order to explore new search strategies.

2.1. Backend
GeeseDB is built on top of DuckDB [18], an in-process
SQL OLAP (analytics optimized) database management
system. DuckDB is designed to support analytical query
workloads, meaning that it specifically aims to process
complex long-running queries where a significant por-
tion of the data is accessed, conditions matching the case
of IR research. DuckDB has a client Python API which
can be installed using pip, afterwards it can be used di-
rectly. DuckDB has a separated API built around both
NumPy and Pandas, providing NumPy/Pandas views over
the same underlying data representation, without incur-
ring data transfer (usually referred to as “zero-copy” read-
ing). Pandas DataFrames can be registered as virtual ta-
bles, allowing to directly query the data present in Pandas

DataFrames. GeeseDB inherits all these functionalities
from DuckDB.

As DuckDB is a SQL database management system, we
can execute analytical SQL queries on the tables that con-
tain our data, including the BM25 rankings described by
Mühleisen et al. [14]. By default, the BM25 implementa-
tion provided with GeeseDB implements the disjunctive
variant of BM25, instead of the conjunctive variant they
used. Although the conjunctive variant of BM25 can be
calculated more quickly, we chose to use the disjunctive
variant as it is more commonly used by IR researchers
and the differences between effectiveness scores are no-
ticeable on smaller collections. For now we only support
the original formulation of BM25 by Robertson et al. [19],
however support of or adding other versions of BM25 [17]
is trivial.

2.2. Graph Query Languange
What distinguishes GeeseDB from alternatives, database-
backed (olddog) [20] or native systems (Anserini [21],
Terrier [22]) is the graph query language, based on
Cypher [9]. Systems like Elasic2 and Solr3 do support
querying graphs, but not declaratively. For now, GeeseDB
implements Cypher’s basic graph pattern matching
queries for retrieving data. An example of a graph query
supported by GeeseDB is presented in Figure 4. This

MATCH (d:docs)-[]-(:authors)-[]-(d2:docs)
WHERE d.collection_id = "96ab542e"
RETURN DISTINCT d2.collection_id

Figure 4: An example cypher query that finds all documents
that were written by the same author that wrote the docu-
ment with the collecion_id “96ab542e”

query finds all documents written by the same authors
as those who wrote document “96ab542e”. For compari-
son, Figure 5 illustrates the same query represented in
SQL; much more complex than the Cypher version, due
to the join conditions that have to be made explicit. In
order to connect the “docs” table with the “authors” table
2 joins are needed, reconnecting the “docs” table again
introduces two more joins.

At the moment of writing, GeeseDB supports the fol-
lowing Cypher keywords: MATCH, RETURN, WHERE, AND,
DISTINCT, ORDER BY, SKIP, and LIMIT. Instead of us-
ing WHERE to filter data, it is also possible to use graph
matching using the keyword MATCH, as shown in Figure 6;
the query returns the length of document “96ab542e”. We

2https://www.elastic.co/what-is/elasticsearch-graph
(accessed 19-08-2021)

3https://solr.apache.org/guide/6_6/graph-traversal.html
(accessed 19-08-2021)



SELECT DISTINCT d2.collection_id
FROM docs AS d2
JOIN doc_author AS da2

ON (d2.collection_id = da2.doc)
JOIN authors AS a2

ON (da2.author = a2.author)
JOIN doc_author AS da3

ON (a2.author = da3.author)
JOIN docs AS d

ON (d.collection_id = da3.doc)
WHERE d.collection_id = '96ab542e'

Figure 5: SQL query that corresponds to the graph query
described in Figure 4.

MATCH (d:docs {d.collection_id: "96ab542e"})
RETURN d.len

Figure 6: Graph query where the length of document with
collection_id is returned.

plan to support the other keywords of Cypher in the fu-
ture, as well as directed edges. Everything that is not
yet directly supported yet by our implementation can of
course still be expressed in SQL, which is fully supported4.
In order to know how to join nodes to each other if no
edge information has been provided, GeeseDB stores in-
formation on the schema. This way GeeseDB knows
how nodes relate to each other through which edges.
GeeseDB has a module for updating the graph schema,
allowing researchers to easily set up the graph they want
represented in the database.

3. Usage
GeeseDB comes as an easy-to-install Python package that
can be installed using pip, the standard package installer
for Python:

$ pip install geesedb==0.0.1

We can start using GeeseDB after installing it. All exam-
ples we show in this paper were run on version v0.0.1
of GeeseDB. However, as GeeseDB is actively being de-
veloped, we advise readers to use the latest version of
GeeseDB, which can be installed when not specifying
a package version. It is also possible to install the lat-
est commit by installing the latest version directly from
GitHub5.

As an example, we will show how to use GeeseDB for
the background linking task of the TREC News Track [23].

4GeeseDB supports the graph queries by translating them to
their corresponding SQL queries, both nodes and edges are after all
just tables in the backend.

5https://github.com/informagi/GeeseDB#package-installation

The goal of this task is: Given a news story, find other news
articles that can provide important context or background
information. These articles can then be recommended to
the reader to help them understand the context in which
these news articles take place. The collection used for
this task is the Washington Post V3 collection6 released
for the 2020 edition of TREC. It contains 671.945 news
articles published by the Washington Post published be-
tween 2012 and 2020, and 50 topics with relevance as-
sessments (topics correspond to collection identifiers of
documents for which relevant data has to be found). The
articles in this collection contain useful metadata; in par-
ticular, we will use authorship information. We extracted
25.703 unique article authors, where it is possible that
multiple authors co-wrote a news article. We also an-
notate documents with entity information which was
obtained by using the Radboud Entity Linker [24]. In
total 31.622.419 references to 541.729 unique entities
were found. An edge between entity and document nodes
contains mention and location information, as well as
the ner_tag found by the linker’s entity recognition
module (the entity linker can assign different tags to the
same entity).7 Figure 7 illustrates the data schema that
we use for the background linking task.

Documents
collection_id: "def"

len: 2

Authors
author: "Chris"

Terms
string: "cat"

df: 2

Documents
collection_id: "abc"

len: 3

Terms
string: "music"

df: 1

Terms
string: "dog"

df: 1

Authors
author: "Arjen"

tf: 1tf: 1tf: 2tf: 1

Entities
entity: "dog"

df: 1
start: 0
len: 1

mention: "dog"
ner_tag: "misc"

Figure 7: Example property graph for the TREC News
Track’s background linking task. The node types are authors,
entities, terms and documents. Edges connect document
nodes to other types of nodes. Both edges and nodes can
have properties (following the property graph model). Multi-
ple edges may exist between one entity node and one docu-
ment node, as one entity can be linked multiple times to one
document.

6https://trec.nist.gov/data/wapost/
7The annotated data will be made publicly available.



3.1. Indexing and Search
In order to start, a database containing at least the docu-
ment and term information needs to be created. Figure 8
shows how the data can be easily loaded using CSV files.

from geesedb.index import FullTextFromCSV

index = FullTextFromCSV(
database='/path/to/database',
docs_file='/path/to/docs.csv',
term_dict_file='/path/to/term_dict.csv',
term_doc_file='/path/to/term_doc.csv'

)
index.load_data()

Figure 8: Load text data from the WashingtonPost collection
formatted as csv files in the format as described by Mühleisen
et al. [14]

Instead of loading the data from CSV files it is also pos-
sible to load the text data directly using the CIFF format
for data exchange [16]. GeeseDB also has functionalities
to create the CSV files used here from the CIFF format.
Authorship information and entity links can be loaded
similarly. Processing Cypher queries depends on the
schema information that needs to be loaded as well. We
have a supporting class (called metadata) for this, and
the schema data used in this paper will be available via
GitHub. After loading the data we can quickly create a
BM25 ranking for ad hoc search in the Washington Post
collection as shown in Figure 9.

from geesedb.search import Searcher

searcher = Searcher(
database='/path/to/database',
n=10

)
topic = 'obama and trump'
hits = searcher.search_topic(topic)

Figure 9: Example on how to create a BM25 ranking for the
query “obama and trump” that returns the top 10 documents.

For the background linking task however, we do not
have regular topics; we only have the collection iden-
tifiers of the documents we need to find relevant back-
ground info for. In order to search for relevant back-
ground reading, queries that represent our information
need to be constructed. A common approach is to use the
top-𝑘 TF-IDF terms of the source article. These can easily
be found using the Cypher statement shown in Figure 10.
Instead of using Cypher it would also be possible to use
SQL, as shown in Figure 11; however this example shows
again the Cypher query is more elegant.

MATCH (d:docs {collection_id:
?})-[]-(t:term_dict)→˓

RETURN string
ORDER BY tf*log(671945/df)
DESC
LIMIT 5

Figure 10: Prepared Cypher statement that finds the top-5
TF-IDF terms in a document.

SELECT term_dict.string
FROM term_dict
JOIN term_doc ON

(term_dict.term_id = term_doc.term_id)
JOIN docs ON

(docs.doc_id = term_doc.doc_id)
WHERE docs.collection_id = ?
ORDER BY term_doc.tf *

log(671945/term_dict.df→˓

DESC
LIMIT 5;

Figure 11: Prepared SQL statement that finds the top-5 TF-
IDF terms in a document.

Using the terms found with Cypher, we can construct
queries that we can pass to the searcher, and create a
BM25 ranking. The code that generates the rankings for
all topics is presented in Figure 12. As you can see, with
only a limited number of lines of Python code it is quite
easy to create rankings. Note that the collection size is
hardcoded as version v0.0.1 does not support aggregation
yet. From this point it is quite trivial to write the content
of hits to a runfile, and evaluate using trec_eval.
Instead of “just” ranking with BM25, using e.g. the meta-
data in order to adapt the ranking is straightforward. In
the case of background linking, it makes sense to con-
sider authorship information when recommending arti-
cles that might be suitable as background reading. As
journalists are often specialized in certain news topics
(e.g. politics, foreign affairs, tech), the stories they write
often share context. Also, when journalists collaborate
on stories they write together on topics they specialize in
as well. As authorship information is available to us, we
can decide to use the information whether an article is
written by the authors of the topic article, or by someone
they have collaborated with in the past. Finding the arti-
cles that are written by this group of people can easily
be done using a graph query, the query that finds these
articles is shown in Figure 13.
Depending on the number of documents found by this
query, different rescoring strategies can be decided upon.
If the set of documents written by the authors or their
co-authors is large, perhaps it is possible to only consider
these documents, but if the set is small, a score boost



from geesedb.search import Searcher
from geesedb.connection import get_connection
from geesedb.resources import

get_topics_backgroundlinking→˓

from geesedb.interpreter import Translator

db_path = '/path/to/database'
searcher = Searcher(

database=db_path,
n=1000

)

translator = Translator(db_path)
c_query = """cypher TFIDF query"""

query = translator.translate(c_query)
cursor = get_connection(db_path).cursor
topics = get_topics_backgroundlinking(

'/path/to/topics'
)
for topic_no, collection_id in topics:

cursor.execute(query, [collection_id])
topic = ' '.join(cursor.fetchall()[0])
hits = searcher.search_topic(topic)

Figure 12: Create a BM25 ranking for all background linking
topics using the top-5 TFIDF terms. Note that in this case
a processed topic file was used that only contains the topic
identifier and the topic article id. The topic file in this format
is provided on our GitHub.

MATCH (d:docs)-[]-(:authors)-[]-(:docs)-[]- ⌋

(:authors)-[]-(d2:docs {collection_id:
?})

→˓

→˓

RETURN DISTINCT d.collection_id

Figure 13: Cypher query to find documents written by co-
authors of the authors of the topic article.

might be more appropriate. Figure 14 shows an example
on how to only consider documents found with the query
in Figure 13, in this particular case we ensure that at least
2000 documents are found before filtering.

To give another example; the graph query language
is also useful when considering entities. When journal-
ists write news articles, the articles relate to events con-
cerning e.g. people, organisations, or countries. In other
words, the basis of news articles lay the entities as they
are often the subject of news. So, instead of using the
most informative terms in a news article, it could be use-
ful to consider the entities identified in the article instead.
Important entities tend to be mentioned in the beginning
of a news article [25]; Figure 15 shows the Cypher query
to retrieve the text mentions of the first five mentioned
entities.
Before it is possible to search using the text describing the

# import and first lines the same as example

author_c_query = """cypher authorship
query"""→˓

author_query = t.translate(author_c_query)

cursor = get_connection(db_path).cursor
topics = get_topics_backgroundlinking(

'/path/to/topics'
)
for topic_no, collection_id in topics:

cursor.execute(query, [collection_id])
topic = ' '.join(cursor.fetchall()[0])
hits = searcher.search_topic(topic)

cursor.execute(author_query,
[collection_id])→˓

docs_authors = {
e[0] for e in cursor.fetchall()

}
if len(docs_authors) > 2000:

hits = hits[hits.collection_id.isin(
docs_authors)]

Figure 14: Find documents written by all authors that collab-
orated with the authors of the topic article, if there are more
than 2000 documents found only consider these documents
as background reading candidates.

MATCH (d:docs {collection_id:
?})-[]-(e:entities)→˓

RETURN mention
ORDER BY start
LIMIT 5

Figure 15: Retrieve the first five entities mentioned in the
topic article; and return the terms used to mention the entity.

first five entity mentions, the text needs to be processed.
The term data loaded in GeeseDB was already processed,
as it was data loaded from CSV files built from a CIFF file
created from an Anserini [21] (Lucene) index. Anserini
has an easy to use Python extension, Pyserini [26], that
can be used to tokenize the text in the same way as the
documents were tokenized. Figure 16 shows the Python
code where we extract the mentions, process them such
that they become a usable query for GeeseDB, and then
BM25 ranking is created with this query.

In summary, GeeseDB allows researchers to index and
search data with only a few lines of Python code. It can
be used to explore new IR research ideas through both
SQL and the Cypher graph query language. As GeeseDB
can query directly on top of Panda’s DataFrames, no data
transfer has to be done, making this framework ideal
to set up the data for other Python reranking pipelines
(i.e. it is trivial to store learning-to-rank features in the



from geesedb.search import Searcher
from geesedb.connection import get_connection
from geesedb.resources import

get_topics_backgroundlinking→˓

from geesedb.interpreter import Translator
from pyserini.analysis import Analyzer,

get_lucene_analyzer→˓

db_path = '/path/to/database'
searcher = Searcher(

database=db_path,
n=1000

)

analyzer = Analyzer(get_lucene_analyzer())

translator = Translator(db_path)
c_query = """cypher entity query"""
query = translator.translate(c_query)

cursor = get_connection(db_path).cursor
topics = get_topics_backgroundlinking(

'/path/to/topics'
)

for topic_no, collection_id in topics:
cursor.execute(query, [collection_id])
topic = ' '.join([e[0] for e in

cursor.fetchall()])→˓

topic = ' '.join(analyzer.analyze(topic))
hits = searcher.search_topic(topic)

Figure 16: Create a BM25 ranking for all background linking
topics using the mention text of the first five linked entities
in the source article.

database that can then directly be used).

4. Future Work
As the current GeeseDB version is still an early prototype,
many future improvements have been envisioned. We
have identified four improvements we want to pursue as
a priority:

• We have implemented the graph query language
Cypher only partially; in the near future, we
would like to support this fully. For now, it is
only possible to use the graph query language
to query data, but ideally it could also be used
to load or update data. Of course it is already
possible to do this through the SQL backend, but
this should only be necessary for extending the
backend support for new use-cases.

• As the goal of GeeseDB is to serve as an IR toolkit,
we would like to extend GeeseDB with function-
alities that make the package easy to use for IR re-

searchers. A few obvious extensions would be IR
dataset support, native document processing, and
implementations of popular first-stage rankers.

• This version of GeeseDB lacks extensive bench-
marking. We plan to release benchmarks on pop-
ular IR datasets, including instruction on how to
reproduce these benchmarks.

• In recent years, dense graph representations have
become popular. We would like to add the func-
tionality to analyse these dense representations
for graphs managed in GeeseDB.

Eventually, we would like to extend the query language
with proper support to define ranking over graphs. (Now,
the ranking function is hidden in the ‘searcher’ module.)

5. Conclusion
In this work we have described our prototype implemen-
tation of GeeseDB, and how we envision graph databases
can be used for information retrieval research. GeeseDB
is still in active development, and we are open to addi-
tional contributions from the community.
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