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Abstract: Inductive rule learning is arguably among the
most traditional paradigms in machine learning. Although
we have seen considerable progress over the years in learn-
ing rule-based theories, all state-of-the-art learners still
learn descriptions that directly relate the input features to
the target concept. It could nevertheless be the case that
more structured representations, which form deep theories
by forming intermediate concepts, could be easier to learn,
in very much the same way as deep neural networks are
able to outperform shallow networks, even though the latter
are also universal function approximators. In this paper,
we investigate into networks with weights and activations
limited to the values 0 and 1. For the lack of a powerful
algorithm that optimizes deep rule sets, we empirically
compare deep and shallow rule networks with a uniform
general algorithm, which relies on greedy mini-batch based
optimization. Our experiments on both artificial and real-
world benchmark data indicate that deep rule networks may
outperform shallow networks.

1 Introduction

Dating back to the AQ algorithm [13], inductive rule learn-
ing is one of the most traditional fields in machine learning.
However, when reflecting upon its long history [7], it can
be argued that while modern methods are somewhat more
scalable than traditional rule learning algorithms [see, e.g.,
16, 10], no major break-through has been made. In fact, the
RIPPER rule learning algorithm [5] is still very hard to beat
in terms of both accuracy and simplicity of the learned rule
sets. All these algorithms, traditional or modern, typically
provide flat lists or sets of rules, which directly relate the
input variables to the desired output. In concept learning,
where the goal is to learn a set of rules that collectively
describe the target concept, the learned set of rules can be
considered as a logical expression in disjunctive normal
form (DNF), in which each conjunction forms a rule that
predicts the positive class.

In this paper, we argue that one of the key factors for
the strength of deep learning algorithms is that latent vari-
ables are formed during the learning process. However,
while neural networks excel in implementing this ability
in their hidden layers, which can be effectively trained via
backpropagation, there is essentially no counter-part to this
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ability in inductive rule learning. We therefore set out to
verify the hypothesis that deep rule structures might be eas-
ier to learn than flat rule sets, in very much the same way as
deep neural networks have a better performance than single-
layer networks [12]. Note that this is not obvious, because,
in principle, every logical formula can be represented with a
DNF expression, which corresponds to a flat rule set, in the
same way as, in principle, one (sufficiently large) hidden
layer is sufficient to approximate any function with a neural
network [9]. As no direct comparison is possible because
of the lack of a powerful algorithm for learning deep rule
sets, our tool of choice is a simple stochastic optimization
algorithm to optimize a rule network of a given size. While
this does not quite reach state-of-the-art performance (in
either setting, shallow or deep), it nevertheless allows us to
gain some insights into these settings. We also test on both,
real-world UCI benchmark datasets, as well as artificial
datasets for which we know the underlying target concept
representations.

The remainder of the paper is organized as follows:
Sect. 2 elaborates why deep rule learning is of particu-
lar interest and refers to related work. We propose a new
network approach in Sect. 3 and test it in Sect. 4. The
results are concluded in Sect. 5, followed by possible fu-
ture extensions and improvements in Sect. 6. An extended
version of this paper containing an elaborate discussion of
related work, more details on the methods, and additional
experiments is available as [2].

2 Deep Rule Learning

Rule learning algorithms typically provide flat lists that
directly relate the input to the output. Consider, e.g., the
following example: the parity concept, which is known
to be hard to learn for heuristic, greedy learning algo-
rithms, checks whether an odd or an even number of R
relevant attributes (out of a possibly higher total number
of attributes) are set to true. Figure 1a shows a flat rule-
based representation1 of the target concept for R= 5, which
requires 2R−1 = 16 rules. On the other hand, a structured
representation, which introduces three auxiliary predicates
(parity2345, parity345 and parity45 as shown in Fig-
ure 1b), is much more concise using only 2 · (R− 1) = 8

1We use a Prolog-like notation for rules, where the consequent (the
head of the rule) is written on the left and the antecedent (the body) is
written on the right. For example, the first rule reads as: If x1, x2, x3 and
x4 are all true and x5 is false then parity holds.



parity :- x1, x2, x3, x4, not x5.
parity :- x1, x2, not x3, not x4, not x5.
parity :- x1, not x2, x3, not x4, not x5.
parity :- x1, not x2, not x3, x4, not x5.
parity :- not x1, x2, not x3, x4, not x5.
parity :- not x1, x2, x3, not x4, not x5.
parity :- not x1, not x2, x3, x4, not x5.
parity :- not x1, not x2, not x3, not x4, not x5.
parity :- x1, x2, x3, not x4, x5.
parity :- x1, x2, not x3, x4, x5.
parity :- x1, not x2, x3, x4, x5.
parity :- not x1, x2, x3, x4, x5.
parity :- not x1, not x2, not x3, x4, x5.
parity :- not x1, not x2, x3, not x4, x5.
parity :- not x1, x2, not x3, not x4, x5.
parity :- x1, not x2, not x3, not x4, x5.

(a) A flat unstructured rule set for the parity concept

parity45 :- x4, x5.
parity45 :- not x4, not x5.

parity345 :- x3, not parity45.
parity345 :- not x3, parity45.

parity2345 :- x2, not parity345.
parity2345 :- not x2, parity345.

parity :- x1, not parity2345.
parity :- not x1, parity2345.

(b) A deep structured rule base for parity using
three auxiliary predicates

Figure 1: Unstructured and structured rule sets for the parity concept.

rules. We argue that the parsimonious structure of the latter
could be easier to learn because it uses only a linear num-
ber of rules, and slowly builds up the complex target con-
cept parity from the smaller subconcepts parity2345,
parity345 and parity45.

To motivate this, we draw an analogy to neural network
learning, and view rule sets as networks. Conventional
rule learning algorithms learn a flat rule set of the type
shown in Figure 1a, which may be viewed as a concept
description in disjunctive normal form (DNF): Each rule
body corresponds to a single conjunct, and these conjuncts
are connected via a disjunction (each positive example
must be covered by one or more of these rule bodies). This
situation is illustrated in Figure 2a, where the 5 input nodes
are connected to 16 hidden nodes - one for each of the 16
rules that define the concept - and these are then connected
to a single output node. Analogously, the deep parity rule
set of Figure 1b may be encoded into a deeper network
structure as shown in Figure 2b. Clearly, the deep network
is more compact and considerably sparser in the number of
edges. Of course, we need to take into consideration that the
optimal structure is not known beforehand and presumably
needs to emerge from a fixed network structure that offers
the possibility for some redundancy, but nevertheless we
expect that such structured representations offer similar
advantages as deep neural networks offer over single-layer
networks.

It is important to note that deep structures do not in-
crease the expressiveness of the learned concepts. Any
formula in propositional logic (and we limit ourselves to
propositional logic in this project) can be converted to a
DNF formula. In the worst case (a so-called full DNF),
each of the input variables appears exactly once in all of
the inputs, which essentially corresponds to enumerating
all the positive examples. Thus, the size of the number of

conjuncts in a DNF encoding of the inputs may grow expo-
nentially with the number of input features. This is in many
ways analogous to the universal approximation theorem [9],
which essentially states that any continuous function can
be approximated arbitrarily closely with a shallow neural
network with a single hidden layer, provided that the size
of this layer is not bounded. So, in principle, deep neural
networks are not necessary, and indeed, much of the neural
network research in the 90s has concentrated on learning
such two-layer networks. Nevertheless, we have now seen
that deep neural networks are easier to train and often yield
better performance, presumably because they require expo-
nentially less parameters than shallow networks [12]. In the
same way, we expect that deep logical structures will yield
more efficient representations of the captured knowledge
and might be easier to learn than flat DNF rule sets.

3 Deep Rule Networks

For our studies of deep and shallow rule learning, we define
rule-based theories in a networked structure, which we
describe in the following. We build upon the shallow two-
level networks we have previously used for experimenting
with mini-batch rule learning [1], but generalize them from
a shallow DNF-structure to deeper networks.

3.1 Network Structure

A conventional rule set consisting of multiple conjunctive
rules that define a single target concept, corresponds to
a logical expression in disjunctive normal form (DNF).
An equivalent network consists of three layers, the input
layer, one hidden layer (= AND layer) and the output layer
(= OR layer), as, e.g., illustrated in Figure 2a. The in-
put layer receives one-hot-encoded nominal attribute-value



(a) shallow representation (b) deep representation

Figure 2: Network representations of the parity rule sets of Figure 1. Red connections are logical ANDs, green edges
correspond to logical ORs.

pairs as binary features (= literals), the hidden layer con-
juncts these literals to rules and the output layer disjuncts
the rules to a rule set. The network is designed for binary
classification problems and produces a single prediction
output that is true if and only if an input sample is covered
by any of the rules in the rule set.

For generalizing this structure to deeper networks, we
need to define multiple layers. While the input layer and the
output layer remain the same, the number and the size of the
hidden layers can be chosen arbitrarily. Note that we can
still emulate a shallow DNF-structure by choosing a single
hidden layer. In the more general case, the hidden layers
are treated alternately as conjunctive and disjunctive layers.
We focus on layer structures starting with a conjunctive
hidden layer and ending with a disjunctive output layer,
i.e. networks with an odd number of hidden layers. In this
way, the output will be easier to compare with rule sets in
DNF. Furthermore, the closer we are to the output layer, the
more extensive are the rules and rule sets, and the smaller
is the chance to form new combinations from them that are
neither tautological nor contradictory. As a consequence,
the number of nodes per hidden layer should be lower the
closer it is to the output layer. This makes the network
shaped like a funnel.

3.2 Network Weights and Initialization

In the following, we assume the network to have n+ 2
layers, with each layer i containing si nodes. Layer 0 corre-
sponds to the input layer with s0 = |x| and layer n+1 to the
output layer with sn+1 = 1. Furthermore, a weight w(i)

jk is
identified by the layer i it belongs to, the node j from which

it receives the output, and the node k in the successive layer
i+1 to which it passes the activation. Thus, the weights of
each layer can be represented by an si× si−1-dimensional
matrix W (i) = [w(i)

jk ]. In total, there are ∑
n
i=0 sisi+1 Boolean

weights which have to be learned, i.e., have to be set to
true (resp. 1) or false (resp. 0). If weight w(i)

jk is set to
true, this means that the output of node j is used in the
conjunction (if i mod 2 = 0) or disjunction (if i mod 2 = 1)
that defines node k. If it is set to false, this output is
ignored by node k.

In the beginning, these weights need to be initialized.
This initialization process is influenced by two hyperparam-
eters: average rule length (l̄) and initialization probability
(p), where l̄ only affects the number of weights that are
set to 1 in the first layer. Here we use the additional in-
formation which literals belong to the same attribute to
avoid immediate contradictions within the first conjunction.
Let |A | be the number of attributes, then each attribute is
selected with the probability l̄/|A | so that on average for l̄
literals of different attributes the corresponding weight will
be set to true. In the remaining layers, the weights are
set to true with the probability p. Additionally, at least
one outgoing weight from each node will be set to true
to ensure connectivity. This implies that, regardless of the
choice of p, all the weights in the last layer will always
be initialized with true because there is only one output
node. Note that, as a consequence, shallow DNF-structured
networks will not be influenced by the choice of p, since
they only consist of the first layer influenced by l̄ and the
last layer initialized with true.



3.3 Prediction

The prediction of the network can be efficiently computed
using binary matrix multiplications (�). In each layer i,
the input features A(i) are multiplied with the correspond-
ing weights W (i) and aggregated at the receiving node in
layer i+ 1. If the aggregation is disjunctive, this directly
corresponds to a binary matrix multiplication. According
to De Morgan’s law, a∧b =¬(¬a∨¬b) holds. This means
that binary matrix multiplication can be used also in the
conjunctive case, provided that the inputs and outputs are
negated before and after the multiplication. Because of the
alternating sequence of conjunctive and disjunctive layers,
binary matrix multiplications and negations are also always
alternated when passing data through the network, so that a
binary matrix multiplication followed by a negation can be
considered as a NOR-node. Thus, the activations A(i+1) can
be computed from the activations in the previous layers as

A(i+1)←− Ã(i)�W (i) (1)

where X̃ = J−X denotes the element-wise negation of a
matrix X (J denotes a matrix of all ones). Hence, internally,
we do not distinguish between conjunctive and disjunctive
layers within the network, but have a uniform network
structure consisting only of NOR-nodes. However, for the
sake of the ease of interpretation, we chose to represent the
networks as alternating AND and OR layers.

In the first layer, we have the choice whether to start with
a disjunctive layer or a conjunctive one, which can be con-
trolled by simply using the original input vector (A(0) = x)
or its negation (A(0) = x̃) as the first layer. Also, if the
last layer is conjunctive, an additional negation must be
performed at the end of the network so that the output has
the same ”polarity” as the target values. In our experiments,
we always start with a conjunctive and end with a disjunc-
tive layer. In this way, the rule networks can be directly
converted into conjunctive rule sets.

3.4 Training

Following [1], we implement a straight-forward mini-batch
based greedy optimization scheme. While the number, the
arrangement and the aggregation types of the nodes remain
unchanged, the training process will flip the weights of the
network to optimize its outcome. Flipping a weight from 0
to 1 (or vice versa) can be understood to be a single addition
(or removal) of a literal to the conjunction or disjunction
encoded by the following node. After the initialization, the
base accuracy on the complete training set and the initial
weights are stored and subsequently updated every time
when the predicted accuracy on the training set exceeds
the previous maximum after processing a mini-batch of
training examples. However, the predictive performance
does not necessarily increase monotonically, since the ac-
curacy is optimized not on the whole training set, but on
a mini-batch. For all layers and nodes, possible flips are

tried and evaluated, and the flip with the biggest improve-
ment of the accuracy on the current mini-batch is selected.
These greedy adjustments are repeated until either no flip
improves the accuracy on the mini-batch or a maximum
number of flips is reached, which ensures that the network
does not overfit the mini-batch data.

When all mini-batches are processed, the procedure is re-
peated for a fixed number of epochs. Only the composition
of the mini-batches is changed in each epoch by shuffling
the training data before proceeding. After all epochs, the
weights of the networks are reset to the optimum found so
far, and a final optimization on the complete training set
is conducted to eliminate any overfitting on mini-batches.
The returned network can then be used to predict outcomes
of any further test instances.

4 Experiments

In this section we present the results of differently struc-
tured rule networks on both artificial and real-world UCI
datasets, with the goal of investigating the effect of differ-
ences in the depth of the networks.

4.1 Artificial Datasets

As many standard UCI databases can be solved with very
simple rules [8], we generated artificial datasets with a deep
structure that we know can be represented by our network.
An artificial dataset suitable for our greedy optimization
algorithm should not only include intermediate concepts
which are meaningful but also a strictly monotonically de-
creasing entropy between these concepts, so that they can
be learned in a stepwise fashion in successive layers. One
way to generate artificial datasets that satisfy these require-
ments is to take the output of a randomly generated deep
rule network. Subsequently, this training information can
be used to see whether the function encoded in the original
network can be recovered. Note that such a recovery is
also possible for networks with different layer structures.
In particular, each of the logical functions encoded in such
a deep network can, of course, also be encoded as a DNF
expression, so that shallow networks are not in an a pri-
ori disadvantage (provided that their hidden layer is large
enough, which we ensured in preliminary experiments).

We use a dataset of ten Boolean inputs named a to j
and generate all possible 210 combinations as training or
test samples. These samples are extended by the ten nega-
tions ¬a to ¬ j via one-hot-encoding and finally passed
to a funnel-shaped deep rule network with n = 5 and
s = [32,16,8,4,2]. The weights of the network are set
by randomly initializing the network and then training it
on two randomly selected examples, one assigned to the
positive and one to the negative class, to ensure both a posi-
tive and negative output is possible. If the resulting ratio of
positively predicted samples is still less than 20% or more
than 80%, the network is reinitialized with a new random
seed to avoid extremely imbalanced datasets.



4.2 Results on Artificial Datasets

We first conducted a few preliminary experiments on three
of the artificial datasets to set suitable default values for the
hyperparameters of the deep and shallow networks. The
detailed grid search including figures comparing different
hyperparameter settings are presented in the extended ver-
sion of this paper [2]. Based on these results, we selected
three network versions for the main experiments. As a
candidate for shallow networks, we take the best combina-
tion of s1 = 20 and l̄ = 5. For the deep networks, however,
we will choose the second-best network s = [32,16,8,4,2]
combined with l̄ = 2 and an averaged p = 0.05, since it is
almost ten times faster than the best deep network while
still reaching an accuracy over 0.895. The third network
is chosen as an intermediate stage between the first two:
s = [32,8,2] combined with l̄ = 3 and p = 0.05. While still
being a deep network, the learned rules can be passed to the
output layer a little faster. In the following, we will refer to
these (deep) rule network classifiers based on their number
of layers, i.e. DRNC(5) for s = [32,16,8,4,2], DRNC(3)
for s = [32,8,2] and RNC for s1 = 20. For computational
reasons, all of the reported results were estimated with a
2-fold cross validation. While this may not yield the most
reliable estimate on each individual dataset, we neverthe-
less get a coherent picture over all 20 datasets, as we will
see in the following.

In the main experiments, we use a combination of 15
artificial datasets with seeds we already used in the prior
hyperparameter grid search and 5 artificial datasets with
new seeds to detect potential overfitting on the first datasets.
All datasets are tested using five epochs, a batch size of 50
and an unlimited number of flips per batch. We also ensured
for all of the generated datasets that the DNF concept does
not contain more than 20 rules, so that it can be theoretically
also be learned by the tested shallow network with s1 = 20
(and therefore also for the two deep networks, since their
first layer is already bigger).

Figure 3: Average accuracy of rule network with 1/3/5
layers on training dataset.

Figure 3 shows the development of the accuracies on
the training set averaged on all 20 datasets over the num-
ber of processed mini-batches, whereby after every ten
mini-batches a new epoch starts. The base accuracy be-
fore processing the first mini-batch and after the full batch
optimization are omitted. We can see that the deep net-
works not only deliver higher accuracies but they also con-
verge slightly faster than the shallow one. The orange
curve of DRNC(3) runs a little higher than the blue one
of DRNC(5), whereas the green curve of RNC has some
distance to them, especially during the first two epochs.

Table 1 shows the accuracies of the three networks. For
each dataset, the best accuracy of the three network classi-
fiers is highlighted in bold. We can see a clear advantage
for the two deep networks both when considering the av-
erage accuracy and the amount of highest accuracies. The
results clearly show that the best performing deep networks
outperform the best performing shallow network in all but
4 of the 20 generated datasets. Both the average rank and
the average accuracy of the deep networks is considerably
better than the corresponding values for RNC. This also
holds for pairwise comparisons of the columns (DRNC(5)
vs. RNC 15:5, DRNC(3) vs. RNC 15:5).

Figure 4: Critical distance diagram for the rule networks
on the artificial datasets with a significance level of 95%.
Learners that are not statistically different from one another
are connected.

The Friedman-test for the ranks yields a significance
of more than 95%. A subsequent Nemenyi-Test delivers
a critical distance of 0.741 (95%) or 0.649 (90%), which
shows that DRNC(3) and RNC are significantly different
on a level of more than 95% and DRNC(5) and RNC
on a level of more than 90%. The corresponding critical
distance diagram (CD=0.741) is shown in Figure 4. We
thus find it safe to conclude that deep networks outperform
shallow networks on these datasets.

In the two right-most columns of Table 1 we also show
a comparison to the state-of-the-art rule learner RIPPER
[5] and the decision tree learner CART [4] in Python im-
plementations using default parameters.2 We see that all
network approaches are outperformed by the RIPPER and
CART classifiers with default setting. The difference be-
tween RIPPER and DRNC(3) is approximately the same
as the difference between DRNC(3) and RNC. However,
considering that we only use a naïve greedy algorithm, it

2We used the implementations available from https:
//pypi.org/project/wittgenstein/ and https://
scikit-learn.org/stable/modules/generated/sklearn.
tree.DecisionTreeClassifier.html.

https://pypi.org/project/wittgenstein/
https://pypi.org/project/wittgenstein/
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html


Table 1: Accuracies on artificial datasets. Rule network with 1/3/5 layers vs RIPPERvs CART. The best accuracy of the
rule networks is marked in bold, the overall best accuracy per dataset is marked in italic.

seed %(+) DRNC(5) DRNC(3) RNC RIPPER CART
5 0.4453 0.958 0.9863 0.9531 0.9805 0.9844
16 0.7959 0.9639 0.9707 0.9629 0.9766 0.9551
19 0.6562 1 0.9902 0.9746 1 1
24 0.584 0.9053 0.9043 0.916 0.9463 0.9404
36 0.6943 0.8828 0.9209 0.9043 0.8867 0.9111
44 0.7939 0.9629 0.9551 0.9326 0.9482 0.9697
53 0.6055 0.9805 0.9805 0.9775 0.9746 0.9824
57 0.7705 0.9824 0.9736 0.9639 0.9951 0.9902
60 0.7715 0.9443 0.9453 0.9209 0.958 0.9883
65 0.5312 0.9854 0.9688 0.9414 0.9961 0.9922
68 0.5654 0.9248 0.9443 0.9619 0.9688 0.9355
69 0.6924 0.9551 0.9658 0.9199 0.9795 0.9717
70 0.6338 0.9014 0.9062 0.9229 0.9111 0.8984
81 0.5684 0.9004 0.9131 0.8857 0.9248 0.9756
82 0.7188 0.9941 0.998 0.9717 1 1
85 0.5312 1 0.998 0.9736 1 1
89 0.6084 0.8926 0.9434 0.9629 0.9502 0.9395
107 0.6172 0.8965 0.873 0.8643 0.9043 0.9277
112 0.7549 0.9346 0.9248 0.9189 0.9082 0.9561
118 0.5957 0.9688 0.9414 0.9434 0.9736 0.9688
Ø Accuracy 0.9467 0.9502 0.9386 0.9591 0.9644
Ø Rank 1.775 1.725 2.5

could not be expected (and was also not our objective) to
be able to beat state-of-the-art rule learner. In particular,
the runtime is far from state-of-the-art, since already for
the shallow network 30 seconds are needed per dataset and
up to three minutes for the deep networks (in comparison
to less than a second for RIPPER and CART). Further-
more, the results also confirm that shallow rule learners (of
which both RIPPER and CART are representatives) had no
disadvantage by the way we generated the datasets.

4.3 Results on UCI Datasets

For an estimation how the rule networks perform on real-
world datasets, we select nine classification datasets (car-
evaluation, connect-4, kr-vs-kp, monk 1-3, mushroom, tic-
tac-toe and vote) from the UCI Repository [6]. They dif-
fer in the number of attributes and instances, but have in
common that they consist only of nominal attributes. Car-
evaluation and connect-4 are actually multi-class datasets
and are therefore converted into the binary classification
problem whether a sample belongs to the most frequent
class or not. Of all binary classification problems, the net-
works to be tested treat again the more common class as the
positive class and the less common as the negative class,
except for the monk datasets whereby the positive class
is set to 1. As with the artificial datasets, we additionally
compare the performance of the networks to RIPPER and
CART, and again all accuracies are obtained via 2-fold
cross validation. In case a random initialization did not

yield any result (i.e., the resulting network classified all ex-
amples into a single class), we re-initialized with a different
seed (this happened once for both deep network versions).

The results are shown in Table 2. We can again observe
that the deep 5-layer network DRNC(5) outperforms the
shallow network RNC. Of all rule networks, DRNC(5)
provides the highest accuracy on the connect-4, monk-1,
monk-3, mushroom and vote datasets, whereas DRNC(3)
performs best on car-evaluation and monk-2 and RNC on
kr-vs-kp and tic-tac-toe. The latter two datasets are also
interesting: tic-tac-toe clearly does not require a deep struc-
ture, because for solving it, the learner essentially needs
to enumerate all three-in-a-row positions on a 3×3 board.
This is similar to connect-4, where four-in-a-row positions
have to be recognized. However, in the former case, there
is only one matching tile for an intermediate concept con-
sisting of two tiles, while in connect-4 there are several,
which can potentially be exploited by a deeper network. In
the kr-vs-kp dataset, deep structures are also not helpful
because it consists of carefully engineered features for the
KRKP chess endgame, which were designed in an iterative
process so that the game can be learned with a decision
tree learner [15]. It would be an ambitious goal of deep
rule learning methods to be able to learn such a dataset
from, e.g., only the positions of the chess pieces. This is
clearly beyond the state-of-the-art of current rule learning
algorithms. The comparison to RIPPER and CART is again
clearly in favor of these state-of-the-art algorithms.



Table 2: Accuracies on real-world datasets. Rule network with 1/3/5 layers vs RIPPER vs CART. The best accuracy of the
rule networks is marked in bold, the overall best accuracy per dataset is marked in italic.

dataset %(+) DRNC(5) DRNC(3) RNC RIPPER CART
car-evaluation 0.7002 0.8999 0.9022 0.8565 0.9838 0.9821
connect-4 0.6565 0.7728 0.7712 0.7597 0.7475 0.8195
kr-vs-kp 0.5222 0.9671 0.9643 0.9725 0.9837 0.989
monk-1 0.5000 1 0.9982 0.9910 0.9478 0.8939
monk-2 0.3428 0.7321 0.7421 0.7139 0.6872 0.7869
monk-3 0.5199 0.9693 0.9603 0.9567 0.9386 0.9729
mushroom 0.784 1 0.978 0.993 0.9992 1
tic-tac-toe 0.6534 0.8956 0.9196 0.9541 1 0.9217
vote 0.6138 0.9655 0.9288 0.9264 0.9011 0.9287
Ø Rank 1.556 2 2.444

5 Conclusion

The main objective of this work was to study the question
whether deep rule networks have the potential of outper-
forming shallow DNF rule sets, even though, in principle,
every concept can be represented as DNF formula. As
there is no sufficiently competitive deep rule learning al-
gorithm, we proposed a technique how deep and shallow
rule networks can be learned and thus effectively compared
in a uniform framework, using a network approach with
a greedy optimization algorithm. For both types of net-
works, we find good hyperparameter settings that allow the
networks to reach reasonable accuracies on both artificial
and real-world datasets, even though the approach is still
outperformed by state-of-the-art learning algorithms such
as RIPPER and CART.

Our experiments on both artificial and real-world bench-
mark data indicate that deep rule networks outperform shal-
low networks. The deep networks obtain not only a higher
accuracy, but also need less mini-batch iterations to achieve
it. Moreover, in preliminary experiments in the hyperpa-
rameter grid search, we have seen indications that the deep
networks are generally more robust to the choice of the
hyperparameters than shallow networks. On the other hand,
we also had some cases on real-world data sets where deep
networks failed because a poor initialization resulted in
indiscriminate predictions.

Overall, we interpret these results as evidence that an
investigation of deep rule structures is a promising research
goal, which we hope could yield a similar boost in perfor-
mance in inductive rule learning as could be observed by
moving from shallow to deep neural networks. However,
this goal is still far ahead.

6 Future Work

In this work, it was not our goal to reach a state-of-the-art
predictive performance, but instead we wanted to evaluate
a very simple greedy optimization algorithm on both shal-
low and deep networks, in order to get an indication on

the potential of deep rule networks. Nevertheless, several
avenues for improving our networks have surfaced, which
we intend to explore in the near future.

One of the main drawbacks of the presented deep rule
networks is the extremely high runtime due to the primitive
flipping algorithm. A single flip needs a recalculation of
all activations in the network, even if only a few them will
be affected by this flip whereby the matrix multiplication
could be minimized considerably. Conversely, this knowl-
edge can be used to find a small subset of flips that affects
a certain activation. On the other hand, the majority of
possible flips does not have any effect on this activation
or the accuracy at all. This effect will typically remain
unchanged after a few more flips are done. Therefore an
exhaustive search of all flips is only needed in the first itera-
tion, while afterwards just a subset of possible flips should
be considered which can be built either in a deterministic
or probabilistic way.

Due to this lack of backpropagation, the flips are eval-
uated by their influence on the prediction when executed.
However, when looking at a false positive, we can only
correct this error by making the overall hypothesis of the
network more specific. In order to achieve a generalization
of the hypothesis, only flips from false to true in con-
junctive layers or flips from true to false in disjunctive
layers have to be taken into account. In this way, all flips are
split into ”generalization-flips” and ”specialization-flips”
of which only one group has to be considered at the same
time. This improvement as well as the above mentioned
selection of a subset of flips might also allow us to perform
two or more flips at the same time so that a better result
than with the greedy approach can be achieved.

An even more promising approach starts one step ear-
lier in the initialization phase of the network. Instead of
specifying the structure of the network and finding optimal
initialization parameters l̄ and p for it, a small part of the
data could be used to create a rough draft version of the
network. The Quine-McCluskey algorithm [11] or RIPPER
are suitable methods to generate shallow networks, whereas
the ESPRESSO-algorithm [3] would generate deep networks.



Decision trees can also be used to generate deep networks
since the contained rules already share some conditions
and, moreover, similar subtrees can be merged.

All these approaches share some significant advantages
over the network approach we developed so far. First of all,
the decision which class value will be treated as positive
or negative does not have to be made manually any longer.
Second, they automatically deliver a suitable initialization
of the network, which otherwise would have to be improved
by similar approaches like used in neural networks [e.g.,
14] to achieve a robust performance. Third, the general
structure of the network is not limited to a fixed size and
depth where each node is strictly assigned to a specific
layer. Instead of generating nodes that become useless after
a few flips have been processed and that should be removed,
we can thereby start with a small structure which can be
adapted purposefully by copying and mutating good nodes
and pruning bad ones. However, it remains unclear whether
these changes still lead to improvements in performance or
if the network in the given structure is already optimal.
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