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Abstract

Nowadays, micro-mobility sharing systems have become extremely popular. Such systems consist in
fleets of electric vehicles which are deployed in cities, and used by citizens to move in a more ecolog-
ical and flexible way. Unfortunately, one of the issues related to such technologies is its intrinsic load
imbalance; since the users can pick up and drop off the electric vehicles where they prefer. We present
ESB-DQN, a multi-agent system based on Deep Reinforcement Learning that offers suggestions to pick
or return e-scooters in order to make the fleet usage and sharing as balanced as possible.
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1. Introduction

In the last few years, micro-mobility sharing systems have become extremely popular. More
and more companies are purchasing fleets of electric vehicles to be deployed in many cities
around the world, allowing users to easily rent vehicles via a smartphone app. The last trend is
to offer a so-called "free-floating" or "dockless" service related to e-scooters, e-bikes or e-moped:
the vehicles can be picked-up or dropped-off anywhere within an operative area designed by
the service provider to cover most of the busiest areas of cities [1, 2].

The great flexibility of such a service comes with the challenge of unpredictable usage
patterns, with the result of an imbalanced distribution of the electric vehicles around the city.
Moreover, battery capacity is limited and many vehicles can rapidly become out-of-charge
during the course of the day, if overused in quick succession. In order to preserve a good quality
of service despite of imbalance problems and battery limitations, companies need to devote a
large operational effort for an efficient fleet management [3].

Typically, specialised workers are employed to accomplish two different, yet complementary
tasks, namely battery swap and relocation. Battery swap refers to the process of inserting new
batteries into out-of-charge vehicles, whereas relocation refers to the process of moving vehicles
from one zone to another in order to rebalance the fleet distribution [4].

Quantity of workers, modality and frequency associated to battery swap and relocation op-
erations represent crucial aspects in the definition of an efficient fleet management policy. A
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critical trade-off is required to avoid high operational costs and, at the same time, maximize
the usage of vehicles. Recently, users engagement has been proposed as a viable solution to
alleviate the aforementioned problems. As a result, nowadays several companies engage users
in various ways to solve the imbalance and the battery limitation problems [5, 6, 7].

In this work, we present ESB-DQN, a multi-agent system based on Deep Reinforcement
Learning (Deep RL) capable of proposing convenient alternative locations for picking up or
returning e-scooters. Every time a user is willing to rent an e-scooter, he/she is encouraged to
accept alternative pick-up or drop-off points in exchange for monetary incentives.

Based on demand forecast models and artificial intelligence techniques, the ESB-DQN system
is able to learn convenient recommendations for the users, in order to maximize the vehicle avail-
ability and, at the same time, minimize the number of battery swap and relocation operations.
As a result, the system is able to improve service efficiency and to increase the service provider’s
long-term revenue. Provided with a smart monetary incentive mechanism, the system is also
intended to improve customers’ satisfaction and fidelity.

The code that supports the findings of this study is available upon request.

The main contributions of our paper are the following:

+ an innovative customer-oriented rebalancing strategy has been defined through a multi-
agent system based on deep reinforcement learning;

« an existing simulator of mobility sharing systems has been integrated with a state-of-the-
art library for deep reinforcement learning;

+ simulations based on real data have been carried out to preliminarily quantify the benefits
of the proposed approach.

The paper is organized as follows: Section 2 contains an overview of related works. Section 3
describes the materials and the methods used throughout this research. Section 4 presents the
experiments that have been carried out as well as the corresponding results. Section 5 concludes
the paper with discussions and possible future works.

2. Related works

The recent work by Wen and colleagues [7] provides a comprehensive overview of the re-
balancing strategies used to alleviate the imbalance problem in bike sharing systems. Such
strategies have been classified according to two main categories: truck-based rebalancing and
customer-oriented rebalancing. Truck-based rebalancing refers to the relocation operations
mentioned above in Section 1. A specialized group of workers is in charge of moving vehicles
from one zone to another by means of trucks. On the other hand, customer-oriented rebalancing
is the process of encouraging users to adopt efficient behaviours by providing incentives. The
latter category is the main topic of our investigation.

Most past works on rebalancing strategies are not targeted towards "free floating" systems.
In particular, papers investigating truck-based rebalancing determine the optimal inventory for
each station and design a dynamic optimal truck route with budget constraint [8, 9]. Analogously,



paper investigating customer-oriented rebalancing ponder the role of stations in the incentive
proposals mechanism [5, 6, 7].

In our work, both rebalancing strategies have been taken into account: truck-based re-
balancing is implemented through the simulator, whereas customer-oriented rebalancing is
implemented through the reinforcement learning system. Few other works employ deep RL to
investigate user incentives in bike sharing systems, including [10, 11]. However, their objective
is to determine an optimal pricing mechanism, whereas the objective of our work is to determine
convenient pick-up/drop-off zones for each booking request.

The motivation behind the use of deep Reinforcement Learning for such a task is mainly
related to the possibility of combining many interesting aspects at once. The deep RL system
can indeed incorporate demand forecasting models as a baseline to drive agents’ behaviours
and, at the same time, can learn efficient suggestions based on past experience and adapt to
real-time demand and availability of the system. In this way, the decision process behind the
offered suggestions can capture complex information about the dynamics of the mobility system.
Furthermore, by formulating the problem as a game, several constraints may be introduced to
enforce specific objectives in the mobility system (e.g., a target service availability).

Compared to previous works, the innovative contribution of our paper is thus twofold. On
one side, the imbalance problem inside "free-floating" e-scooter mobility systems has been
addressed for the first time. Both rebalancing strategies proposed so far in the literature have
been adapted from station-based sharing systems. On the other side, a deep RL multi-agent
system in charge of suggesting pick-up/drop-off zones constitutes an original solution which
does not build on any existing work. The main influential work has been [4], in which the
simulator has been introduced (Section 3.2) - an essential component of the ESB-DQN system.

3. Materials and methods

3.1. Data

To investigate the free-floating imbalance problem, we rely on actual e-scooter trips open data
published by the Municipality of Louisville!, Kentucky. The data comes fuzzed both in time and
space for privacy reasons; in particular, each trip has any time-related information rounded to
the closest quarter of an hour and any space-related information rounded at the 3rd decimal for
both latitude and longitude. Hence, we follow the disaggregation procedure described in [4]
such that each trip retains a unique Id, the duration, the distance, the start time, the end time,
the start location and the end location. The main characteristics of the dataset are summarized
in Table 1. They refer to a training window of observations registered over the whole year 2019.
The number of trips in the simulation, denoted as N trips sim refers to a simulation window of
observations over one single day, namely January 01, 2020.

Louisville’s e-scooter ecosystem has rather limited complexity, reflecting heterogeneous
temporal and spatial demands at the same time. Nonetheless, in order to further ease the
formulation of the problem, the whole operative area in the city of Louisville has been quantized
in a set Z of | x [ square zones as proposed in [4], with [ the side of the squares, a key parameter

'https://data louisvilleky.gov/dataset/dockless-vehicles



Table 1
Main characteristics of Louisville dataset

City N scooters  Avg trip dur. (s) Avg trip dist. (m) N zones N trips train N trips sim

Louisville 800 814 1601 279 199 789 154

Figure 1: Characterisation of zones in the city of Louisville, following a heatmap colour scale on the
number of average trip requests per zone in 2019. Credits to [4].

later clarified in Section 4. As a result, the start/end locations of each trip report the Id of the
corresponding zone membership. Each zone z; € Z is associated with a set of valid 1-hop
neighbours V., i.e. the zones among the 8 adjacent zones registering at least one booking
request within the training window of observations. As it can be seen in Figure 1, many of the
zones do not have a full set of valid 1-hop neighbours, i.e. |\,| # 8. In fact, almost all of them
do not, with a grand total space of valid neighbours, N,4;;4, amounting to only the 60.6% of
the whole space of possible neighbours N'*, with |N*| = 279 * 8 = 2232.

Both the large subset of invalidity, N;,yqi4, and the tiny simulation window of observations
over January 01, 2020 only, are further discussed in Section 4 as they play a key role in the
reasoning behind the training of the ESB-DQN multi-agent system.

3.2. Simulator

A modified version of the SimPy-based simulator presented in [4] has been used to simulate
e-scooter sharing system dynamics in Louisville. A formal description of the simulator follows:

Fleet and zones. Let S be the fleet of e-scooters. At any time ¢, each e-scooter s € S is
characterised by a unique plate Id, the state of availability, the state of charge of the battery



b(s) € [0, B], with B being the battery capacity, and the location [(s) as a zone Id in Z.

Trip requests. The simulator processes trip request events by directly reading them from the
input trace over 2019. When the i-th trip request event fires at time ¢;, the simulator checks
whether there is any e-scooter s with enough residual energy, i.e., b(s) > e;, being e; the energy
to complete such trip, either available in the same zone or in the 1-hop neighbouring zones (i.e.,
the 8 surrounding zones). This is equivalent to assume that customers will by default rent the
nearest available e-scooter having enough battery charge.

Incentive proposals. In alternative, users are incentivized to pick-up and/or drop-off the ve-
hicle from/to a different zone (in a limited nearby area). They randomly accept or decline the
proposal according to a willingness factor w € [0, 1], and eventually get their incentive once
the trip has been completed. If no alternative pick-up proposal is accepted and no scooter is
available in the 1-hop neighbouring zones, the trip request is marked as unsatisfied.

Trip completion. Once the pick-up zone p(i) and the drop-off zone d(7) are defined, a trip-end
event is scheduled at time ¢; + dt;, being dt; the duration of the rental - drawn from a Gaussian
distribution with mean p equal to the duration of the trip reported in the trace, and standard
deviation o equal to 4 minutes, as a form of variability. When the trip-end event fires, the
simulator makes the e-scooter s back available in position d(7), and updates its battery charge
b(s) = b(s) — e(i). If b(s) < aB, with « the operability threshold € [0, 1], the scooter s is
marked as dead and is no longer available until a battery swap operation is performed.

Battery swap. Once every T’s time steps, a fleet of ngyap battery swap workers is triggered to
perform battery swaps operations. Each worker is assigned a battery swap schedule, which
consists of up to n, vehicles to be re-charged inside several zones. Battery swap schedules are
created and assigned with the following criteria: we compute the battery charge deficit for each
zone z at time t, A4(t, z), with t = kT, as the number of dead vehicles waiting for service in z.
Then the zone z, with the least deficit is identified, and a priority 0 queue is constructed for all
the other n — 1 zones, with priority defined as:

o d(2, %)
p(t, z) = Ag(t,z)  max(d(zj,20)j=1,...n)

with d(z;, zi) being the Haversine distance between the i-th and the k-th zone. Each worker is
then assigned a subset of the queue, potentially across multiple zones, following a lump sum
costs policy whose goal is to construct a schedule that keeps the expected profit in the next 7’
time steps, Psyap,i+T,, higher than the expected battery swap costs, Cyqp,¢: an average cost of
service has to be assumed for each vehicle, C,,. As soon as all the workers have an assigned
schedule as a sequence of zone Ids, the shortest path to completion is computed for each of
them by solving an equivalent TSP optimization problem. Once all the battery swap operations
are completed, the workers wait as idle in their last zone on schedule.

Relocation. Once every T, time steps in a limited working time interval Ty, a fleet of nq
relocation workers is triggered to perform relocation operations. Each worker is assigned a



relocation schedule, which consists of up to n, vehicles to be moved from some zones to others
in order to balance the system. Relocation schedules are created following a similar criteria
to what has been described above: a deficit A(¢, z) is computed for each zone z, a priority 0
queue is computed off of that and a number of schedules are first generated following a lump
sum costs policy and then optimized via TSP. In this case, A(t, z) is computed observing the
availability of e-scooters with respect to the expected inward and outward flows for the zone z
at time ¢ computed over 2019 following the predictive model proposed in [4].

Initialization. At start time, e-scooters are randomly placed among the zones of the grid
with uniform random charge b(s) € [B/2, B]. Afterwards, both relocation and battery swap
workers are similarly placed with uniform random among the 30 zones that have registered the
highest demand in the training data over 2019. This is equivalent to assume the existence of
landmarks within the city of Louisville that require a higher concentration of e-scooters.

Originally, battery swap operations were treated differently from relocation ones, as battery
swap workers were modelled as a FIFO queue that would react on the fly to out of charge events.
In this work, we have leaned towards the hourly scheduling approach already followed by
relocation workers, as this would allow us to have a rough idea of the hourly workforce of
battery swap workers that is necessary to do any sort of planning whose long-term objective is
to reduce the overall maintenance costs of the system.

3.3. ESB-DQN multi-agent system

A multi-agent system has been designed, in charge of proposing alternative pick-up/drop-off
zones to the users in change of incentives. In particular, two agents are defined: a pick-up agent,
P, and a drop-off agent, D. At every generated trip request 7 with pick-up zone p(7) and drop-off
zone d(i), the pick-up agent proposes an alternative pick-up zone p(i), whereas the drop-off
agent proposes an alternative drop-off zone Z(7). Both proposals share the same ultimate goal
of improving the long-term balance of the system, while reducing the overall costs of service
due to general maintenance, battery swap ops and relocation ops.

The next three paragraphs describe the fundamental components of the E-scooter Balancing
DON, or ESB-DON for short, multi-agent system.

3.3.1. Environment

The environment wraps the modified simulator described in Section 3.2 to make it compliant
with DeepMind’s DQN Zoo library for reinforcement learning [12]. The major change we
have made to said simulator is conceptual: rather than simulating the whole cascade of trip
requests between two time intervals of start and finish, ¢y and ¢y, collecting a certain number
of statistics about the run afterwards, as the original in [4] does, the simulator moves step
by step across the states of the Louisville environment. The state, X, is observed as soon
as an environment-changing event fires, i.e., a trip request is scheduled; such observation is
available to P and D, which will consequently pick an action, a;. The simulator will then



move forward of one step into the state X;; 1 by applying such action. Formally, it is a fully
observable environment which produces a n x 3 state vector X; at every trip request ¢ at time ¢:

_al b1 0_
a9 bg 0
ap by, 1
)i%: [Anx1) Bux1) Cuxn) = S (1)
ag bg 1
| an bn, 0]

with n = | Z| the total number of zones, A the n x 1 column vector with the number of
available vehicles per zone z at time ¢, B the n x 1 column vector with the deficit A(¢, z) per
zone z with respect to the expected optimal baseline at time ¢, introduced in Section 3.2, and C
the two-hot encoded vector with 1s in correspondence of p(i) and d(i) only.

The vectors A and B are standardized via z-normalization to achieve a mean of 0 and a
standard deviation of 1. C' plays the role of a de-facto attention mechanism within the state
X itself. Indeed, it signals which zones of the operative area may be subject to alterations
in the near future leading towards the state transition X; to X1, which may reflect in how
knowledgeable the alternative proposals are.

Despite a detailed action space definition follows in the next paragraph, it is important to
note that the ESB-DQN environment belongs to the family of constrained environments, i.e.,
the setting of our problem falls within constrained deep Reinforcement Learning. There are
a number of ways to approach constraint-guided interactions to lead RL agents towards safe
behaviour in their exploration. For example, an exploration pattern often persevered is to
pretend those unsafe actions do not exist altogether, by strictly avoiding them from the range
of actions the agents can pick. Or again, a terminal state may be invoked each time an invalid
action is taken, and a new episode started over hoping for better fortune. Here instead, we focus
on the third popular paradigm of constrained RL, that is, to let the invalid action pass through,
but awarding the agent committing it a strongly penalized reward. Indeed, [13] show that this
approach is actually the most beneficial under most constrained RL settings to augment the
interaction capabilities of the agents with the surrounding environment, while not altering nor
interrupting too abruptly their perception of it. The only limitation of this approach is that the
harshly penalized reward should be ensured to be at least an order of magnitude smaller than
the lowest possible reward achievable as a result of a valid action. Our approach is similar to
[13], as we define a fall-back action, or NOP, that the agents can fall back to whenever they
pick an invalid action, getting severely penalized as a result, to prompt the continuity of the
simulation. In Section 3.4 we further explore this continuity while training the ESB-DQN system,
by introducing the concept of lives, borrowed from Atari games [14].



3.3.2. Agents architecture

The agents are Deep-Q-Networks (DQN) implementing an e-greedy policy with experience
replay [14] belonging to the family of Q-learning. It is an off-policy approach towards deep RL
wherein the agent estimates the expected reward for future actions from a given state without
following an actual greedy policy, but instead relying on a behaviour policy enriched from
direct experience with the environment to update the online policy, by satisfying Bellman’s
optimality equation. Such an approach is better suited for large state spaces, S, against rather
limited action spaces, A, which we will see to be our case. In fact, they are Rainbow agents
[15], a state-of-the-art DQN agents, which we have found beneficial for the three following
main features: double Q-learning helps in preventing overestimation of the action values which
may lead to very unpleasant proposals; distributional Q-learning helps in investigating the
importance of the value distribution, which we find necessary to achieve long-term balance of
the ESB-DON system; prioritized experience replay helps in selecting the subset of previously
experienced observations that are the most relevant, which we find necessary to characterize
the complexity of the dynamics behind a free-floating sharing system .

Both the pick-up agent and the drop-off agent comprise a funnel-like three-layer fully con-
nected network with ReLU activation functions, whose role is to flatten the input and extract a
latent representation as a single vector of 256 units. The input of the network is the last observed
environment state, X¢, whereas the output feeds the standard Rainbow network that produces
a distribution of logits, whose maximum value identifies the action picked by each agent, ap;
and ap 4, respectively. The action space is limited to 9 different choices, corresponding to the 8
cardinal directions mapping the 8 adjacent zones (i.e., 1-hop neighbourhood) plus the calling
zone, p(i) or d(7) respectively, which function as the NOP actions.

Following this formulation of the action space, and recalling Figure 1, it becomes clear why
the ESB-DQN environment is constrained by a large set of invalid actions. In fact, in the early
stages of the RL agents life-cycle, the expectation of picking an invalid action from any given
zone z at any given time ¢ far exceeds its complementary, which is further evidence of the need
for outer aid for the RL agents to well characterize the dynamics of the system.

3.3.3. Reward

The following functions are defined to compute the reward:
sign(A(z,t))
NaGz0)* ) ®

B(ot) = Np (2, 8) exp (—d(lt)+ NA<z,t>) ©

e = 0| (gl

where:

« A(z,t): expected deficit of e-scooters at zone z at time ¢;
« d(z,t): future demand of e-scooters in z at time ¢ (in a time interval ¢ + At);



Pick-up: A >0

Ny Ny

Figure 2: Pick-up action: some examples of the reward function Rp for different values of the param-
eters A, d. (Upper row) Negative reward: the agent suggests to pick-up a vehicle from a zone having
an expected deficit of vehicles (A > 0). As A and d increase, the reward is smaller because the ex-
pected deficit condition will be worsened. In both cases, the larger the number of available vehicles the
higher the curve, as the deficit condition will be alleviated. (Bottom row) Positive reward: the agent
suggests to pick-up a vehicle from a zone having an expected surplus of vehicles (A < 0). The larger
A the larger the reward, reflecting how problematic the surplus being improved. Similarly, when the
number of available vehicles is high, the rebalancing effect is considered more valuable. As the demand
d increases, the reward decreases because the pick-up may negatively affect the long-term balance of

the zone.

« N4(z,t): number of available e-scooters in z at time ¢;
« Np(z,t): number of dead e-scooters in z at time ¢;
« (+)™ denotes the function max(-, 1) and is used to prevent from division by zero.

Drop-off agent. Let &(z) be the chosen alternative drop-off zone for trip 7 at time ¢, N- )

be the set of valid neighbours around Ei(z) If the state of charge of the vehicle s at the end
of the trip is greater than the battery swap threshold, i.e. b(s) — e; > aC, then the reward



corresponding to each of the alternative zones z € N- i) is:
Rp (Z,t) = {

w(z,t) if d(i) = z

—w (z, t) otherwise
Otherwise:

z,t)  ifd(i) =2
Rp(z,t) = {ﬁ(z)t) othe(rzivise

The overall reward for the choice d(i) is:
1
o — ZzeNa(.) Rp(z,t)  if drop-off action is valid
Rp (d(i),t) = ‘Ng(i)

—Yp Maxzen,

o |Rp(z,t)] otherwise

with yp being a constant which modulates the penalty of an invalid drop-off action.
Pick-up agent. Let p(i) be the chosen alternative pick-up zone for trip i at time ¢, Nj(;) be the
set of valid neighbours around p(i). The reward corresponding to each of the zones z € Nj;)

is: e
Rp(z,t) = {_W(Z’t) 5(i) = 2
w (z, t) otherwise

The overall reward for the choice p(7) is:

1
o 7 2 sen... Rp(2,t)  if pick-up action is valid
Rp (p(i),1) = { N | 7500

—YpMaxzen, ., [Rp(2,t)| otherwise

with yp being a constant which modulates the penalty of an invalid pick-up action. Figure 2
shows some examples of the reward function Rp for different values of the parameters A, d.

3.4. Lives mechanism

As we have anticipated in Section 3.3, a major role during the training of the ESB-DQN system has
been played by the parameter regarding the number of lives, k. The continuity of the simulation
is a key factor for the eventual learning of the RL agents, as interrupting the simulation to just
start it over too often, as soon as an invalid action happens, would slow down the convergence
by a considerable margin, given how full of potential invalid actions ESB-DQN environment is.
To overcome this limitation, we have borrowed the concept of lives from Atari: every time
one of the two agents or both commit an invalid action, the whole environment loses a life.
By doing so, an invalid action does not immediately lead to a terminal state, but takes it closer
to the ESB-DQN state. On life loss, the discount for the timestep ¢ is zeroed, cancelling any
connection between the previous and later events, and the agents are set to perform a NOP.

Let a; = (at,p, ar,p) be the generic action for the simulator taken at time ¢, defined as the
resulting combination of the action picked by the pick-up (P) agent, ap;, and the action picked
by the drop-off (D) agent, ap . The set of invalid actions has been set as follows:



either zone corresponding to ap; or ap is invalid: zp; ¢ Z U zp ¢ Z, with Z the set
of valid zones of the city of Louisville;

the zones corresponding to ap; and ap ¢ are equal: zp; = zp 4;

the zones corresponding to ap; and ap  are equal to the original zone of opposite type:
zpt = ZptUzpyt = Zpy;

the original zones Zp; and Zp; are equal: Zp; = Zp 3

the suggested pick-up zone does not have a suitable vehicle ready: Vp ayaii = )

As soon as k reaches 0, then the simulation is stopped. Indeed, we would not want our RL
agents to learn the dynamics of the environment while committing thousands of errors.
It is important to note that by implying the concept of lives, the training framework of RL
agents has turned into a sort of collaborative RL framework, wherein both P and D cannot rely
solely on their capabilities to reach the goal, but even on the other’s to reach a common goal: if
D was to lose a life, P would lose it as well, and viceversa.

4. Experiments and Results

The ESB-DQN system has been trained to learn the best alternative zone proposals throughout
simulations with the Louisville dataset. The aim of the experiments has been to evaluate whether
incentivizing users to pick-up/drop-off vehicles in alternative zones can preserve a good quality
of service with a reduced number of relocation and battery swap workers.

The quality of service is measured through the satisfied demand Dy, defined as follows:

Ntrips - Nunsat

Dsat =
Ntrips

4)

where Nips is the total number of trips, Nypsat is the number of unsatisfied trips (no available
vehicles in the pick-up zone and in the 1-hop neighbourhood), both measured over a given fixed
time interval T§,. Through all our experiments, Ty, is equal to 1 day.

The parameters of the simulator have been set as follows:

the number of available e-scooters is |S| = 400;

the size of the zones is [ = 200m?2;

the battery capacity is B = 425 Wh with a = 0.3, whereas the energy required to
complete a trip is proportional to the driving distance by a factor of 11 Wh/km (as
suggested in [4]);

the user willingness is w = 1;

the battery swap operations are scheduled every Ts = 1h;

the relocation operations are scheduled every 7, = 1h in a working time interval T =
[9AM-6PM].



The fleet size | S| and the user willingness w immediately stand out from the lot of parameters.
The former has been set to half the nominal fleet size granted by the city of Louisville. Indeed,
as further experiments on cities with more complex dynamics have not been conducted for
the time being, we have decided to restrict Louisville to a worst case scenario, as the quality of
service would remain strong nonetheless (88%). The latter has been set to 1, as in the training
phase we wanted to let both RL agents experience as much of the environment as possible,
regardless of whether they would be actually asked to do so.

The parameters of the reinforcement learning system have been set as follows:

. the optimizer is Adam with a learning rate of 6.25 x 107?;

+ the learning period is 16;

« the batch size is 32;

« the timesteps are aggregated to look back to the last 3 timesteps before any decision
process takes place;

« the global gradient norm clipping is 10;

« the importance sampling exponent ranges in [0.4, 1];

. the experience replay buffer has size 5.2 x 103, amounting to almost 30 full repetitions
of the same day over and over, with priority exponent of 0.5;

. the target network update period is 1.6 x 10%;

+ the number of iterations is 48;

« the number of trips per episode is 1.3 x 103, amounting to almost 10 full repetitions of
the same day over and over;

- the number of validation trips is 2.6 x 103;

« the number of training trips is 5.2 x 103,

« the number of total lives k has been set to 100.

Moreover, concerning the reward function, the future demand is computed in a time interval
At = 1h, whereas the constants modulating the penalties are yp = yp = 2. Also, every 3
iterations a checkpoint has been stored locally for evaluation purposes.

In the first experiment, the model has been trained from scratch with the number of relocation
workers being ngya.p = 12 and the number of battery swap workers being n. = 6. Other two
experiments have been performed, by drastically reducing the number of workers and applying
transfer learning from the pre-trained P and D agents. In particular, in the second experiment
we have fixed ngwap = 6, 1yl = 3 and in the third experiment ngyap = 1l = 1.

The final results in validation are shown in Table 2. The evolution of the satisfied demand
during the learning procedure is represented in Figure 3.

The number of validation/training trips follows DeepMind’s suggested ratio of 1 : 2 between
the online and the offline e-greedy networks. For example, if a training episode would experience
1000 trips, a validation episode would experience only half of those. A single iteration took over
1 hour on a PC equipped with a GeForce GTX 1650 Ti GPU with 4GB of memory along with an
Intel i7-10750H CPU with 32GB of RAM. Both CPU and GPU specs are crucial, as the SimPy
processes undergoing the simulation run solely on CPU, whereas the forward and backward



pass of the RL agents’ networks happen on GPU.

As shown in Figure 3(a), the two agents trained from scratch cause a decrease in the satisfied
demand during the first iterations, due to their random behaviour with no previous experience.
After around 25 iterations their policies have been efficiently updated. The level of satisfied
demand has improved with respect to the baseline - referred to a standard mobility service
with no user incentives. More interestingly, by reducing the number of workers and applying
transfer learning, it is possible to observe again a beneficial effect over the satisfied demand.
In particular, Figure 3(c) shows that in the critical scenario with ngyap = 1l = 1 the satisfied
demand is constantly larger with respect to the baseline. This means that by following the
proposal of alternative pick-up and drop-off zones, users are actively participating to the system
rebalancing and contributing to a positive increase of the quality of service.
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Figure 3: Evaluation of the satisfied demand during the learning procedure for training and validation
agents versus a baseline model with no incentive policy (user willingness w = 0). The value of the
parameters is shown in the titles. (a) Model trained from scratch, (b), (c) Transfer learning.

5. Discussion and Future Works

In this paper, we presented ESB-DQN, a multi-agent system based on deep reinforcement
learning able to interact with a simulator in order to learn alternative pick-up and drop-off
zones in e-scooter sharing services. The main objective is to combat the imbalance problem



Table 2

Results
Satisfied demand Ds,;
Parameters Training mode N iterations ESB-DQN No incentives
Nswap = 12, Nyl = 6 from scratch 30 0.92 0.89
Newap = 6,Nref = 3 transfer learning 6 0.91 0.88
Newap = 1, ey =1 transfer learning 12 0.90 0.86

by providing user incentives in order to optimize vehicle availability as well as battery swap
and relocation operations. At present, ESB-DQN expects to know the original pick-up and
drop-off locations of each generic scheduled trip, p(7) and d(i), beforehand, in order to produce
proper suggestions. Of course, such a constraint poses a strong limitation to the effectiveness
of the system, as it is impractical to always expect users to know their future drop-off location
before initiating the trip. Nevertheless, following the way the original simulator handles the
notion of booking requests as pairs of pick-up and drop-off locations, forcing both pick-up and
drop-off agents, P and D, to operate synchronously was a necessary starting point. The natural
evolution of the ESB-DQN system requires the untying of this synchrony, to let P and D affect
the state of the environment independently at different stages.

Preliminary experiments on real e-scooter data from Louisville (US) have shown encouraging
results on the satisfied demand of the system, even with a strongly reduced number of workers.

Further experiments are required for a comprehensive evaluation of the ESB-DQN system. By
varying different parameters of the simulator, e.g., the number of e-scooters | S|, the number of
relocation workers 7| or battery swap workers ngyap, it is possible to study how each of them,
in turn, affects the user incentives policy. It is worth mentioning that more accurate demand
forecasts for the computation of §(z, t) in Eq. 2, 3 can be adopted with the aim of getting further
improvements on the overall performance of the ESB-DQN system.

A fundamental effort should be devoted to scale-up experiments on a larger temporal scale
and on larger datasets (e.g., Austin open data [16]). A larger number of iterations would indeed
reflect in a better characterisation of the e-greedy policy. Indeed, despite both RL agents have
reached some sort of convergence with even a few iterations, there may be a few specific corner
cases of states that leave them both unable to decide with high consistency. Concerning a
possible speed-up, since SimPy processes run on the CPU, there is a lot of time left to gain by
optimizing the underlying simulator to fasten the run time of a single day. On the other hand,
the code related to the multi-agent system is already optimized for GPUs and TPUs.

Another interesting possibility is to apply the ESB-DQON system to other mobility sharing
systems with different vehicles (e.g., e-bikes, e-moped). Provided with the right data and the
proper scenario parameters (e.g., fuel type, fuel consumption, maintenance costs) both the
simulator and the multi-agent system can be directly applied to such problems.

The proposed approach may be deployed in real mobility systems as a real-time service
following the REST paradigm, integrated into existing app used by mobility service providers.
A prototype of the API is under development along with a chatbot intended to provide a natural
language interface the users could interact with as well.
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