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Abstract: In this study, we ascertain the associations be-
tween BCG vaccination policies and the disease progres-
sion in the initial phases of COVID-19 pandemics through
analysis of various time-adjusted indicators either directly
extracted from the incidence and death reports, or esti-
mated as parameters of disease progression models. We
observe weak correlation between BCG vaccination status
and indicators related to disease reproduction character-
istics. We did not find any associations with case fatal-
ity rates (CFR), but the differences in CFR estimates were
likely dominated by differences in testing and case report-
ing between countries.

Supplementary material is available through
GitHub at https://github.com/fmfi-compbio/
bcg-supplement.

Introduction

The reports on a possible use of the well-established and
widely used Bacillus Calmette–Guérin (BCG) vaccine as
a protection against COVID-19 (de Vrieze, 2020) raised
a lot of interest and media coverage. Several clinical tri-
als have been designed to evaluate the potential of BCG
for protection against the SARS-CoV-2 infection in health-
care workers (Bonten, 2020; Khattab, 2020; Curtis, 2020;
Cirillo and DiNardo, 2020). These studies are driven by
the so called non-specific effects of BCG vaccine on viral
infections, observed in animal models, as well as in hu-
mans, although the molecular basis of this phenomenon is
not completely understood (Moorlag et al., 2019).

The associations between BCG vaccination policy and
COVID-19 disease progression have also been a subject to
contraversy in data analysis, with some studies claiming
significant effects on the number of cases and case fatality
rates (Miller et al., 2020; Berg et al., 2020), while oth-
ers criticizing weaknesses of those studies and claiming
no statistically significant differences (Szigeti et al., 2020;
Hensel et al., 2020; Fukui et al., 2020; Singh, 2020).

While correcting for many covariate factors (such as
population size, population age distribution, etc.), most
of these studies, however, failed to correct for the differ-
ences in time progression of the epidemics in each coun-
try. COVID-19 epidemic in each country started from rel-
atively few imported cases and in its initial phases spread
quickly through exponential growth with high reproduc-
tion numbers. At unchecked growth rates, a significant
percentage of the country population would be infected be-
fore the disease would subside. However, this growth rate
only continues until effective measures, such as lockdowns
or social distancing policies, are introduced, changing the
dynamics of the epidemics substantially, with infection
rates rarely reaching a significant percentage of the whole
population in the first wave (Flaxman et al., 2020). In this
study, we have estimated a variety of indicators adjusting
for time since the beginning of the epidemics in each coun-
try, and found that several key indicators show weak, but
statistically significant, associations with the BCG vacci-
nation status.

Results

To compare the COVID-19 disease progression between
countries with recent universal BCG vaccination policy
and those without, several parameters derived from the
case and death reports in each country were selected. The
parameters reflect early-stage disease spread characteris-
tics (when they are likely not yet affected by social dis-
tancing policies), early-stage case fatality rates (before po-
tential effects from overwhelmed health care system), and
progression of the disease after the changes characteristic
for social distancing policies take effect.

In particular, most of the indicators considered in this
study are synchronized based on the reference date, which
is the day on which a cumulative number of reported cases
surpassed 100. Supplementary table S1 shows the refer-
ence date for individual countries and also lists the date
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when the first nation-wide large scale non-pharmaceutical
interventions (NPIs) affecting community spread (e.g. so-
cial distancing measures, masking rules, school closures,
limitations on large gatherings) were introduced (Euro-
pean Centre for Disease Prevention and Control, 2021;
Cheng et al., 2020) (here, we did not consider international
travel restrictions, since such restrictions mainly delay the
start of the epidemics). In most countries, NPIs were in-
troduced approximately around the reference date; in only
a handful of countries the NPIs preceded the reference day
by more than a week. Since the effects of NPIs are typi-
cally delayed by 10-20 days, and the full effect takes even
more time (Nader et al., 2021), their impact on the indi-
cators used in this study is likely minimal. For the early-
stage indicators, we did not normalize for the population
size, since the numbers of cases at this stage were very low
and the population size was unlikely to pose limitations to
the unmitigated disease spread at the time.

Estimates of early stage R are lower in countries with re-
cent BCG vaccination policies. The reproduction num-
ber R, the average number of secondary cases of disease
caused by a single infected individual, has been estimated
using EpiEstim package (Cori et al., 2013), based on 7-day
windows, the first estimate starting on the day when cu-
mulative number of 100 reported cases have been reached
(R100), the second estimate starting on 10th day after-
wards (R100+10). In many countries, this time period
would not reflect the effects of social distancing policies,
but would also somewhat avoid the initial period when the
case reporting is likely to be unreliable. In both cases,
the countries with recent BCG vaccination policies show
lower R estimates (Figure 1) and these shifts were statisti-
cally significant (Mann Whitney U-test, P= 0.04 for R100
and P = 0.006 for R100+10).

We have also examined the number of days between 10
and 100 reported cases (C10), 100 and 1000 reported cases
(C100), 10 and 100 reported deaths (D10), and 100 and
1000 reported deaths (D100)—see details on the indica-
tors in Methods section. These time periods reflect R in
various early stages of the epidemic, longer periods mean-
ing slower spread of the disease. Note, that C10 num-
bers are likely unreliable (due to initial problems in es-
tablishing testing and reporting policies in each country),
and there are only a few countries that reached 1000 re-
ported deaths before our data set cutoff. Also note that if
we assume a constant case fatality rate within a specific
time period (typically 6-10 days) and a specific country,
and also assume exponential growth in cases within this
time period, the numbers D10 and D100 do not actually
reflect the death rate, but instead only depend on the un-
derlying value of R. Death reports are likely more accurate
than case reports, which are much more affected by test-
ing and reporting policies in each country (Li et al., 2020;
Flaxman et al., 2020). On average, all of these time pe-
riods are slightly longer in countries with recent universal
BCG policies, with statistically significant results for D10
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Figure 1: Comparison of estimated reproduction numbers
R100 (top) and R100+10 (bottom) between countries with
and without the universal BCG vaccination policy.

(Mann-Whitney U-test, P = 0.02).

No differences in case fatality rates. We have estimated
case fatality rates on days when 100 and 1000 cumulative
deaths were first reached in each country (CFR100 and
CFR1000 respectively), and also used CMMID methodol-
ogy (Nishiura et al., 2009; Russel et al., 2020) to correct
for estimation of active cases (cCFR100 and cCFR1000)
. While some small shifts were observed between coun-
tries with and without recent universal BCG vaccination
policies, these shifts are not statistically significant.



Significant differences in the coefficients of the Vazquez
model. One of the difficulties in modelling and predict-
ing the extent of the coronavirus spreading in a popula-
tion is the divergence of the observed data (the number of
confirmed active cases in individual countries) from the
trends expected from the traditional SIR type models. Ziff
and Ziff (2020) have observed that deaths in China did
not follow the typical epidemiological curve and instead
of an exponential growth they followed a combined poly-
nomial growth with exponential decay (PGED). Polyno-
mial growth has been also confirmed for multiple other
countries (Merrin, 2020) and even though the initial spread
in many countries is approximately exponential, it is fol-
lowed by a steady polynomial growth and in a longer run
by an exponential decay (Komarova et al., 2020).

For a possible explanation of the transition from expo-
nential to polynomial growth, it is natural to look into self-
imposed or government-imposed social distancing mea-
sures. These measures transform the structure of virus
transmitting contact networks in a population, possibly to
small-world network structures or even fractal networks.

For a possible explanation of the transition from expo-
nential to polynomial growth, it is natural to look into self-
imposed or government-imposed social distancing mea-
sures. These measures modify the structure of virus
transmitting contact networks in a population primarily
by removing long-distance connections within the net-
work. The impact of the growth of the pandemic on the
network type was further studied by Medo (2021) on a
parametrized network with two limiting cases: the random
network with small average distance between the nodes
and the regular networks with large average distance be-
tween the nodes. The reduction of the long-distance con-
nections seemed to be the main cause of the power-law
epidemic growth in the model. The impact of the network-
based contact reduction was also explored by Block et al.
(2020), finding that strategic network-based interactions
make the contact reduction more effective.

Moreover, social networks under standard conditions
contain a significant fraction of nodes with a high number
of connections (that correspond to potential superspread-
ers). Interestingly, polynomial growth of the number of
infections in time in well connected scale-free networks
emerges naturally as a consequence of infection initially
reaching the highly connected nodes and their neighbors,
while their isolation or recovery significantly reduces the
interconnectivity of the residual network (Szabó, 2020).
Theoretical study of the infection spread in scale-free net-
works by Vazquez (2006) leads to an explicit formula for
the number of infected individuals in time in a form of
PGED. The formula contains three key parameters: p - the
coefficient of the polynomial growth (not necessary an in-
teger), τ - the rate of decay of the exponential tail (1/τ is
an analogue to the rate of removal of individuals from the
infected class to inactive recovered class in the traditional
SIR-type models), and A - the constant prefactor (scaling
the total population). Based on the value of these param-

eters, it is straightforward to determine Nmax, the number
of infected at the peak of the epidemic, which is indepen-
dent of the choice of the reference time for the start of the
infection. These parameters were obtained by the best fit
on the linear scale to the data in each of the considered
countries/regions.

Interestingly, we have found that the parameters τ and
Nmax significantly differ between countries split into two
groups—with and without recent universal BCG vacci-
nation policies (Figure 2). The τ parameter shifts to
the higher values, signifying higher recovery rate in the
countries with recent universal BCG vaccination policies
(Mann-Whitney U-test P = 0.04). In addition, these coun-
tries have generally lower numbers of infected cases at the
peak of the epidemic (Nmax) corrected for underreporting
(Mann-Whitney U-test P = 0.002).

East and West Germany. The case of Germany is inter-
esting, since the country has been split into East and West
Germany in 1949 and reunited in 1990. In East Germany,
the policies regarding BCG vaccination followed Eastern
Bloc practices, with universal vaccination policy in place
between 1951 and 1998. In West Germany, the vaccina-
tion has been introduced in 1961, but in 1975 it was dis-
continued in favor of vaccinating high risk groups only.
[The information has been reconstructed from the notes
in BCG atlas, however we were not able to confirm this
from other sources.] In the present crisis, the whole Ger-
many follows similar practices in case reporting and treat-
ment of the disease. Interestingly, East Germany exhibits
much lower estimates of R than West Germany at the cor-
responding phases of the epidemic (R100 = 2.8, R100+10
= 1.55 in East Germany vs. R100 = 3.14, R100+10 = 2.76
in West Germany; see also Figure 3). Also, the death rate
from COVID-19 seems to be significantly lower in East
Germany, even when correcting for differences in age dis-
tribution (Table 1).

Discussion

While some of the previous studies have observed asso-
ciations between BCG vaccination policy and spread of
COVID-19 (Miller et al., 2020; Berg et al., 2020), others
criticized their work and showed that after corrections for
various covariate factors, no statistically significant asso-
ciations could be found Hensel et al. (2020); Fukui et al.
(2020); Singh (2020). Most of these studies have used in-
dicators that were quite straightforward, such as the num-
ber of reported cases per million inhabitants on a particu-
lar date. Here, we have instead chosen a variety of indi-
cators that reflect characteristics of various phases of the
epidemics in each country, and moreover, these indicators
were implicitly or explicitly adjusted according to the time
from the beginning of the epidemic in each country. In
fact, we hypothesize that such time adjustment is one of
the key factors in such an analysis considering what we
know about the spread of COVID-19.



East Germany West Germany
Age CMMDI adj. CMMDI adj.

group Deaths Cases CFR Cases cCFR Deaths Cases CFR Cases cCFR
A00-A04 0 126 0 79 0 1 863 0.0012 535 0.0019
A05-A14 0 303 0 196 0 0 2152 0 1396 0
A15-A34 0 3589 0 2416 0 6 26771 0.0002 17632 0.0003
A35-A59 13 6022 0.0022 4036 0.0032 123 48761 0.0025 32777 0.0038
A60-A79 77 2459 0.0313 1565 0.0492 893 21700 0.0412 13795 0.0647

A80+ 143 1148 0.1246 601 0.2378 1709 10951 0.1561 5712 0.2992

Table 1: Differences in CFR in different age groups between East Germany and West Germany. Both raw CFR values
and values corrected by CMMDI methodology are presented.

In our data, we have observed several statistically sig-
nificant associations, and we conclude that there is an as-
sociation between BCG vaccination policy and spread of
COVID-19. However, whether this association is causal or
is merely an observed correlation due to some other com-
mon factor, is impossible to say. Moreover, most observed
shifts in various coefficients are rather small and while the
universal BCG vaccination policy may have had a posi-
tive impact in some of the countries, the observed impact
clearly cannot replace effective policies such as lockdowns
and social distancing measures which currently constitute
the most effective weapon against the epidemic. At best,
the existence of universal BCG vaccination policy may
have provided a few days time for governments to effec-
tively institute such policies.

One of the interesting observations is that we did not
find any correlation between BCG vaccination policy and
CFR. While this may suggest a hypothesis that BCG vac-
cination may help to limit spread, but may not be effec-
tive against difficult progression of the disease in suscep-
tible individuals, we would be careful to draw such con-
clusions. This is because the estimates of CFR are clearly
unreliable at this point of time, with many countries show-
ing CFR estimates well over 10%. Likely, huge differ-
ences between countries do not reflect real differences in
outcomes of the disease, but rather discrepancies in the
amount and effectiveness of testing, with many light or
asymptomatic cases remaining undetected. In fact, such a
conclusion is partly supported by the evidence from East-
/West Germany, where we can assume consistent report-
ing of cases and outcomes, and where differences in CFR
seem to be consistent with historical differences in BCG
vaccination policies, even after correcting for differences
in the age distribution of the population.

Methods

Obtaining case and death reports. The information on re-
ported cases, deaths, and recoveries related to COVID-19
assembled by John Hopkins University Center for Sys-
tem Science and Engineering (Dong et al., 2020) has been
downloaded from Humanitarian Data Exchange (Human-
itarian Data Exchange, 2020) on April 14, 2020. The

data set covers reports from 266 countries from Jan-
uary 22, 2020 until April 13, 2020. For further anal-
ysis, only 41 countries with at least 100 reported cu-
mulative deaths have been retained. We also used the
data set for Germany maintained by Robert Koch Insti-
tute, containing reported cases, deaths, and recoveries
split geographically and into age groups; the data set was
downloaded through ArcGIS (Robert Koch-Institut and
Bundesamt für Kartographie und Geodäsie, 2020). For
our analysis, the data were split geographically into East
Germany (Brandeburg, Mecklenburg-Vorpommern, Sach-
sen, Sachsen-Anhalt, Thüringen, and Berlin) and West
Germany (Schleswig-Holstein, Hamburg, Niedersachsen,
Bremen, Nordrhein-Westfalen, Hessen, Rheinland-Pfalz,
Baden-Württemberg, Bayern, and Saarland).

BCG status of individual countries. For countries included
in the study, we have assembled information from the
BCG World Atlas (Zwerling et al., 2011) and from the
WHO-UNICEF estimates of BCG coverage (World Health
Organization, 2020). Based on this information, the coun-
tries were divided into positive BCG status (the countries
with current universal BCG vaccination policy and coun-
tries with past universal policies discontinued after 1990
or with recent reports of high vaccination coverage from
WHO) and negative BCG status (the countries without
universal BCG vaccination policy and those that discontin-
ued universal BCG policies and did not satisfy the above
conditions); see Supplementary Table S1 for details.

Estimation and extraction of indicators. The indicators
were extracted from the time series data sets using sim-
ple scripts, as outlined in the Results (see Supplementary
Material for tables). All of the indicators are computed in
time that is relative to a particular milestone, i.e. reaching
a particular cumulative number of case reports or death re-
ports. In this way, compared indicators are synchronized
at a particular stage of the epidemic. Since the number of
cases and deaths is highly dependent on the stage of the
epidemic, using such synchronized indicators is a key in
our analysis.

Case fatality rate indicators CFR100 and CFR1000
were computed on the days when the cumulative number
of reported deaths surpassed 100 and 1000 respectively;
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Figure 2: Comparison of Vazquez model parameters esti-
mated for countries with and without universal BCG vac-
cination policies. Top: Rate of decay of the exponential
tail (τ). Bottom: Number of infected cases at the peak of
the epidemic corrected for underreporting (Nmax).

the cumulative number of deaths was divided by the cumu-
lative number of reported cases 7 days prior to that date.
As alternative indicators for case fatality rates, denoted as
cCFR100 and cCFR1000, we have used methodology es-
tablished by the Centre for the Mathematical Modelling
of Infectious Diseases (Nishiura et al., 2009; Russel et al.,
2020), systematically compensating for confirmation-to-
death delay using lognormal distribution with mean delay
of 13 days and a standard deviation of 12.7 days (Linton
et al., 2020). Regardless of the method, the main prob-

lem with CFR indicators is inconsistent reporting on the
number of cases in different countries, as this depends
highly on testing strategy, reporting methodology, as well
as testing capacities of individual countries. Thus, CFR
estimates are likely dominated by these factors. We are
not aware of any simple method that could overcome this
problem at this point of time.

Note that indicators D10 (time from 10 death reports to
100 death reports) and D100 (time from 100 death reports
to 1000 death reports), even though based on the numbers
of reported deaths, are unlikely to reflect CFR, but instead
simply serve as more stable estimates reflecting the under-
lying reproductive number R. This is because if we as-
sume exponential growth phase and a constant CFR over
this period of time, the CFR coefficient will cancel out in
the computation of the expected number of days to reach
10-fold increase in the number of deaths.

Indicators R100 and R100+10 were computed using
EpiEstim R package (Cori et al., 2013). This method is
based on Bayesian inference, modelling new infections
as a Poisson process with rate governed by the instan-
taneous reproduction number and the number and total
infectiousness of infected individuals at the current time
interval. The instantaneous reproduction number has a
gamma-distributed prior and during the inference is as-
sumed to be constant within each seven-day sliding win-
dow to yield an estimate at the end of the window. The
infectiousness is approximated by the distribution of the
serial interval, which is defined as the time between the
onset of symptoms of a case and the onset of symptoms
of secondary cases infected by the primary case. Follow-
ing previous work (Churches, 2020), we have set the dis-
tribution of serial intervals as a discrete gamma distribu-
tion with mean of 5 days and standard deviation of 3.4
days. Here, we concentrated on monitoring early stages
of the epidemic in each country, when such simple expo-
nential growth model is relatively accurate representation
of the spread of the disease. Moreover, the estimated val-
ues are used mostly in the non-parametric Mann-Whitney
test, which only considers their relative ordering, not exact
values.

To avoid initial uncertainty in the reproductive number
estimates due to small numbers of case reports, and to ad-
just for the differences in the start date of epidemics in
each country, the seven-day interval for the first estimate
(R100) starts on the day when 100 cases have been re-
ported and the second estimate (R100+10) is taken 10 days
later. The case incidence numbers have been smoothed
over a window of 7 days in order to account for differ-
ences in testing procedures on different days of the week
(i.e. no or little testing over the weekend in many coun-
tries). Such smoothing will not affect the parameters of
exponential growth models. It has been verified that confi-
dence intervals at chosen points of time are not unpropor-
tionally large.
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Figure 3: Comparison of COVID-19 epidemic progression between East Germany and West Germany. Reproduction
numbers R were estimated using seven day windows using smoothed incidence numbers.

Application of Vazquez model. The number of new
infected individuals at time t in the Vazquez model
(Vazquez, 2006; Ziff and Ziff, 2020) has the form

n(t) =
A
τ
·
( t

τ

)p
· e−

t
τ ,

where A, p, and τ are parameters and t = 1 (units are days)
corresponds to the first day of an infection. In practice, the
available data does not report the number of infected indi-
viduals in the population due to limited testing availability
and potential testing errors. Therefore we use the total
number of active cases (confirmed - recovered - deaths)
as a proxy for the total number of infected individuals.
Bodova and Kollar (2020) (Supplemental information S3)
provide a detailed explanation of why the number of ac-
tive cases is a good approximation of the newly infected
individuals in the Vazquez model. In countries with suf-
ficient testing, we assume that the identified active cases
represent a constant fraction of the total active cases and
the formula for n(t) differs only in the constant factor A.

We used a nonlinear least squares method to infer the
parameters in the above relationship from the data. The
advantages of fitting the parameters in a linear scale in-
stead of fitting logarithmically transformed data allows
us to fit the data globally, as the pre-AGED regime con-
tributes to the errors only by a small amount (Bodova and
Kollar, 2020). However, instead of directly fitting the pa-

rameters A, p, and τ , we used an equivalent formulation

n(t) = Nmax ·
( t

Tmax

)p
· ep(1−t/Tmax),

with parameters Nmax (the maximal number of active
cases during the infection), p (the power of the polyno-
mial growth term), and Tmax = p ∗ τ (the time when the
peak is reached). For consistency, we have truncated the
data to reduce the impact of testing irregularities during
the initial onset of epidemic. Therefore we start the data
from the day when a certain number (relative to the popu-
lation of the country) of active cases Na was reached. The
threshold Na was chosen in proportion to the population
in the country to reduce effects of randomness in report-
ing and to account for the spreading potential. Italy served
as the reference with a threshold of 200 cases (threshold
chosen was always at least 10).
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