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Abstract
We discuss the problem of cooperative argumentation in multi-agent systems, focusing on the compu-
tational model. An actor-based model is proposed as a first step towards cooperative argumentation in
multi-agent systems to tackle distribution issues—illustrating a preliminary fully-distributed version of
the argumentation process completely based on message passing.
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1. Introduction

One of the most critical problems in distributed and collaborative multi-agent systems (MAS)
– where agents cooperate towards a goal – is conflict resolution, where argument evaluation
often plays a critical role [1]: agents can provide explicit arguments or justifications for their
proposals for resolving conflicts by exploiting the so-called negotiation via argumentation, or
cooperative argumentation, as an effective approach to resolving conflicts. There, the purpose
of multi-agent argumentative dialogues is to let agents reach an agreement on (i) the evaluation
of goals and corresponding actions (or plans); and (ii) the adoption of a decentralised strategy
for reaching a goal, by allowing agents to refine or revise other agents’ goals and defend one’s
proposals.

Cooperative argumentation is exploited in some real-world multi-agent applications [2].
However, a key problem in such applications is that a widely-acknowledged well-founded
computational model of argumentation is currently missing, thus making it difficult to in-
vestigate the convergence and scalability of argumentation techniques in highly-distributed
environments [1, 2]. To alleviate those difficulties, we present a first version of a message-based
distributed argumentation algorithm as the basic pillar of a computational model for cooperative
argumentation in MAS. In this work we ignore issues such as agent autonomy and MAS coor-
dination artefacts, and focus instead on the distribution issues of cooperative argumentation,
based on the logic-based agreement framework Arg2P [3, 4], which enables agent dialogue
and defeasible reasoning in MAS. In particular, we focus on the single-query evaluation mode
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of the tool, aimed at evaluating the admissibility of a single statement with no need to build
the entire argumentation graph. We propose a preliminary fully-distributed version of the
argumentation algorithm, based on message passing, whose focus is on the requirements for
a sound distributed evaluation of the argumentation task. For the purpose of this paper we
exploit the actors’ paradigm and its main properties—i.e., (i) fully-reactive computational nodes,
and (ii) communication through message passing.

Accordingly, the paper is structured as follows. In Section 2 we give an overview of the
main themes on which the paper is focused. Section 3 and Section 4 illustrate the contribution,
introducing a distributed computational model that enables the assessment via argumentation of
a single argument. In particular, Section 3 first discusses how the argument evaluation algorithm
of Arg2P can be parallelised, then addresses the problem of knowledge manipulation in a
decentralised setting. In Section 4 we deliver a complete and coherent model for decentralised
reasoning based on the actor model. Finally, in Section 5 we provide the final remarks and
discuss the aspects of this work that are still open for improvement and future research.

2. Preliminaries

2.1. A basic intro to structured argumentation

In the argumentation language, a literal is an atomic proposition or its negation.

Notation 1. For any literal 𝜑, its complement is denoted by 𝜑. That is, if 𝜑 is a proposition 𝑝,
then 𝜑 = ¬𝑝, while if 𝜑 is ¬𝑝, then 𝜑 is 𝑝.

Literals are brought into relation through rules.

Definition 1 (Rules). A defeasible rule 𝑟 has the form: 𝜌 : 𝜑1, ..., 𝜑𝑛 ⇒ 𝜓 with 0 ≤ 𝑛, and
where

• 𝜌 is the unique identifier for 𝑟;

• each 𝜑1, . . . 𝜑𝑛, 𝜓 is a literal;

• the set {𝜑1, . . . 𝜑𝑛} is denoted by Antecedent(𝑟) and 𝜓 by Consequent(𝑟).

Defeasible rules – denoted with DefRules – are rules that can be defeated by contrary evidence.
Pragmatically, a defeasible rule is used to represent defeasible knowledge, i.e., tentative infor-
mation that may be used if nothing could be posed against it. For the sake of simplicity, we
define non-axiom premises via defeasible rules with empty Antecedent . A theory consists of a
set of rules.

Definition 2 (Theory). A defeasible theory is a set Rules ⊆ DefRules.

Arguments are built from defeasible rules. Given a defeasible theory, arguments can be con-
structed by chaining rules from the theory, as specified in the definition below—cf. [5].

Definition 3 (Argument). An argument 𝐴 constructed from a defeasible theory ⟨Rules⟩ is a
finite construct of the form:



𝐴 : 𝐴1, . . . 𝐴𝑛 ⇒𝑟 𝜑

with 0 ≤ 𝑛, where

• 𝑟 is the top rule of 𝐴, denoted by TopRule(𝐴);

• 𝐴 is the argument’s unique identifier;

• Sub(𝐴) denotes the entire set of subarguments of 𝐴, i.e., Sub(𝐴) = Sub(𝐴1) ∪ . . . ∪
Sub(𝐴𝑛) ∪ {𝐴};

• 𝜑 is the conclusion of the argument, denoted by Conc(𝐴);

Arguments can be in conflict, accordingly to two kinds of attack: rebuts and undercutting, here
defined as in [5].

Definition 4 (Attack). An argument𝐴 attacks an argument𝐵 (i.e., 𝐴 is an attacker of𝐵) at
𝐵′ ∈ Sub(𝐵) iff 𝐴 undercuts or rebuts 𝐵 (at 𝐵′), where:

• 𝐴 undercuts 𝐵 (at 𝐵′) iff Conc(𝐴) = TopRule(𝐵′)

• 𝐴 rebuts 𝐵 (at 𝐵′) iff Conc(𝐴) = 𝜑 and Conc(𝐵′) = 𝜑

An argumentation graph can then be defined exploiting arguments and attacks.

Definition 5 (Argumentation graph). An argumentation graph constructed from a defea-
sible theory 𝑇 is a tuple ⟨𝒜,⇝⟩, where 𝒜 is the set of all arguments constructed from 𝑇 , and⇝
is the attack relation over 𝒜.

Notation 2. Given an argumentation graph 𝐺 = ⟨𝒜,⇝⟩, we write 𝒜𝐺, and⇝𝐺 to denote the
graph’s arguments and attacks respectively.

Given an argumentation graph, we leverage on labelling semantics [6, 7] to compute the sets of
arguments that are accepted or rejected. Accordingly, each argument is associated with one
label which is either IN, OUT, or UND—respectively meaning that the argument is either accepted,
rejected, or undecided.

2.2. Structured evaluation in Arg2P

The Arg-tuProlog (Arg2P in short) [3, 4] engine is a logic-based agreement framework enabling
defeasible reasoning and agents’ conversation, which reifies the structured argumentation
model presented above.

With respect to the available argumentation frameworks, Arg2P includes the query-based
mode, which allows for single-query evaluation according to the selected semantics1. Single-
query evaluation is precisely the algorithm we are interested in, given that cooperative argu-
mentation in highly-reactive systems is often based on a quick debate on some beliefs – those

1At the time of writing, only grounded semantic is fully implemented



Listing 1: Structured argumentation, Arg2P answer query algorithm for grounded semantic (pseudo-
code).
AnswerQuery(Goal):

𝐴1, ..., 𝐴𝑛 = buildSustainingArguments(Goal)
Res = ∅
for A in 𝐴1, ..., 𝐴𝑛:
Res = Res ∪ Evaluate(A, ∅)

return Res.

Evaluate(A, Chain):
if(∃ B ∈ Attacker(A): Evaluate(B, A ∪ Chain) = IN)
return OUT

if(∃ B ∈ Attacker(A): B ∈ Chain)
return UND

if(∃ B ∈Attacker(A): Evaluate(B, A ∪ Chain) = UND)
return UND

return IN.

concerning the decision to be made at that moment – rather than on a complete assessment of
all the agents’ knowledge—where a shared agreement is not easily achieved.

This feature is accessible in the tool through the predicate

answerQuery(+Goal, -Yes, -No, -Und)

which requests the evaluation of the given 𝐺𝑜𝑎𝑙, and gets the set of facts matching the goal
distributed in the three sets IN, OUT, and UND as a result.

The algorithm used to evaluate a single claim (or query) according to grounded seman-
tic is inspired by the DeLP dialectical trees evaluation [8]. Listing 1 shows the pseudo-code
– AnswerQuery(Goal) – for the answerQuery/4 predicate: given a claim (Goal) as input, the
function first builds all the arguments sustaining that claim (buildSustainingArguments(Goal)),
and then requires their evaluation via the Evaluate(A, Chain) function. To assess the
𝐴1, ..., 𝐴𝑛 status (acceptability or rejection), three conditions are evaluated—whose order is
important to ensure the soundness of the algorithm:

(Cond1) if a conflicting argument labelled as IN exists, then 𝐴1 is OUT;

(Cond2) if a cycle in the route from the root to the leaves (Chain) exists, then 𝐴1 argument is
UND;

(Cond3) if a conflicting argument labelled as UND exists, then also the 𝐴1 argument is UND.

If none of the above conditions is met then the argument can be accepted.

Example 1. Let us consider the following theory and the corresponding arguments (also depicted
in Figure 1)

r1 : ⇒ 𝑎
r2 : a ⇒ 𝑏
r3 : ⇒ ¬𝑏
r4 : b ⇒ 𝑐

A0 : ⇒𝑟1 𝑎
A1 : A0 ⇒𝑟2 𝑏
A2 : ⇒𝑟3 ¬𝑏
A3 : A1 ⇒𝑟4 𝑐



Figure 1: Argumentation graph for arguments from Example 1, in which nodes are arguments and
edges are attacks between arguments.

where, according to grounded semantic 𝐴0 is IN – there are no arguments contending its claim or
undercutting its inferences – while𝐴1,𝐴2 and𝐴3 are UND—𝐴1 and𝐴2 have opposite conclusions
and thus attack each other; the conflict is then propagated to the derived argument 𝐴3.

Let us suppose we require the evaluation of claim 𝑏 through the AnswerQuery(Goal) function
in Listing 1. First, the arguments sustaining 𝑏 are created, in this case only𝐴1. Then the evaluation
conditions on 𝐴1 attackers – only 𝐴2 in this case – are assessed. However, 𝐴2 admissibility
depends, in turn, on 𝐴1—as you can see in Figure 1 also 𝐴1 attacks 𝐴2. There is a cycle in the
graph (Cond2), and no other attackers matching (Cond1). As a consequence, 𝐴2 is UND and thus
𝐴1 (Cond3). Accordingly, claim 𝑏 is labelled UND as expected.

3. Parallelising arguments evaluation

The first issue when facing computational issues of cooperative argumentation is the paral-
lelisation of the argumentation process. Parallelisation needs to be tackled under two distinct
perspective: (i) the algorithmic perspective and (ii) the data perspective. Under the algorithmic
perspective, we try to divide the argument evaluation (w.r.t. a given semantics) into smaller
sub-tasks to be executed in parallel. Under the data perspective, instead, we try to achieve
parallelisation by splitting the data used by the algorithm—i.e., the argumentation defeasible
theory. Action here is therefore at the data level, looking for possible data partitioning on which
the argumentation process can be run in parallel.

Accordingly, in this section we discuss and address both perspectives, respectively in Subsec-
tion 3.1 and Subsection 3.2.

3.1. Task parallelisation

Let us consider the algorithm discussed in Subsection 2.2. The purpose of this section is to
analyse the requirements and implications of its parallelisation. Note that the part affected to
parallelisation is encapsulated in the Evaluate function, which is why in the following we
take into account that predicate only.

The algorithm structure is simple: the argument evaluation leverages the evaluation obtained
from its attackers—i.e., the attackers are recursively evaluated using the same algorithm and



the result is exploited to determine the state of the target argument. Intuitively, a first point
of parallelisation can be found in the search and evaluation of the Attackers. Indeed, every
condition exploited by the algorithm – (Cond1), (Cond2), and (Cond3) – to evaluate an argument
requires one and only one attacker to match the constraint. Those conditions directly suggest
an OR parallelisation in the search and evaluation of the attackers. We could evaluate the
arguments simultaneously under different branches, and the success in one of the branches
would lead to the success of the entire search. Listing 2 shows the modified algorithm.

Listing 2: Evaluate predicate with parallel attackers

Evaluate(A, Chain):
if(PARALLEL { ∃ B ∈ Attacker(A): Evaluate(B, A ∪ Chain) = IN })
return OUT

if(PARALLEL { ∃ B ∈ Attacker(A): B ∈ Chain })
return UND

if(PARALLEL { ∃ B ∈Attacker(A): Evaluate(B, A ∪ Chain) = UND })
return UND

return IN

The algorithm exposes another point of parallalisation. As already suggested, the order in the
evaluation of the conditions is essential for the soundness of the algorithm—as illustrated by
the following example.

Example 2. Let us consider argument 𝐴 and its two attackers 𝐵 and 𝐶 . Let it be the case in
which we know 𝐵 and 𝐶’s labelling, IN for the former and UND for the latter. If we do not respect
the order dictated by the algorithm, 𝐴’s labelling is either UND (Cond3) or OUT (Cond1). Of course,
the first result would be in contrast with the original grounded semantic requirements for which
every argument having an IN attacker should be definitively OUT. Conversely, if we respect the
evaluation order, 𝐴’s labelling would be OUT in every scenario.

Although the evaluation order is strict, we can evaluate all the conditions simultaneously
and consider the ordering only while providing the labelling for the target argument (mixing
AND and OR parallelisation). Listing 3 displays the algorithm modified accordingly. The three
conditions are evaluated in parallel, but the result is given accordingly to the defined priorities.
If (Cond1) is met, the argument is labelled as OUT. Conversely, even if (Cond2) or (Cond3) are
met, one should first verify that (Cond1) does not hold. Only then the argument can be labelled
as UND.

Listing 4 contains the final version of the algorithm taking into account both points of
parallelisation. The three conditions – (Cond1), (Cond2) and (Cond3) – are evaluated at the
same time. Then the results of the three sub-tasks are combined to provide the final solution
according to the conditions’ priority. Of course, if we consider a scenario where only the first
condition (Cond1) is required to determine the status of the argument in input, the parallel
evaluation of all the three conditions would lead to a waste of computational resources. However,
this problem is easily mitigated by evaluating the sub-task results as soon as they are individually
available—i.e. in the case we receive a positive result from a single sub-task, and it is enough to



Listing 3: Evaluate predicate with parallel conditions evaluation

Evaluate(A, Chain):
PARALLEL {
Cond1 = ∃ B ∈ Attacker(A): Evaluate(B, A ∪ Chain) = IN
Cond2 = ∃ B ∈ Attacker(A): B ∈ Chain
Cond3 = ∃ B ∈ Attacker(A): Evaluate(B, A ∪ Chain) = UND

}
if(Cond1) return OUT
if(Cond2 AND NOT Cond1) return UND
if(Cond2 AND NOT Cond1) return UND
if(NOT Cond1 AND NOT Cond2 AND NOT Cond3) return IN

Listing 4: Evaluate predicate with both parallel conditions evaluation and parallel attackers

Evaluate(A, Chain):
PARALLEL {
Cond1 = PARALLEL { ∃ B ∈ Attacker(A): Evaluate(B, A ∪ Chain) = IN }
Cond2 = PARALLEL { ∃ B ∈ Attacker(A): B ∈ Chain }
Cond3 = PARALLEL { ∃ B ∈ Attacker(A): Evaluate(B, A ∪ Chain) = UND }

}
if(Cond1) return OUT
if(Cond2 AND NOT Cond1) return UND
if(Cond3 AND NOT Cond1) return UND
if(NOT Cond1 AND NOT Cond2 AND NOT Cond3) return IN

compute the argument status, we can cut the superfluous computational branches and return
the final solution.

3.2. Knowledge-base parallelisation

In the first part of our analysis, we focused on the parallelisation problem from a pure computa-
tional perspective—i.e., we tried to understand if we can split the evaluation task into a group
of sub-task to be executed simultaneously. However, there is another perspective to take into
account when parallelising: the one concerning the data.

Example 3. For example, let us consider a job computing the sum and the product of a set of
numbers. Using the sub-task approach, we could have two subroutines running in parallel, one
computing the sum and the other computing the product of the numbers. However, leveraging the
associativity property of sum and multiplication, we can split the problem into a series of tasks
computing both sum and product on a subset of the original data. Then the final result would be
the sum and the multiplication of the tasks’ results.

Let us suppose to apply the same principle to the argumentation task. We build arguments
from a base theory according to the relations illustrated in Subsection 2.1. The logic theory
is, for all intents, the input data of our algorithm (argumentation task). Now, the question is



whether we can effectively split the data into sub-portions to be evaluated in parallel without
affecting the global soundness of the original algorithm.

Naïve principle. Let us start with a naïve solution in which we randomly split the input
theory between all the available nodes. Of course, this would lead to evident contradictions.

Example 4. For instance, let us consider the following theory (left) and its monolithic evaluation

according to grounded semantic leading to four arguments (right):

r1 : ⇒ a
r2 : a ⇒ b
r3 : ⇒ b
r4 : ⇒ ¬ a

A0 : ⇒𝑟1 a
A1 : A0 ⇒𝑟2 b
A2 : ⇒𝑟3 b
A3 : ⇒𝑟4 ¬ a

where𝐴0, 𝐴1 and𝐴3 are labelled UND – since𝐴0 and𝐴3 attack each other and𝐴3 attacks𝐴1 –
and𝐴2 is labelled IN. If we leverage a random split, we could have a scenario in which we partition
the theory into four parts. Of course, this would lead to a missing argument. Indeed, rules 𝑟1 and
𝑟2 are both necessary to conclude 𝐴1.

(a) (b)

Figure 2: Argumentation graphs and arguments from Example 4 grouped according to dependency (a)
and conflict-closure principles (b).

Dependency principle. Now, let us consider a smarter splitting principle based on rules
dependency—i.e., if two rules can be chained, they must stay together.

Example 5. Accordingly, if we consider the theory from example 4, we have three subsets of the
theory: 𝑟1 and 𝑟2, 𝑟3, 𝑟4. The evaluation of these three theories would lead to the admissibility of
all the four arguments, making the result unsatisfactory w.r.t. the original solution—see Figure 2
(a).



Conflict-closure principle. Observing the abstract argumentation graph it is easy to under-
stand that we cannot split rules claiming conflicting knowledge—see Figure 2 (b). Accordingly,
we can observe that a safe split can be guaranteed if the graph-connected sub-portions maintain
their integrity—i.e., attacker and attacked arguments belong to the same set.

Example 6. If we apply this principle to the theory in Example 4, we obtain two sub-portions
of the original logic theory allowing for a simultaneous evaluation: 𝑟1, 𝑟2 and 𝑟4 (set 𝐾𝐵𝑎),
and 𝑟3 (set 𝐾𝐵𝑏). The application of the argument evaluation algorithm (in Subsection 2.2) to
check the admissibility of 𝑏 leads to two results: 𝑏 (𝐴1) is UND (set 𝐾𝐵𝑎), and 𝑏 (𝐴2) is IN (set
𝐾𝐵𝑏)—coherent with the semantics (Figure 2 (b)).

Accordingly, in order to guarantee a sound evaluation w.r.t. the original algorithm (Listing 1)
the conflict-closure principle should be considered while splitting the knowledge base.

4. The complete model

In this section, a complete and sound mechanism for the admissibility task in a fully-concurrent
way is provided, exploiting the insights from Section 3 and applying them to an actor-based
model [9].

In short, the actor model is based on a set of computational entities – the actors – communi-
cating each other through messages. The interaction between actors is the key to computation.
Actors are pure reactive entities that only in response to a message can:

• create new actors;

• send messages to other actors;

• change their internal state through a predefined behaviour.

Actors work in a fully-concurrent way – asynchronous communication and message passing
are fundamental to this end – making the actor model suited to concurrent applications and
scenarios. We choose this model for its simplicity: it presents very few abstractions making it
easy to study both how to model a concurrent system and its properties. The final goal of this
research is to provide a sound model for agents’ cooperative argumentation in MAS. Since it
is an articulated goal, coping with different dimensions – distribution, sociality, coordination,
autonomy – we carry on our investigation in two distinct steps: (1) first, we enable concurrent
evaluation of the argumentation algorithms (focusing on distribution), (2) then, we make
available the new computational tool in a MAS context (focusing on sociality, coordination, and
autonomy). The actor paradigm is a natural choice for the first step of the analysis.

The proposed model embraces both the parallelisation approaches seen in Section 3—i.e., the
parallel evaluation of attackers (task parallelisation, Subsection 3.1) and the partitioning of the
initial logical theory (data parallelisation, Subsection 3.2).



Listing 5: Master Actor for knowledge base distribution

MasterActor:

State:
responseList
elem

OnMessage(sender, message):
if message = AddTheoryMember(term)
send(ALL, NewTheoryMember(term))
responseList = []
elem = term

if message = Ack(chainingDetails)
responseList += Ack(chainingDetails)
evaluateResponses(responseList)

if message = Nack()
responseList += Nack()
evaluateResponses(responseList)

evaluateResponses(responseList):
if NOT ALL RESPONSE ARE PRESENT:
return

if NO ACK IS PRESENT:
cretateNewActor(actor)
send(actor, CreateKnowledgeBase(elem))

if CONVERGING KB ARE PRESENT:
selectMergeTarget(target)
FOR x IN createMergeList(responseList):
send(x, MergeTheory(target))

4.1. Actor-based evaluation: distributing the knowledge base

Let us start with the portion of the model devoted to logic theory distribution. As seen in
Subsection 3.2, the adherence to the Conflict-closure principle is required to guarantee the
soundness of the evaluation of a fragmented theory. However, this observation applies only
w.r.t. algorithm in Listing 1 being the arguments’ construction and the search for attackers
executed on the same task. If we consider instead the concurrent version of the algorithm
(Subsection 3.1), the search and evaluation of the attackers are performed in distinct sub-tasks.
As a consequence, there is no task required to know how to build an argument and its attacker
– the search is delegated to another process –, thus the Conflict-closure principle can be ignored.
Indeed, a single task in charge of evaluating an argument needs only the portion of the theory
required to infer the argument itself—i.e., i.e., only the Dependency principle must be respected.

The same idea applies to the actor-based model presented in this section: since the search for
attackers is executed concurrently by a set of actors, we require only the Dependency principle
to be respected.

Since the actor model focuses on actors and their communication the following design will
review the structure and behavior of the involved actors. Although a fully distributed version of



Listing 6: Worker Actor for knowledge base distribution

WorkerActor:

State:
kb

OnMessage(sender, message):
if message = CreateKnowledgeBase(term)
kb = term

if message = NewTheoryMember(term)
if isChainable(term, kb):
send(sender, Ack(chainingDetails))
kb += term

else:
send(sender, Nack())

if message = MergeTheory(target)
send(target, Kb(kb))
exit

if message = Kb(newKb)
kb += newKb

the model is possible, we choose to adopt a master-slave approach to simplify the functioning
of the system as much as possible.

Two main types of actors are conceived in the system: master (Listing 5) and worker (Listing
6). Master actors coordinate the knowledge base distribution phase while the workers hold
a portion of the theory. Accordingly, masters’ internal state contains a reference to the term
to distribute (elem) and a list of the feedbacks from the workers’ actors on elem distribution
(responseList), while workers’ internal state is simply represented by the portion of the
theory they manage, identified by kb.

Messages that masters and workers can exchange are represented by the following types:

• CreateKnowledgeBase, the first message sent from the master to a new worker con-
taining its initial knowledge base;

• NewTheoryMember, sent from the master to all the available workers, through which
the master sends the new theory member to be stored in the workers’ kb;

• Ack, sent from a worker to its master in response to a NewTheoryMember message,
confirms the storing of the new rule in the worker’s kb;

• Nack, sent from a worker to its master in response to a NewTheoryMember message,
denies the storing of the new rule in the worker’s kb;

• MergeTheory, sent from the master to a set of workers in the case of overlapping theories,
orders the workers to conclude their execution after sending their knowledge bases to a
targeted worker;



• Kb, sent from a worker A to another worker B, contains the knowledge base that B should
add to its own.

If the master receives the order to add a new element to the theory (AddTheoryMember
message), three possible scenarios can be configured:

1. none of the workers contains a compatible knowledge base – i.e., it is not possible to chain
the new rule to the knowledge base (isChainable returns false) – and consequently, the
master creates a new worker containing the portion of the theory (createNewActor);

2. one or more workers have a compatible knowledge base (isChainable returns true),
and they add the element to their kb;

3. a set of workers possess overlapping knowledge bases – i.e. the union set of workers’
knowledge bases can be used to create a unique inference chain –, and as a consequence,
we merge their knowledge bases and destroy the extra workers (MergeTheory message);

Since actors are reactive entities, in order to completely adhere to the actor model the master
knowledge base can be changed from outside the actor system—we instruct the master actors
to modify the theory through the message AddTheoryMember.

Example 7. Let us consider again the theory in Example 1. Let us assume a single MasterActor
and the following order in the inclusion of the rules in the system: 𝑟1, 𝑟3, 𝑟4, 𝑟2.2 As for the first
three rules, the behaviour is the same: the MasterActor issue a NewTheoryMember and receives
back only Nack messages—since the rules are not chainable. Accordingly, it creates three distinct
workers and sends a single rulet o every one of them via the CreateKnowledgeBase message.
We now have Worker 1, Worker 2, and Worker 3 with respectively 𝑟1, 𝑟3 and 𝑟4 in their
knowledge bases. Then the master issues a NewTheoryMember for 𝑟2, and both workers 1 and 3
answer with an Ack. Rule 𝑟2 is, in fact, the missing link in the inference chain of 𝑟1 and 𝑟4. As
a consequence, the Master orders a migration to one of them – let us assume Worker 3 – with
the MergeTheory message. Worker 3 receives the message, sends its kb to Worker 1 via the
Kb message, then stops. At the end of the distribution phase, we have two workers, one containing
𝑟1, 𝑟2, 𝑟4, the other just 𝑟3. The dependency principle is thus respected.

4.2. Actor-based evaluation: evaluating an argument

Let us proceed with the actor-based evaluation of an argument. For this task, we only need one
type of actor—WorkerActor in Listing 7. In the final model, we consider workers from Listing
6 and Listing 7 as the same entity. We can evaluate an argument through workers only after
they split the logic theory among them according to the mechanism in Subsection 4.1.

Each actor is responsible for evaluating those arguments that can be build using its portion
of the theory. When the actor receives an evaluation request, it first checks if attackers exist,
w.r.t. its portion of the knowledge base. Then the actor can: (i) register the impossibility to
evaluate the argument – only if a cycle through the evaluation chain is detected –, (ii) require
the attacker arguments evaluation to all the other actors. In the latter case, the actor shall

2The inclusion order only affects the steps required to converge, not the final state of the system.



Listing 7: Worker Actor for argument evaluation task

WorkerActor:

State:
targets

OnMessage(sender, message):

if message = Evaluate(claim):
if buildArgument(claim, arg):
send(ALL, Attacker(arg, []))

if message = Attacker(arg, chain):
if NOT buildAttacker(arg):
send(sender, In(arg))

else:
for attacker IN buildAttacker(arg):
if attacker IN chain:
targets += (arg, attaccker, sender, [], Und(arg))

else:
send(ALL, Attacker(attacker, chain + [arg]))
targets += (arg, attaccker, sender, [], None)

evaluateResponses()

if message = Und(arg) OR Out(arg) OR In(arg):
evaluateResponses(arg)

evaluateResponses(arg):
for arg, attacker IN targets:
if ANY OUT:
targets[attacker] = Out(arg)

if ANY Und AND NOT ANY OUT:
targets[attacker] = Und(arg)

if ALL In:
targets[attacker] = In(arg)

if attackersEvaluated(arg):
sendResponse(sender)

answer the original evaluation request only after receiving a response from others actors. The
conditions to match while evaluating an argument are the same as the original algorithm in
Listing 1:

• if one counterargument is found admissible, we evaluate the argument as OUT;

• if any number of actors decide for the argument undecidability with none advancing its
rejection, we mark the argument as UND;

• if all the actors agree that no counterarguments can be provided as acceptable, we evaluate
the argument as IN;



Actors provide their suggestions on the state of the requested argument according to all the
labels of their counterarguments.

The messages exchanged among worker actors are:

• Evaluate, sent to workers (from outside) to require the evaluation of a claim;

• Attacker, sent from a worker to all other workers, requires the evaluation of an argu-
ment;

• Und, Out, In – sent from a worker to another worker in response to the Attacker message
– answering the evaluation request.

Note that the Evaluate message comes from outside the actor system and starts the evaluation
process. In Listing 7, we omit the details on the collection of the Evaluate responses and the
return of the final result for the sake of conciseness.

Example 8. Let us continue the example from 1 and 7 and require the evaluation of claim 𝑏. From
outside the actor system, we send an Evaluate message to all the actors. Worker 1 succeeds in
building an argument (𝐴1) and sends to all the other Workers – also Worker 1 is included in
the list – an Attacker message requiring attackers evaluation. Worker 1 answers with an In
message – there are no attacking arguments according to its knowledge –, while Worker 2 sends
back an Und response. Indeed, Worker 2 is able to create a valid counterargument (𝐴2), but a
cycle is detected in the inference chain. According to the evaluation algorithm, receiving an Und
and an In as a response, Worker 1 can finally label 𝐴1 as UND.

5. Related & Conclusions

The work presents a first approach to the problem of cooperative argumentation in the context
of a MAS. Starting from the single query evaluation mode of Arg2P – aimed at evaluating the
admissibility of a single statement without the need to build the entire argumentation graph
– we introduce the corresponding distributed computational model. We first discuss how the
argument evaluation algorithm of Arg2P can be parallelised, then we deliver a complete model
for decentralised reasoning based on the actor model.

Our work follows the insights from the ones in [10] and [11, 12]. The former has been the
first proposal of a tool – also based on the tuProlog system – exploiting a dialogical argu-
mentation mechanism—i.e., argumentation is performed across multiple processes proposing
arguments and counterarguments. However, the argumentation algorithm distribution has not
been addressed. Conversely, in [11, 12] the authors directly address the problem of enabling
argumentation techniques in MAS. Nonetheless, their technique exploits a centralised evalu-
ation of all the knowledge spread across MAS agents, thus exposing serious problems to the
scalability of their approach.

Our work can be extended in various directions. First, we shall provide an implementation of
the distributed model in the Arg2P framework. In fact, in this work, we discuss the parallelisation
problem from a theoretical perspective. Only once implemented the approach, it will be possible



to compare the performances of the monolithic and distributed versions of the algorithm
properly addressing a discussion on efficiency and scalability issues.

Then, a well-founded analysis of the model is still missing, discussing formal properties such
as soundness and completeness. Moreover, experiments need to be run in a MAS environment.
There, the open issues are many, e.g., how could agents benefit from this mechanism? How
does coordination media impact the model?

Finally, it is worth highlighting that in this work we distribute the knowledge base across
actors in order to maximise the scalability of the system. The consequences of using the model
in a context where the nodes possess an arbitrary knowledge – as agents in MAS – are still to
be inspected.
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