
Making DL-Lite Planning Practical
(Extended Abstract)?

Stefan Borgwardt1, Jörg Hoffmann2, Alisa Kovtunova1, and Marcel Steinmetz2

1 Institute of Theoretical Computer Science, TU Dresden, Germany
firstname.lastname@tu-dresden.de

2 Saarland University, Saarland Informatics Campus, Germany
lastname@cs.uni-saarland.de

AI planning is a well-investigated framework for describing the evolution
of system states through actions [6]. Action preconditions are first-order (FO)
formulas, which are evaluated over states, i.e. finite sets of facts. Action effects
either add or remove facts from the current state. Formulas are evaluated using a
closed-domain, closed-world semantics, i.e. the domain is fixed a priori and facts
that are not contained in a state are assumed to be false. The aim is to find a
plan, i.e. a sequence of (grounded) actions that satisfy a goal formula.

Knowledge representation formalisms are a natural way to introduce global
constraints on permissible states; however, they usually interpret FO formulas
over arbitrary models, instead of just one model with a fixed domain. DL-Lite
Explicit-Input Knowledge and Action Bases (eKABs) [5] were proposed to combine
classical planning with state axioms formulated in DL-Lite [4], while allowing an
open domain and interpreting action preconditions under open-world semantics.
Due to FO rewritability of DL-Lite, eKABs can be translated into the classical
planning language PDDL. In theory, this allows the use of off-the-shelf planning
systems. However, an initial evaluation [5, 13] using the Fast Downward (FD)
planning platform [7] showed poor performance on a simple hand-crafted domain,
with the planner being unable to solve even trivial problem instances. In our
experiments, the problem also appeared in Fast Forward (FF) [9].

Planning Formalisms. A PDDL task is a tuple Π = 〈P,A,O, I, G〉 with finite
sets of predicate symbols P, action schemas A, objects O, the initial state I,
and the goal G. I is a set of facts that are true initially; all facts not in I are
considered false. G is a closed FO formula over P and O. Every a ∈ A is a triple
〈−→xa, prea, effa〉 with parameters −→xa, precondition prea, and a set of effects effa. prea
is an FO formula over P and O with free variables from −→xa. An effect e ∈ effa is
a tuple 〈−→ye , conde, adde, dele〉 where −→ye are variables, conde is the effect condition,
an FO formula over P and O with variables from −→xa∪−→ye , the add list adde is a set
of atoms with free variables from −→xa ∪ −→ye , and the delete list dele is a set of such
negated atoms. For example, the action A = 〈x,Emp(x), 〈∅,>, {SoDev(x)}, ∅〉〉
promotes any employee to a software developer.
? Abstract of a short paper accepted at KR 2021. This work is supported by the DFG
grant 389792660 (TRR 248) (see https://perspicuous-computing.science).
Copyright c© 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

https://perspicuous-computing.science


2 S. Borgwardt, J. Hoffmann, A. Kovtunova, M. Steinmetz

A DL-Lite eKAB 〈P,A,O, T , I, G〉1 [5] extends a PDDL task by a DL-Lite
TBox T , a possibly infinite set of objects O, the fact that states use the open-world
assumption and must be consistent with T , and a modified syntax for conditions.
Action and effect preconditions and the goal are specified as ECQs [2], which are
FO formulas with conjunctive queries (CQs) as atoms. The CQs are evaluated
over T using open-world semantics, but their results (i.e. certain answers) are
interpreted under an epistemic semantics to combine open- and closed-world con-
ditions. For example, consider the TBox {Emp v ∃worksFor}, state {Emp(a)}, and
the conditions φ1(x) = ¬[∃y.worksFor(x, y)] and φ2(x) = ¬∃y.[worksFor(x, y)],
where the conjunctive queries are indicated by square brackets. Then φ1 does
not apply to object a, because all employees are known to work for some depart-
ment (even if the specific department is unknown), but φ2(a) is true since no
particular y is known for which worksFor(a, y) holds. Moreover, the promoting
action A is not applicable to object b in state {ElEng(b)} considering the TBox
T = {ElEng v Emp, ElEng v ¬SoDev} since it would cause an inconsistency.

In [5], a translation from state-bounded DL-Lite eKABs to equivalent PDDL
tasks is presented. It is based on (i) a bound on the number of objects in each
state [3, 5], (ii) a translation of ECQs into first-oder formulas under closed-world
semantics [2, 5, 12], and (iii) an additional predicate and action that checks
consistency of a state. The translation (ii) effectively compiles the TBox into
the ECQs, thereby simulating open-world query answering by a closed-world
formula. For example, in A the precondition Emp(x) becomes Emp(x) ∨ ElEng(x)
to simulate the fact that electronic engineers are employees (ElEng v Emp).
Step (iii) uses a formula that describes every possible inconsistent state. The
set of all axioms involving negation, e.g. ElEng v ¬SoDev, is first reformulated
into a disjunction of CQs of the form ElEng(x) ∧ SoDev(x), which describe basic
inconsistent situations. By applying the translation (ii) to these CQs, the resulting
formula includes all possible ways in which inconsistencies can be generated.

Our Contribution. We find that the bottleneck lies in the DNF transformations
used to compile PDDL tasks into the planners’ internal (grounded) representations.
These naïve transformations are applied in-situ on complex formulas, causing a
worst-case exponential blow-up on non-DNF input. Although the disjunctions of
CQs generated by the above translation are in DNF, they are often nested in
more complex ECQ conditions. Here we investigate two PDDL pre-compilations
that enable polynomial DNF transformations also for such complex formulas.

The first pre-compilation (Ne), proposed by Nebel [11], uses auxiliary predi-
cates to represent each (already grounded) complex sub-formula φ: Pφ represents
the truth value of φ in the current state; and P ′

φ is designed to be true iff φ
has already been evaluated. Additional ground actions are introduced to deter-
mine the value of Pφ provided that P ′

ψ is true for all sub-formulas ψ of φ. This
evaluation is repeated after every regular action, which increases the plan length.

We therefore propose a second pre-compilation (DP) that avoids this overhead
by employing PDDL derived predicates [8, 14], which specify a rule-based update
1 The syntax is slightly adapted for compatibility with PDDL.



Making DL-Lite Planning Practical 3

of auxiliary predicates that is applied at every planning state. Every complex
subformula φ is replaced by a new predicate Pφ that obeys the update rule
Pφ ← φ. This results in a set of rules that is equivalent to a non-recursive, and
therefore stratified, Datalog program with negation [1].

Table 1. Per-domain aggregated statistics. (a) Number of instances solved within
resource limits. (b) Number of instances that passed the planners’ PDDL pre-processing.

(a) # solved (b) # PDDL processed
FF FD FF FD

Domain # O Ne DP O Ne DP O Ne DP O Ne DP
Robot 20 20 1 20 4 1 20 20 20 20 4 20 20
TaskAssign 20 1 1 15 3 1 20 1 10 15 3 10 20
Cats 20 14 14 20 14 11 20 14 20 20 14 20 20
Elevator 20 12 0 20 20 0 20 12 20 20 20 20 20
TPSA 15 7 5 5 14 4 5 7 5 5 14 4 5
VTA 15 15 6 15 15 4 13 15 6 15 15 4 13
VTA-Roles 15 5 4 5 15 0 5 6 4 5 15 0 5
Assembly 30 0 0 24 30 0 30 9 10 24 30 4 30
GridPlacement 20 5 1 17 6 2 20 5 20 20 6 20 20
Miconic 30 9 3 13 9 2 9 11 27 19 14 18 30∑

205 88 35 154 130 25 162 100 142 163 135 120 183

Experiments. We compare the pre-compilations against the original PDDL
files (O) using FF and FD 20.06. We developed a set of benchmarks, comprising
the previous eKAB tasks [5, 13] (Robot, TaskAssign), new eKAB domains (Cats,
Elevator), and benchmarks adapted from prior work on planning with propo-
sitional background ontologies [10] (TPSA, VTA). We also investigate existing
PDDL benchmark domains with minor modifications (Assembly, Miconic), as
our pre-compilation may be useful on any planning domain with complex pre-
conditions, and a showcase domain (GridPlacement) enforcing challenging DNF
transformations. The benchmarks2 and pre-compilers3 are available online.

As indicated by the O columns in Table 1, PDDL processing indeed constitutes
the main bottleneck: In almost every unsolved instance, the planners failed already
during PDDL processing. Part (b) shows that DP reduces the overhead of PDDL
input handling and thereby increases overall performance in nearly every domain.
TPSA and VTA are the only exceptions were the pre-compilation turned out
detrimental. Besides an absence of complex conditions, in these domains the
actions assign predicates to previously unbound objects. Therefore, by increasing
the number of objects, the grounding and translation sizes grow drastically.

In contrast, the number of instances that could be solved by FF and FD
after the Ne pre-compilation drops substantially in every domain. Apart from
a blow-up of the file size, the Ne pre-compiler obfuscates the planning task’s
original structure, which leads both planners’ searches into serious troubles.

In future work, we plan to design tools tailored to eKABs over DL-Lite and
more expressive ontology languages, leveraging e.g. PDDL derived predicates.
2 https://gitlab.perspicuous-computing.science/m.steinmetz/pddl-dllite-benchmarks.git
3 https://gitlab.perspicuous-computing.science/a.kovtunova/moreflags2.git

https://gitlab.perspicuous-computing.science/m.steinmetz/pddl-dllite-benchmarks.git
https://gitlab.perspicuous-computing.science/a.kovtunova/moreflags2.git


4 S. Borgwardt, J. Hoffmann, A. Kovtunova, M. Steinmetz

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite:
Effective first-order query processing in description logics. In: Veloso, M.M. (ed.)
Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI’07). pp. 274–279
(2007), https://www.ijcai.org/Abstract/07/042

3. Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: Verification and synthesis
in description logic based dynamic systems. In: Faber, W., Lembo, D. (eds.) Proc.
of the 7th Int. Conf. on Web Reasoning and Rule Systems (RR’13). pp. 50–64.
Lecture Notes in Computer Science, Springer (2013). https://doi.org/10.1007/978-
3-642-39666-3_5

4. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Dl-Lite:
Tractable description logics for ontologies. In: Veloso, M.M., Kambhampati, S.
(eds.) Proceedings, The Twentieth National Conference on Artificial Intelligence
and the Seventeenth Innovative Applications of Artificial Intelligence Conference. pp.
602–607. AAAI Press / The MIT Press (2005), http://www.aaai.org/Library/
AAAI/2005/aaai05-094.php

5. Calvanese, D., Montali, M., Patrizi, F., Stawowy, M.: Plan synthesis for knowledge
and action bases. In: Kambhampati, S. (ed.) Proc. of the 25th Int. Joint Conf.
on Artificial Intelligence (IJCAI’16). pp. 1022–1029. AAAI Press (2016), https:
//www.ijcai.org/Abstract/16/149

6. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann (2004)

7. Helmert, M.: The fast downward planning system. Journal of Artificial Intelligence
Research 26, 191–246 (2006). https://doi.org/10.1613/jair.1705, https://doi.org/
10.1613/jair.1705

8. Hoffmann, J., Edelkamp, S.: The deterministic part of IPC-4: An
overview. Journal of Artificial Intelligence Research 24, 519–579 (2005).
https://doi.org/10.1613/jair.1677

9. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001).
https://doi.org/10.1613/jair.855

10. Hoffmann, J., Weber, I., Scicluna, J., Kacmarek, T., Ankolekar, A.: Combining
scalability and expressivity in the automatic composition of semantic web ser-
vices. In: 8th International Conference on Web Engineering (ICWE’08) (2008).
https://doi.org/10.1109/ICWE.2008.8

11. Nebel, B.: On the compilability and expressive power of propositional plan-
ning formalisms. Journal of Artificial Intelligence Research 12, 271–315 (2000).
https://doi.org/10.1613/jair.735

12. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati,
R.: Linking data to ontologies. Journal on Data Semantics X, 133–173 (2008).
https://doi.org/10.1007/978-3-540-77688-8_5

13. Stawowy, M.: Plan Synthesis in Explicit-input Knowledge and Action
Bases. Ph.D. thesis, IMT School for Advanced Studies Lucca, Italy (2016).
https://doi.org/10.6092/imtlucca/e-theses/208

14. Thiebaux, S., Hoffmann, J., Nebel, B.: In defense of PDDL axioms. Artificial
Intelligence 168(1–2), 38–69 (2005). https://doi.org/10.1016/j.artint.2005.05.004

https://www.ijcai.org/Abstract/07/042
https://doi.org/10.1007/978-3-642-39666-3_5
https://doi.org/10.1007/978-3-642-39666-3_5
http://www.aaai.org/Library/AAAI/2005/aaai05-094.php
http://www.aaai.org/Library/AAAI/2005/aaai05-094.php
https://www.ijcai.org/Abstract/16/149
https://www.ijcai.org/Abstract/16/149
https://doi.org/10.1613/jair.1705
https://doi.org/10.1613/jair.1705
https://doi.org/10.1613/jair.1705
https://doi.org/10.1613/jair.1677
https://doi.org/10.1613/jair.855
https://doi.org/10.1109/ICWE.2008.8
https://doi.org/10.1613/jair.735
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.6092/imtlucca/e-theses/208
https://doi.org/10.1016/j.artint.2005.05.004

	Making DL-Lite Planning Practical

