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Abstract
Named Entity Recognition (NER) is a crucial building block of a conversational agent, but remains challenging in real-word
settings. It is particularly challenging for domains where the entities are linguistically complex and resemble common phrases
(e.g. music and movies). While gazetteer features have been shown to improve NER performance, their utility is undermined
by pervasive spurious entity matching. We propose a framework for gazetteer knowledge integration that incorporates
external knowledge about entity popularity (e.g. a song’s play count) to reduce spurious entity matching and improve the
robustness of gazetteer features. Our experimental evaluations show that using unfiltered gazetteers degrades performance,
but that incorporating external information improves it compared to a baseline model that doesn’t use gazetteer information.
Further, our framework can efficiently adapt to new entities in gazetteers without additional training, which is crucial for
rapidly growing domains like music.
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1. Introduction
Voice assistants (Siri, Alexa, Google Assistant) are be-
coming increasingly popular and music has emerged as
a primary use case for them [1, 2]. Without a screen for
browsing, conversational recommenders are an appeal-
ing avenue to help users navigate their favorite music.

But four factors make identifying mentions of these
entities difficult in the music domain. First, there are a lot
of songs and artists: thousands of artists release millions
of songs each year, and a modern deep learning system
must store their names in its weights. Second, song and
artist names can often resemble ordinary parts of speech,
and so the system must disambiguate genuine references
to musical entities from spurious matches. Third, users
misremember the titles of songs or use abbreviations to
refer to artists, limiting the applicability of canonical data
sources. And fourth, new songs are continually being
released – some of which immediately achieve their peak
popularity – which obliges the owners of a model to
regularly retrain the model.

Conversational systems make NER even more chal-
lenging: while single-turn commands are often well-
structured and include indicators that a sequence tag-
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ging system can utilize to estimate a prior likelihood
that a token represents an entity (“Alexa play X”, etc),
conversational responses lack such affordances. The sys-
tem must also distinguish system-directed speech from
background conversation overheard while waiting for a
response: “who let the dogs out” is likely to be a song
request (Baha Men), but “who let the cats out” is more
likely to be a frustrated parent chastising their children.
Finally, errors made by users in recalling an entity name
or by a voice recognition system, alongside nonstandard
spelling of artist and song titles, frustrate attempts at
simple string matching against canonical entities [3].

Gazetteers – flat lists of entity names – can provide
a source of valid entity names. But incorporating them
into modern NER models has proved difficult (see Section
2.2), and the music domain makes their application even
more precarious: any song title gazetteer will include
common phrases like “yes” (LMFAO), “something like
that” (Tim McGraw), and “stop” (Spice Girls), resulting
in frequent false positive matches.

Nevertheless, incorporating them into models is ap-
pealing since they could allow a production system to
generalize beyond examples seen during training, and to
decouple updates to entity lists from model training.

In this paper, we experiment with utterance data and
music domain knowledge data. In the conversational mu-
sic recommender setting, a user is prompted to specify
genres, moods or artists and hears samples of playlists
matching the criteria they have provided so far (e.g. in-
cluding a specified artist). The conversation continues
until a sample is accepted, the user requests to play a
specific song or artist, or the user explicitly ends the
conversation or stops responding. The natural language
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interpretation component must therefore be able to rec-
ognize any song or artist name mentioned by the user
in order to select matching playlists to recommend and
to avoid recommending playlists that do not match the
user’s request.

This paper explores different methods to extract value
from gazetteers enriched with popularity information
about songs, artists and albums. In all cases, we add
token-level features indicating the presence or absence
of that token (or sequence of tokens) within a gazetteer.
We vary the preprocessing applied to the gazetteers and
show that neither full gazetteers nor gazetteers filtered
to include only the most popular entities outperform a
baseline gazetteer-free model. However, after a more
careful filtering of entities, adding a gazetteer does help
the model to robustly extract music entity names. In
doing so, the model improves its ability to classify a user’s
overall intent.

2. Background and prior work

2.1. Named entity recognition
Named entity recognition (NER) is the task of associating
each word in a sentence with a label indicating its type.
In typical settings, the type may be a person, a location,
or an organization. In our domain, we are interested in
music entities: artist names, song titles and album names.

In practice we refer to tokens instead of words, allow-
ing for rare words to be split into subwords to limit the
vocabulary size necessary to cover the entire dataset. For
example, ‘ed sheeran’ is represented as the three tokens
‘ed’, ‘sheer ’ and ‘an’. We hope to train a model that asso-
ciates all three tokens with the artist_name tag.

2.2. Gazetteers for NER
Gazetteers were common in pre-neural NER architec-
tures: indeed, Mikheev et al in 1999 was notable for
doing it without gazetteers [4].

Their use has fallen out of fashion with the recent
dominance of large pre-trained language models for NER,
since these models can better leverage contextual infor-
mation to detect entity mentions [5]. More recent work
has demonstrated that gazetteers can still improve NER
performance with neural architectures, especially where
training data is limited [6, 7, 8, 9, 10, 11].

However, the improved performance of modern NER
models exposes the noise in gazetteers: Magnolini et
al showed that filtering rarely-occurring values from
large gazetteers boosts performance more than using
the unfiltered gazetteer [7]. But in the music domain,
the noise comes principally from linguistic ambiguity:
entity names can be homographs of non-entity words
and phrases. Filtering based on corpus frequency would

retain many of these homographs (phrases like ”yes”,
“something like that” and ”stop”), which are particularly
common in conversational responses, and exclude many
genuine references to entities. Moreover, we wish to use
gazetteers precisely because they will help generalize be-
yond the training data, especially for low-context inputs,
like an artist name on its own.

These works also either did not use pre-trained lan-
guage models [6, 7, 8, 11] or did not fine-tune the weights
of the language models [10, 9]. Large pre-trained lan-
guage models based on the transformer architecture [12]
have achieved state-of-the-art results across a variety of
natural language processing tasks [13] but successfully
integrating gazetteers remains elusive.

In these prior works, the gazetteers used were all flat
lists of entity names, and so the systems could only con-
sider the surface form of each entity (i.e. any string
matching the name of the entity, regardless of the in-
tended referent of that string). Oramas et al introduces
a framework to leverage the popularity of each associ-
ated entity to distinguish between ambiguous and non-
ambiguous names [14]. For each entity, they compute a
ratio between the rank of the entity’s popularity and the
rank of the number of occurrences of its surface form in
their corpus.

𝑟(𝑒) =
𝑝𝑜𝑝𝑢𝑙𝑎𝑟 𝑖𝑡𝑦𝑅𝑎𝑛𝑘(𝑒)
𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑅𝑎𝑛𝑘(𝑒)

(1)

Mentions of entities that occur more frequently in their
corpus than would be expected based on their popularity
rank (i.e. 𝑟(𝑒) is small) are likely to be spurious matches.
They use this to automatically label a training set: some
entities can be confidently labeled as songs or artists,
some – like “Could You”, “Play Music” and “Xmas” –
are ignored, and inputs containing potentially-confusing
mentions like “Country Joe” and “Spanish House” are
excluded entirely. However, this informs only the dataset
generation; their model does not have access to the un-
derlying popularities or the rank.

Meng et al propose a mixture of experts model for
NER that directly models how much weight to give to
features derived from the context (using a BERT encoder)
and from gazetteers (using a BiLSTM built on gazetteer
matches) for each token. This substantially improves
performance on their datasets, but still relies exclusively
on linguistic features [15].

In this work, we show that filtering gazetteers using a
similar formula to Equation 1 [14] allows an NER model
to leverage gazetteer information. We compare against
two other preprocessing methods which both degrade
performance.



3. Datasets

3.1. Corpus
We train our model on historical user utterances. The
data are labeled using a hand-crafted set of grammatical
rules designed to match the most frequently-occurring
utterances. The rules consist of a pattern and allowed
slot values. For example, the pattern just play <artist-
name> includes an <artist-name> slot; this slot is associ-
ated with a list of popular artists. The combination of
pattern and slot list allows us to match “just play the
beatles” and “just play rihanna”, but not “just play trivial
pursuit”, since trivial pursuit is a game and not an artist.

In practice, we abstract common phrases and nest
rules: <negative-trigger> <artist-name> matches a pre-
determined set of negative trigger phrases like “not”, “i
don’t like”, etc, along with an artist name.

To control the latency of these rules, we limit slot lists
to popular entities. The rules therefore fail on a long tail
of infrequent utterances, either because the utterance
contains an entity outside our canonical lists, or because
the pattern is unusual. We observe that statistical models
trained on these labeled utterances can generalize to long
tail utterances, as proposed in [16].

The rules cover multiple intents, including standard
ones like YesIntent , NoIntent and StopIntent , but also
an AddMusicConstraintIntent for when users constrain
recommended music entities. Slot types include entity
types as well as trigger phrases that indicate negation,
instructions to go immediately to playback, and so on.

To evaluate the model’s ability to discriminate be-
tween spurious mentions of entity names, we hand
label independently-collected validation and test sets
where each utterance contains a substring included
in the song title gazetteer (see Section 3.2). We ig-
nore the 50 most frequently-occurring spurious matches
(e.g. “play”, “just”, “yeah”, etc) so that approximately
50% of utterances express a AddMusicConstraintIntent ,
and about 50% of these AddMusicConstraintIntent utter-
ances contain a true reference to a specific song. Only
AddMusicConstraintIntent can include song titles. These
titles include some that were misremembered or that
contain voice recognition errors.

Our grammatical rules can interpret about 30% of ut-
terances in the test set and we consider these to be in
domain; the remaining 70% test the model’s generaliza-
tion capability, either to new utterance patterns or to
novel entities.

The training, validation and test datasets are fixed for
all experiments.

Table 1
Example showing which gazetteer embeddings trigger for
each token in the utterance play dancing queen. In this case,
dancing queen is recognized as a song, and queen as an artist.
For simplicity, we assume no other gazetteer entries match
the utterance.

entity type play dancing queen

artist name 7 7 3
song title 7 3 3
album name 7 7 7

3.2. Gazetteers
We use gazetteers derived from historical single-turn
utterances that expressed a music request to a voice assis-
tant. Since these utterances are well-structured (usually
of the form “play X”), the entity name can be extracted
and associated with an entity type by an entity resolution
system.

These gazetteers can include entities with user or voice
recognition errors as long as the entity resolution system
was able to resolve them to a canonical entity.

As such, the gazetteers consist of multiple strings cor-
responding to the same entity: e.g. “blink one eighty two”
and “blink one eight two” both appear in our gazetteer,
even though the canonical name is “Blink 182”.

Each entity in a gazetteer is augmented with the num-
ber of times it was requested (which we refer to as its
popularity).

4. Methodology

4.1. Candidate entity matching
Before passing a user’s utterance to the model, we must
first determine which gazetteer entries appear in it. Note
that at this stage, we do not distinguish between true
positives (the user was referring to the entity) and false
positives (spurious matches like ‘yes’, ‘play’, etc).

We find these candidates using a regex search for each
gazetteer entry, enforcing that the match must terminate
at whitespace or at the beginning or end of the utterance.

Next, we associate all of the tokens in an utterancewith
the entity type of the candidate. We summarize this infor-
mation with a binary vector for each word, where each
dimension corresponds to one of the gazetteers (artist
name, song title, album name). See Table 1 for an exam-
ple.

We add a dimension to this vector with its value fixed
to 1 as a bias term. This entry can be thought of as the
no entity dimension, which captures the possibility that
the gazetteer matches were false positives.



4.2. Gazetteer filtering
In this work, we use a straightforward technique to in-
corporate the summary gazetteer vectors into our base-
line model (see Section 4.3). The baseline model does
not have access to this vector, and so we can evaluate
whether gazetteers improve or degrade performance.

We compare three methods to preprocess the
gazetteers:

First, we use the full, unfiltered gazetteer. Following
Magnolini et al [7], we expect the noise introduced by
false positive matches to outweigh any information pro-
vided by the true positives.

Second, we filter out the least popular entities in the
gazetteer by thresholding the popularity (see Section 3.2).
This is equivalent to using a shorter collection window
to gather candidates. We expect that this does little to
exclude ambiguous entities.

Third, we threshold the ratio between the number of
occurrences of each entity’s surface form in our train-
ing corpus and its popularity, similar to Oramas et al
[14]. While Oramas et al used ranks, we use raw counts
to capture the assumption that the number of genuine
mentions of an entity is proportional to the underlying
popularity of that entity. We call our version ̂𝑟 to avoid
confusion:

̂𝑟 (𝑒) =
popularity(𝑒)

mention_frequency(𝑒)
(2)

This has the practical benefit of allowing new entities to
be added without re-ranking.

We rejected a fourth candidate method of thresholding
based on the corpus frequency since the resulting filtered
gazetteers preferentially included exactly the entities we
wished to exclude, like “yes”, “play”, “stop”, etc, and ex-
cluded entities not mentioned in our corpus, limiting a
model’s ability to generalize beyond its training data.

Where we filter gazetteers, we treat the percentage
to filter out as a hyperparameter (25%, 50% or 75%) and
select the model that performed best on the validation
set.

4.3. Model
To understand a user’s utterance, we need to pre-
dict the user’s intent (classification) and label any
entities they mentioned (NER). We start with a
standard BERT-base model [17], pretrained on
book_corpus_wiki_en_uncased1.

To represent information from the gazetteers, we
start by randomly-initialize four 64-dimensional ‘ingredi-
ent’ embeddings corresponding to the four-dimensional
gazetteer vector described in Section 4.1 (no entity, artist

1From https://nlp.gluon.ai/model_zoo/bert/index.html

Figure 1: Gazetteer features are computed as the sum of as-
sociated ‘ingredient’ embeddings. Here, for example, ‘queen’
appears in the artist and song title gazetteers (via the artist
“Queen” and the song “Dancing Queen”), so we take the aver-
age of those along with the no entity embedding.

name, song title, album name). Each token in the utter-
ance is represented as the average of the ingredient em-
beddings for the entity types matched which that token
appears in a candidate. Note that every token receives
the no entity embedding as a bias term. This is illustrated
in Figure 1.

We concatenate these gazetteer embeddings with the
BERT output embeddings and add a single transformer
encoder layer (i.e. self-attention with position embed-
dings and a fully-connected output layer) so that the
gazetteer information can be shared among all the to-
kens.

The [CLS] token, which represents the entire utterance,
receives the average embedding taken over all tokens in
the utterance.

The outputs of the final transformer layer are passed to
prediction heads for each token. The [CLS] token predicts
the user intent, and the remaining tokens predict their
own entity type label (or OTHER). Note that each token
can have only one label, and the utterance is associated
with exactly one intent.

This architecture is illustrated in Figure 2.
The baseline model is identical, except that nothing is

concatenated with the BERT outputs.
The model is fine-tuned using cross-entropy with label

smoothing [18], where the total loss is the sum of the
classification loss and the slot tagging loss for each token.
We update all parameters during fine-tuning, including
the gazetteer ‘ingredients’.

This architecture resembles the joint intent-
classification and slot filling model introduced in Chen
et al [19], except for the gazetteer embeddings, the
additional transformer encoder layer, and the use of
label smoothing. The first two of these additions provide
a method to fuse gazetteer information into the model
before the prediction heads. Label smoothing helps
restrain the model’s overconfidence on ‘easy’ examples,
resulting in more robust performance on utterances
outside the training distribution [18].

Aside from the percentage of each gazetteer to filter out

https://nlp.gluon.ai/model_zoo/bert/index.html


Figure 2: Model architecture. Contextual embeddings (from the BERT encoder) are concatenated with gazetteer embeddings
(see Figure 1), and the resulting representation is passed through a transformer layer to prediction heads for both intent
classification (IC) and entity labeling (NER).

(in the popularity-filtered and ̂𝑟 (𝑒)-filtered experiment),
we do not conduct any hyperparameter selection. We
find in both cases that filtering out 75% of the gazetteer
gives the best performance on the validation set. For
other hyperparameters, we use values that previously
performed well with a simplified baseline model that
does not include the final transformer layer: since the
utterances are typically short, we truncate them to 16
tokens (this affects fewer than 0.1% of utterances), use a
batch size of 128, a label smoothing 𝛼 = 0.1, and train for
10,000 updates. We checkpoint every 100 updates and
choose the version of the model that achieved the highest
intent classification F1 score on the validation set. Other
hyperparameters follow those in Chen et al [19].

5. Results
For each experiment, we evaluate the model’s ability
to discriminate AddMusicConstraintIntent from other in-
tents, and its ability to extract correct song titles. Song
title detection is particularly challenging for a conversa-
tional music recommender due to song titles’ variability,
cardinality and resemblance to normal speech.

We report this metric using the SemEval ‘strict’

Table 2
Results of experiments, shown as percentage increases or de-
creases from the baseline model.

(a) Song title detection.

Gazetteer Precision Recall F1

None - - -
Full −2.72% +0.58% −1.17%
Popularity-filtered −3.18% +1.57% −0.96%
̂𝑟(𝑒)-filtered +3.60% +3.82% +3.70%

(b) Intent classification (AddMusicConstraintIntent).

Gazetteer Precision Recall F1

None - - -
Full +0.21% −0.23% −0.05%
Popularity-filtered −0.21% +1.85% +0.98%
̂𝑟(𝑒)-filtered +0.25% +2.58% +1.70%

methodology [20]. That means the span must exactly
match the annotated span to be counted as a true positive;
predicting the wrong span counts as both a false positive
(the incorrectly-predicted span) and a false negative (the
missed prediction). We choose this metric because we



Figure 3: Song title F1 during training. Results shown every
10% up to 30% of training data, when F1 has begun to con-
verge. Note that actual F1 scores are redacted due to their
commercial sensitivity.

require substantially-complete predictions for the down-
stream entity resolver to associate the span with the cor-
rect entity. A simple token-by-token evaluation showed
similar differences between models.

Table 2 shows the results of our experiments. As ex-
pected, we observe that using the full gazetteers increases
the recall of song titles at the expense of precision, re-
sulting in a drop in F1 score of 1.17%. Filtering based
on popularity seems to exaggerate these differences, fur-
ther diminishing precision but boosting recall even more,
presumably because the model becomes too trusting of
information from the gazetteers which still include spu-
rious matches. The overall effect is that F1 dropped by
slightly less: 0.96% from the baseline model.

Filtering based on the ratio ̂𝑟 (𝑒) addresses this issue.
Common-but-spurious mentions are now excluded from
the gazetteer, leaving a cleaner gazetteer that contains
unambiguous entities, and which results in improved
precision and recall and an overall increase in F1 of 3.70%.

These results seem to be correlated with intent classi-
fication performance, with the worst song title detection
F1 corresponding to the worst intent classification F1
(full gazetteers), and best with best ( ̂𝑟 (𝑒)-filtered). This is
to be expected: correctly recognizing the presence or ab-
sence of a song title (or artist name) makes distinguishing
intents easier.

Figure 3 shows that the model with access to the
̂𝑟-filtered gazetteer learns most quickly. The full and
poularity-filtered gazetteers give an early boost to F1,
when model performance is poor, but are quickly over-
taken by the baseline model without gazetteers. This
supports our hypothesis that information from noisy
gazetteers helps weak models, but when the model is
better able to leverage contextual cues, the noise begins
to dominate any signal they provide. The model would
by now perform better by ignoring the information, but

it may have approached a local minimum in the loss sur-
face from which it cannot escape, resulting in poorer
performance at convergence (as shown in Table 2).

Table 3 shows some example user inputs that highlight
how gazetteers help the model. Each utterance is shown
with the song title predicted by the model learned under
each experiment. While all the models are usually able to
detect the presence of a song title, only the model trained
using the ̂𝑟 (𝑒)-filtered gazetteers is able to reliably detect
the boundaries of the mention.

6. Limitations and future work
We note that this work only considers utterances in En-
glish. The technique described here should apply to other
languages, but in some, whitespace cannot be used to
delimit entities, making candidate matching more chal-
lenging.

We only briefly experimented with the impact of
changes to the gazetteer after model training (e.g. due to
new releases or changing popularity of existing releases).
While these initial results are promising, we would want
to conduct more thorough research to evaluate how pre-
dictions are affected.

We have also not explored the impact of false neg-
atives (i.e. real entities not matched in the gazetteers,
either because the entity is not sufficiently popular, be-
cause it has been recently released, or due to a user or
voice recognition error). Our evaluation shows an overall
improvement in precision and recall, but there may be in-
dividual cases where the baseline model better leverages
contextual clues to predict entity mentions. Randomly
dropping out gazetteer features during training (i.e. re-
placing a 1 with a 0 in the gazetteer vector described
in Section 4.1 some fraction of the time) might force a
model to learn how to use gazetteer features where avail-
able, but to continue to attend to contextual information
otherwise, further improving overall performance.

This work was evaluated on manually-annotated of-
fline datasets, but we have planned anA-B test tomeasure
the downstream impact of improvedNER performance on
the rate with which users accept the system’s recommen-
dations. We expect to see an improvement corresponding
to the system’s ability to correctly interpret our users’
wishes.

In future work, we intend to fuse popularity and ̂𝑟 (𝑒)
directly into the model, rather than using it to filter the
gazetteers. Incorporating the ratio ̂𝑟 (𝑒) into the model
as a feature would allow it to attend more heavily to
gazetteer features where the entity is unambiguous, and
use contextual cues to disambiguate less obvious exam-
ples. It also avoids introducing an arbitrary cut off: small
values of ̂𝑟 (𝑒) would be almost, but not quite, equiva-
lent to excluding the entity entirely. We hope that such



Table 3
Examples of errors made by models trained with different gazetteer information. The expected song titles are underlined.
Note that the model handles over a dozen intents, and so identifying song titles even in somewhat structured utterances (e.g.
“X by Y”) is nontrivial.

Utterance No gazetteers Full gazetteers

rolling in the deep in the deep in the deep
play cruella de vil cruella de
high voltage
just the way you are by the way you are the way you are
you dropped the bomb on me dropped the bomb on me dropped the bomb on me
green eyed lady by sugarloaf eyed lady eyed lady
monsters by shinedown

Utterance Popularity-filtered gazetteers ̂𝑟 (𝑒)-filtered gazetteers

rolling in the deep rolling in the deep rolling in the deep
play cruella de vil cruella de vil cruella de vil
high voltage high voltage
just the way you are by just the way you are
you dropped the bomb on me dropped the bomb on me you dropped the bomb on me
green eyed lady by sugarloaf eyed lady green eyed lady
monsters by shinedown monsters

an approach will yield further improvements and be a
step towards a general approach to integrating gazetteers
with pre-trained transformers.

7. Conclusion
In this paper, we demonstrate that a rather simple ar-
chitecture with carefully filtered gazetteers can greatly
improve NER performance in a conversational recom-
mendation system for the music domain. By augment-
ing gazetteers with information about the underlying
likelihood of a mention of each entity, the models can
avoid false positives, and are better able to rely on large
gazetteers.

This finding could apply to other domains where large
gazetteers are common and where relevant frequency
information is available. Examples might include place
names along with their populations, or diseases with the
number of diagnoses mentioned in discharge notes.
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