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Abstract

Attempts to apply Neural Networks (NN) to a wide range
of research problems have been ubiquitous and plentiful in
recent literature. Particularly, the use of deep NNs for un-
derstanding complex physical and chemical phenomena has
opened a new niche of science where the analysis tools from
Machine Learning (ML) are combined with the computa-
tional concepts of the natural sciences. Reports from this uni-
fication of ML have presented evidence that NNs can learn
classical Hamiltonian mechanics. This application of NNs to
classical physics and its results motivate the following ques-
tion: Can NNs be endowed with inductive biases through ob-
servation as means to provide insights into quantum phenom-
ena? In this work, this question is addressed by investigating
possible approximations for reconstructing the Hamiltonian
of a quantum system in an unsupervised manner by using
only limited information obtained from the system’s proba-
bility distribution.

1 Introduction
In the Machine Learning (ML) realm, Neural Networks
(NNs) are among the most used and exceptionally ef-
ficient models to learn and generalize information from
data. These data interpretative capabilities have provoked
the widespread use of NNs in Natural Language Process-
ing (Torfi et al. 2020), Image Classification (Kolesnikov
et al. 2019), Video Captioning (Sun et al. 2019) and Re-
inforcement Learning (Du and Narasimhan 2019; Higgins
et al. 2016); furthermore, recent works have shown the ca-
pabilities of NNs in symbolic reasoning and mathematical
problem solving (Lample and Charton 2019). In the case
of natural sciences, applying ML to physics is not new,
several works have been reported (Toth et al. 2019; Grey-
danus, Dzamba, and Yosinski 2019; Cranmer et al. 2020;
Tong et al. 2020) where different authors have combined
ML with Hamilton’s equations of motion to generate tra-
jectories that obey energy conservation principles and clas-
sical physical laws. In material sciences, on the other hand,
ML has proven to be an important interpretative tool for the
computational prediction of new materials (Schleder et al.
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2019). The encouraging results reported by the different ap-
plications of ML have motivated the use of NNs as powerful
tools to gain insight into the laws of physics that govern the
behavior of complicated natural classical phenomena. Un-
like classical physics, in quantum physics, objects have char-
acteristics of both particles and waves (wave–particle dual-
ity) for which the concept of trajectory is no longer defined
nor can their position and momentum, both, be measured si-
multaneously (Sakurai and Commins 1995; Robinett 1997;
Feynman, Leighton, and Sands 1965; Robinett and Robi-
nett 2006). Because of this wave–particle duality, the state
of a quantum mechanical system is fully specified by its
wave–function, which is typically obtained by solving the
Schrödinger equation (Sakurai and Commins 1995; Robi-
nett 1997; Feynman, Leighton, and Sands 1965; Robinett
and Robinett 2006). In many cases, however, not only solv-
ing this equation is difficult, but also its correct formulation
requires knowledge about the form of the potential energy
operator, which often may not be completely known. In con-
trast, the inverse form of the Schrödinger equation (Nakat-
suji 2002; Chadan and Sabatier 2012; Zakhariev and Suzko
2012; Jensen and Wasserman 2018) presents an alterna-
tive for describing quantum phenomena by reformulating
the description of quantum mechanical systems as solutions
of inverse problems (Aster, Borchers, and Thurber 2018;
Groetsch and Groetsch 1993; Vogel 2002). Inverse problems
are central to the study of quantum mechanical systems, in-
somuch that much of what is known about the electronic
structure of matter has been mathematically characterized
by solutions of inverse problems (Beals and Greiner 2009;
Zakhariev and Suzko 2012; Jensen and Wasserman 2018;
Vogel 2002). Thus, numerical algorithms for the inversion of
the Schrödinger equation are important predictive tools for
the further development of approximate quantum mechan-
ical methodologies such as scattering approximated mod-
els (Zakhariev and Suzko 2012), Density Functional Theory
(DFT) (Jensen and Wasserman 2018), etc.

In this work, rather than handcrafting numerical solutions
for the inverse Schrödinger equation (Aster, Borchers, and
Thurber 2018; Jensen and Wasserman 2018; Vogel 2002;
Beals and Greiner 2009) to define a potential function and
describe a quantum phenomena, a neural network, termed
Quantum Potential Neural Network (QPNN), is instead de-
signed to learn potential functions directly from observables



in an unsupervised manner. This proposed QPNN for learn-
ing potential functions was developed based on the under-
lying formalism for the inverse solution of the Schrödinger
equation. Thus, the proposed QPNN opens the possibility
for generating simpler and succinct functions that can be
used to construct effective Hamiltonians for the description
of a variety of quantum systems using only a small portion
of the available information known about the system. Since
these effective Hamiltonians can be generalized to obtain
other observables, QPNN may provide unique insights into
complex quantum phenomena were only a small amount of
information is available.

2 Theory
The mathematical description of a quantum particle typi-
cally takes the form of a complex function of spatial coordi-
nates ~x and time coordinates t called wave–function, Ψ(~x, t)
(Sakurai and Commins 1995; Robinett 1997; Feynman,
Leighton, and Sands 1965; Robinett and Robinett 2006).
Ψ(~x, t) is a complex–valued probability amplitude whose
square modulus (|Ψ(~x, t)|2) correspond to the probability of
finding the particle described by the wave–function at that
given ~x and t. The classically measured value of a physi-
cal observable, however, is not given directly by Ψ(~x, t) but
by the expectation values of the operators that represent the
desired measurement acting on Ψ(~x, t). In many scenarios,
wave–functions are obtained as direct solutions of the time–
dependent Schrödinger equation,

i~
∂Ψ(~x, t)

∂t
= ĤΨ(~x, t), (1)

where ~ is Planck’s constant and Ĥ is the Hamiltonian oper-
ator of the system, which is an Hermitian operator acting on
an infinite dimensional space of L2 functions. Thus, Ĥ needs
not be compact and as much may not have any eigenvalues.
When Ĥ is time–independent, equation 1 can be reduced to
the following equation

Ĥψn(~x) = Eψn(~x), (2)
where n indicates the quantum state of the system. In
many cases, the physical information contained in the time–
independent wave–function ψn(~x) may be enough for the
characterization of the system under study.

2.1 Hamiltonian
The Hamiltonian operator, Ĥ, is fundamental in many for-
mulations of quantum theory. This operator is expressed as
the sum of the kinetic (T̂) and potential energy operators (V̂)
for all particles in the quantum system,

Ĥ = T̂ + V̂. (3)

Generally, the kinetic energy operator contained in Ĥ only
depends on the second derivatives of the wave–function,
with respect to its spatial coordinates. The potential energy
operator, however, depends on the physical circumstances
imposed onto the system, and varies from system to system.
Thus equation 3 may be expressed as

Ĥ = − ~2

2m

∂2

∂~x2
+ V̂(~x, t) ≡ − ~2

2m
∇2
~x + V̂(~x, t). (4)

In quantum mechanics, the problem of finding the Ĥ that
characterizes a given phenomenon could be reduced to for-
mulating the potential operator that contains all the govern-
ing physical descriptors.

2.2 Predicting potentials
The usual method for describing systems in quantum me-
chanics is by obtaining the wave–function of the system as a
solution of the Schrödinger equation. These wave–functions
strongly depend on the Hamiltonian, and in particular, the
definition of the potential used to describe the system. How-
ever, one could also describe a quantum phenomena through
the solution of the inverse problem, i.e. by finding an ef-
fective potential or function that contains all the important
physical constrains that generated the observed outcomes.
Inverse problems like this one are common in quantum me-
chanics and electronic structure, for example, the field of
DFT (Jensen and Wasserman 2018; Parr and Yang 1995;
Burke, Werschnik, and Gross 2005) has, at its core, this type
of inverse problems. As discussed before, solutions for the
full Schrödinger’s equation, and thus wave–functions, are
difficult to obtain except for some simple models. The prob-
ability density |ψ(~x)|2, on the other hand, may be experi-
mentally inferred for several quantum systems. Thus, an ap-
proximated wave–function, |ψ|=

√
|ψ(~x)|2, may be defined

for the construction of the effective potential.

3 Quantum Potential Neural Networks
In this section the proposed NN and the loss function that
were used to compute the effective potentials of various
quantum systems are described. This section is divided into
two parts: (i) Time–independent systems and (ii) Time–
dependent systems

3.1 Time–independent Systems
In order to obtain the effective potential, a new paramet-
ric function Uθ is learned in an unsupervised manner. This
parametric function corresponds to the effective potential of
the quantum system and was obtained by implementing a
loss function that obeys the time–independent Schrödinger
(TISE) equation (Eq. 2),

LTISE(θ) =

∣∣∣∣∣∣∣∣D(− ~2

2m

∆~x|ψ|
|ψ|

+ Uθ(~x)

) ∣∣∣∣∣∣∣∣2
2

, (5)

where D is the total derivative operator acting on multi-
variate function − ~2

2m
∆~x|ψ|
|ψ| +Uθ(~x) and || · ||2 is the Frobe-

nius norm. Because of the definition of this loss func-
tion, energy conservation is effectively demanded for time–
independent systems. Since the Uθ function is given by a
differential equation, an initial condition was added to en-
sure that a unique function is learned. The initial conditions
used for the different quantum systems are based on the in-
herent nature of each of the systems, more information and
explanations about some of these conditions can be found in
the literature (Romanowski 2007). Finally, the loss function
after the consideration of the initial condition reads

L(θ) = LTISE(θ) + (Uθ(~x)− y)2 (6)



Figure 1: Graphical representation of our framework. The input coordinates (left) are fed into our model QPNN (bottom) which
is trained by constraining the network to obey the Schrödinger’s equation.

where ~x is some point in the domain of the function and y is
the expected ground truth value of the true potential at that
point.
The main observation here is that using |ψ| (instead of ψ) to
solve for the potential leads to the correct potential except,
possibly, at finitely many points where ψ changes signs.
However, this does not create any difficulties for training the
proposed model.

3.2 Time–dependent Systems
For time–dependent systems, the formulation for the time–
dependent Schrödinger equation (TDSE) loss reads

LTDSE(θ) =

∣∣∣∣∣∣∣∣Re( i∂ψ∂t + ~2

2m
∂2ψ
∂~x2

ψ

)
− Uθ

∣∣∣∣∣∣∣∣2
2

. (7)

It is important to mention that complex numbers may be
more common to appear in the time–dependent solution of
the Schrödinger equation; however, for the current study, the
probability density of the considered systems are described
with an Hermitian Hamiltonian, and thus only real observ-
ables were considered to avoid the handling of complex val-
ues. For the time–dependent results presented in this report,
the QPNN was trained with the full wave–function instead
of just the probability density. In a future work, the density–
to–potential results for time–dependent systems will be ex-
plored and discussed in detail.

3.3 Model Architecture
For the construction of the NN, a 4 layer feedforward net-
work with hidden sizes of 32, 128 and 128 with a residual
connection between second and third layers was used. The
residual layers help in faster training, stable gradients and
also results in a smooth loss landscape (Li et al. 2017). The
inputs to the model are the ~x spatial coordinates for time in-
dependent systems and (~x, t) for time dependent systems.
For the network training, 3000 of these coordinates were
randomly selected from the domain of definition of each par-

ticular system. The model was trained for 500 epochs with
Adam optimizer (Kingma and Ba 2017).

4 Related Work
The use of deep learning for understating physical phenom-
ena has been an active field of development. In particu-
lar, there is a considerable amount of literature where au-
thors have endowed neural networks with classical Hamil-
tonian mechanics (Toth et al. 2019; Greydanus, Dzamba,
and Yosinski 2019; Tong et al. 2020; Iten et al. 2020; Bon-
desan and Lamacraft 2019; Zhong, Dey, and Chakraborty
2019; Chmiela et al. 2017); conservation of energy and ir-
reversibility in time are the key features of such networks.
There are recent reports extending these results in cases of
damped pendula, i.e., systems where there is dissipation of
energy (Zhong, Dey, and Chakraborty 2020). In computa-
tional quantum mechanics, deep neural networks have been
implemented to learn representations and extract the nec-
essary features to predict desired properties from raw un-
processed data (Goh, Hodas, and Vishnu 2017). Recently,
two methods for estimating the density matrix for a quan-
tum system, the Quantum Maximum Likelihood (QML) and
Quantum Variational Inference (QVI) method, were intro-
duced (Cranmer, Golkar, and Pappadopulo 2019). For these
methods, the authors used a flow based method (Toth et al.
2019; Jimenez Rezende and Mohamed 2015) to increase the
expressivity of their variational family of density matrices.
The applicability of these methods, however, has been only
validated for the harmonic and anharmonic quantum oscil-
lator models. Application of deep learning to quantum me-
chanics is still in its early stages (Torfi et al. 2020; Raissi,
Perdikaris, and Karniadakis 2017a,b, 2019; Jasinski et al.
2020; Carleo et al. 2019; Amabilino et al. 2019; Unke and
Markus 2019; Schmitz, Godtliebsen, and Christiansen 2019;
Schmidt et al. 2017; Hibat-Allah et al. 2020; Nakajima,
Tanaka, and Hashimoto 2020; Pu, Li, and Chen 2020; Mills,
Spanner, and Tamblyn 2017; Manzhos 2020). Most of the
deep learning quantum mechanic frameworks introduced so



Table 1: A quantitative analysis for the QPNN

System RMSE between True and Learned
Potentials (QPNN)

RMSE between True and Learned
Potentials (using RK4)

RMSE between True and Learned
Energies (QPNN)

RMSE between True and Learned
Energies (RK4)

Harmonic Oscillator 1× 10−2 ± 5× 10−3 9× 10−3 ± 4× 10−4 1× 10−2 ± 2× 10−3 5× 10−2 ± 7× 10−3

Pöschl–Teller potential 1× 10−4 ± 6× 10−5 2× 10−4 ± 3× 10−5 8× 10−4 ± 6× 10−5 7× 10−3 ± 8× 10−4

H2 molecule 2× 10−3 ± 4× 10−4 3× 10−3 ± 2× 10−4 9× 10−3 ± 7× 10−4 4× 10−3 ± 2× 10−4

Soliton 3× 10−2 ± 4× 10−3 - - -

far are focused on either solving the Schrödinger equation
or predicting the trends of specific observables such as the
system’s energy. Concerning inverse problems, Raissi et al,
introduced the physics–informed neural network for solv-
ing forward and inverse problems involving nonlinear partial
differential equations (Raissi, Perdikaris, and Karniadakis
2019). Although the impressive results reported in this work,
in terms of inverse problem solutions, the deep learning
framework reported by Raissi et al is focused only on the
solution of a partial differential equation for the prediction
of pressure profiles in an classical system. On the other hand,
in quantum mechanics observables may be inferred when a
valid effective potential is known for a given quantum sys-
tem; thus, the solution of the density–to–potential inversion
problem to predict effective potential functions (Jensen and
Wasserman 2018) play an important role in the understand-
ing of the quantum phenomena, and in particular in the elu-
cidation of the electronic structure of molecules from a den-
sity functional theory perspective. In this regard, Nagai and
coworkers have proposed the Neural–network Kohn–Sham
exchange–correlation potential (Nagai et al. 2018), which
propose a supervised training scheme that uses informa-
tion from well defined potentials and probability densities
to train a NN. However, to the best of our knowledge, there
are no reported works that use deep learning to solve the
density–to–potential inverse problem to systematically esti-
mate potentials from observations in a completely unsuper-
vised manner.

5 Experiments
The performance of the proposed Quantum Potential Neu-
ral Network is validated on four different quantum sys-
tems, one of these systems describes the temporal evolution
of a quantum wave whereas the other three are examples
of time–independent systems. Among the time–independent
systems, exact analytical solutions for the time–independent
Schrödinger equation can be obtained only for the harmonic
oscillator and the Pöschl–Teller (PT) potentials whereas for
the H2 molecule, only approximate solutions are attained.
Details about the solutions, physical implications and in-
terpretations of these systems can be found in any stan-
dard book on quantum mechanics (Sakurai and Commins
1995; Robinett 1997; Pronchik and Williams 2003). Finally,
the potentials learned by the QPNN were used to com-
pute the total energy of each of the systems. The quanti-
tative results for all the reported experiments are summa-
rized in table 1. In order to compare the results obtained (in
the form of solutions to a differential equation) via the NN
techniques to those obtained through well established ap-

proaches, the differential equations were solved numerically
using the well–known and standard Runge–Kutta 4th Order
(or RK4) integrator implemented in the standard python li-
braries. The RK4 algorithm provides means of solving var-
ious kinds of differential equations and is generally consid-
ered as a robust workhorse to bench mark new computa-
tional techniques (Landau, Paez, and Bordeianu 2015). The
differences in accuracy of the values obtained by both the
proposed QPNN method and the RK4 numerical integra-
tor were quantified through their root mean square error
(RMSE) values. The code is available at https://github.com/
arijitthegame/Quantum-Hamiltonians.

5.1 Density–to–Potential Experiments
For the density–to–potential experiments, the exact wave–
functions, ψ(~x), for the quantum Harmonic oscillator and
the PT potential were obtained by solving the time–
independent Schrödinger equation. These wave–functions
were later used to define the probability distribution,
|ψ(~x)|2, for each of the systems. In the case of the Hydro-
gen molecule, the probability density was defined accord-
ing to the one–electron 1s orbital function that delineate the
approximated electronic density for the Hydrogen molecule
in a Born–Oppenheimer approximation. These probability
densities were used to define, for each of the quantum sys-
tems, an approximated probability amplitude function, |ψ|=√
|ψ(~x)|2. The effective potential function for each of the

systems was obtained by training the QPNN with informa-
tion provided by randomly selected coordinates evaluated
onto the approximated probability amplitudes and into the
loss function.

Quantum Harmonic Oscillator (QHO): The motion of
the the one–dimension QHO is, perhaps, the simplest quan-
tum mechanical system whose motion follows a linear dif-
ferential equation with constant coefficients. In the QPNN
framework, for the prediction of the QHO potential, the co-
ordinate variable ~x, was randomly sampled from [−5, 5],
and was used as the input to the model. In the analytical
solution of the time–independent Schrödinger equation, the
wave–functions for the different states of the QHO are given
by Hermite polynomials Hn, n = 0, 1, · · ·, whereas the en-
ergies corresponding to these states depend on the force con-
stant w and are given by En = ~w(n+ 1/2). The analytical
wave–functions for the different states of the QHO defined
the probability densities used to train the QPNN. In this case,
the initial condition imposed is the fact that at the zero point
of the reference coordinates, all the energy in the system is
kinetic, and thus the potential energy at this point is zero,
i.e. V (0) = 0. Fig 2 shows the used probability density, the



learned potential and the energy computed by the QPNN.

Figure 2: Harmonic Oscillator system. (A) Wave–function
and probability Density used in the QPNN, (B) Ground and
Learned Potential, (C) Total Energy.

Pöschl–Teller potential: The PT potential is a spe-
cial class of anharmonic potential for which the one–
dimensional Schrödinger equation can be solved in terms of
special functions. This potential may be used to model vibra-
tional molecular potentials with out–of–plane bending vi-
brations (Senn 1986; Jia, Zhang, and Peng 2017) and observ-
ables of diatomic potentials (Pronchik and Williams 2003).
For the PT potential, the wave–functions used to define the
approximated probability amplitude function are the Legen-
dre functions Pµλ (Riley 1974) with energy eigenvalues Eµ
and potential depth V0 (Hernández de la Peña 2018),{
Pµλ (tanhx)

∣∣∣ Eµ =
−µ2

2
, V0 =

−λ(λ+ 1)

2
, λ=1,2,···
µ=1,2,···,λ

}
.

(8)
Details about several suitable boundary terms and initial
conditions for this type of potentials are formulated and re-
viewed in the literature (Agboola 2010; Hernández de la
Peña 2018). The input for this experiment is the spatial co-
ordinate −→x randomly sampled from [−3, 3]. For this exper-
iment, the wave–function defined by the Legendre function

with λ = 2 and µ = 1 was employed. From the density, the
initial wave–function takes the form:

ψ1
2 (x) = |tanh x| sech x. (9)

Figure 3 shows the probability density used to train the sys-
tem, as well as the learned potential and energy computed
for the system.

Figure 3: Pöschl–Teller system. (A) Wave–function and
Density, (B) Ground and Learned Potential, (C) Total En-
ergy.

Hydrogen molecule: The H2 molecule is the first multi-
electronic system with approximated probability density
considered. For the training of the QPNN, an ab initio elec-
tron density for the H2 molecule with an equilibrium bond
length (xre ) of 1.346Å and total energy of -0.958470046928
a.u. was approximated by using a fast and systematic self–
consistent field method (Helgaker, Jorgensen, and Olsen
2014). This density was computed using three Gaussian
primitive functions for each H atom, where the ~x coordinate
defined on [−3, 3] was chosen as the reference internal co-
ordinate. The initial conditions for the system were defined
following the same lines as in (Rafi et al. 1995); specifically,
the fact that V (xre) = 0. Figure 4 shows the probability
density used to train the QPNN as well as the learned poten-
tial and the energy computed using this potential.



Figure 4: H2 molecule system: (A) Density, (B) Ground Truth Potential, (C,D) Learned Potential, (E) Computed Energy.

5.2 Exploration of a Time–Dependent System
In order to explore the behavior of the QPNN in systems
with dependence on time, the effective potential for a soli-
ton model was computed. Solitons represent solitary waves
propagating without any temporal evolution in shape or size
when viewed in the reference frame moving with the group
velocity of the waves (Wazwaz 2009). This type of solitary
waves are particularly important in the Bose–Einstein con-
densation theory and arise in many contexts such as the el-
evation of the surface of water and the intensity of light in
optical fibers. Solitons form a special class of solutions of
model equations, including the Korteweg de–Vries (KdV)
and the Nonlinear Schrödinger (NLS) equations. In this par-
ticular experiment, the one–dimensional soliton satisfies the
following differential equation:

i
∂ψ

∂t
+
∂2ψ

∂x2
+ U(x, t)ψ = 0. (10)

Thus, for this system, the loss function used to train the
QPNN is given by equation 7 where ψ = 2sech(

√
2(x −

2t))ei(x+t) and U(x, t) is |ψ|2. For this experiment, the co-
ordinates for the QPNN input were defined on ~x,~t ∈ [0, 1].
Figure 5 shows the potential obtained by the QPNN for this
system.

Figure 5: Left: Soliton Ground Truth Potential, Right: Soli-
ton Learned Potential.

6 Discussion
Table 1 reports the RMSE values for the different models
studied in this work. In the case of the time–independent
models, for the QPNN, the harmonic oscillator presents the
largest RMSE value between the true and learned potential
whereas the PT potential has the lowest RMSE among all the

time–independent systems. For all the systems but the har-
moninc oscillator, the RMSE values for the learned poten-
tials are comparable in magnitude with those obtained with
the RK4 method. In the case of the energies, when com-
pared against the exact energy, the RMSE values for both
the QPNN and the RK4 method are around the same magni-
tude for all systems but the PT potential, where the RMSE
for the QPNN is one order of magnitude lower than for the
RK4 method. In terms of the energy values computed for
each of the systems, when referenced to the exact energy
(blue line) a similar trend can be observed for the energies
computed with the RK4 method and the QPNN. If the RK4
method is regarded as a more robust and mathematically su-
perior method for the calculation of the effective potential
functions, this trend may be interpreted as an indicator of
the reliability of the QPNN. In the case of the soliton model,
although solutions using the RK4 were not feasible due to
the nature of the system, the magnitude of RMSE values be-
tween the true potential and the learned potential suggests
the same qualitative behaviour as the one obtained with the
time–independent models.

7 Conclusion

In this work, the QPNN for learning the effective poten-
tial functions of different quantum systems was presented.
This new neural network is capable of learning the effective
potential functions of a variety of systems in a completely
unsupervised manner. The results obtained for the differ-
ent studied systems suggest that the QPNN has an accuracy
comparable to the RK4 integrator. The potentials learned
with this new QPNN can be used to calculate observables
like the energy of the system.

The QPNN formalism presented in this work provide a
foundation for the calculation of potentials of more com-
plicated N–body systems. In future work, we will inves-
tigate the calculation of potentials for more complicated
many electron systems that arise from the use of full con-
figuration interaction densities and wave–functions. The use
of the QPNN was also extended for time–dependent sys-
tems where the full wave–function was used. In the time–
dependent case, |ψ| can not simply be taken as a proxy for
a wave–function as one needs to take into account some
phase information, i.e., the wave–function in that case can
not be a real valued function. In future work, the density–to–
potential problem will be analysed by incorporating phase
information to create a suitable proxy wave–function.
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Schütt, K. T.; and Müller, K.-R. 2017. Machine learning of
accurate energy-conserving molecular force fields. Science
advances 3(5): e1603015.

Cranmer, K.; Golkar, S.; and Pappadopulo, D. 2019. In-
ferring the quantum density matrix with machine learning.
arXiv preprint arXiv:1904.05903 .

Cranmer, M.; Greydanus, S.; Hoyer, S.; Battaglia, P.;
Spergel, D.; and Ho, S. 2020. Lagrangian Neural Networks.
arXiv preprint arXiv:2003.04630 .

Curtright, T.; Fairlie, D.; and Zachos, C. 1998. Features
of time-independent Wigner functions. Physical Review D
58(2): 025002.

Du, Y.; and Narasimhan, K. 2019. Task-agnostic dynam-
ics priors for deep reinforcement learning. In International
Conference on Machine Learning, 1696–1705. PMLR.

Feynman, R.; Leighton, R.; and Sands, M. 1965. The Feyn-
man Lectures on Physics Vol. III, chap. 21, sec. 21-9.

Galleani, L.; and Cohen, L. 2002. Approximation of the
Wigner distribution for dynamical systems governed by dif-
ferential equations. EURASIP Journal on Advances in Sig-
nal Processing 2002(1): 514609.

Goh, G. B.; Hodas, N. O.; and Vishnu, A. 2017. Deep learn-
ing for computational chemistry. Journal of computational
chemistry 38(16): 1291–1307.

Gomes, D. A.; and Silva, J. D. 2008. On the Wigner trans-
form of solutions to the Schrodinger equation. São Paulo
Journal of Mathematical Sciences 2(1): 85–97.

Greydanus, S.; Dzamba, M.; and Yosinski, J. 2019. Hamil-
tonian neural networks. In Advances in Neural Information
Processing Systems, 15353–15363.

Groetsch, C. W.; and Groetsch, C. 1993. Inverse problems
in the mathematical sciences, volume 52. Springer.

Helgaker, T.; Jorgensen, P.; and Olsen, J. 2014. Molecular
electronic-structure theory. John Wiley & Sons.

Heller, E. J. 1976. Wigner phase space method: Analysis for
semiclassical applications. The Journal of Chemical Physics
65(4): 1289–1298.

Hernández de la Peña, L. 2018. A Simplified Pöschl–Teller
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A Additional experiments using the full
wave–function

In order to further explore the capabilities and accuracy of
our NN, we start off by describing additional experiments
using the QPNN and full wave–function as well as Wigner’s
functions. The formulation for the new loss functions are
described in detail below.

A.1 Using the 1D time–independent Schrödinger
equation

In this section we consider some simple one–dimensional
time–independent systems. Wave–functions, potential en-
ergy and energy levels can be found in Table 2. The learned
potentials are reported in figure 6, whereas in figure 7
we show that all proposed models obey energy conserva-
tion laws. The quantitative results for the experiments can
be found in table 3. For the derivation of these wave–
functions and the general properties of these systems, please
see (Sakurai and Commins 1995; Feynman, Leighton, and
Sands 1965; Robinett 1997). As before, ~, m and ω were set
equal to 1. Quantum Harmonic Oscillator: The wave–

Figure 6: Position (x-axis) vs Potential (y-axis), Ground
(Blue) and Learned (Green Dots) Potentials: A) Harmonic
Oscillator; B) Hydrogen Atom (2p case); C) Pöschl-Teller
(1,1 case).

functions in this case are given by Hermite polynomials
Hn, n = 0, 1, · · ·. We chose x ∈ [−5, 5] as input to our
model. Since Uθ is given by a differential equation (equa-
tion 5), one needs to impose an initial condition to get a

Figure 7: Position (x-axis) vs Energy (y-axis); Ground
(Blue) and Learned (Green Dots) Energies: A) Harmonic
Oscillator; B) Hydrogen Atom (2p case); C) Pöschl-Teller
(1,1 case).

unique solution. However, when the output of Uθ ∈ [0, 12.5]
is considered, the need for the initial conditions are removed.
Figure 6 and figure 7 (A) show the learned potential and en-
ergy of the system.
The Hydrogen Atom (2p orbital case) : The general radial
wave–functions are given by generalized Laguerre polyno-
mials Lln, n = 1, 2, · · · and l = 0, 1, 2, · · · , n− 1 but in this
case simplifies to ψ(r) = 1

8
√
π
re

−r
2 . We used r ∈ [0.5, 10]

as input to our model and the initial condition U(1) = 0. For
this system the loss function reads L(θ) = L(θ) + Uθ(1)2

where L(θ) is given by equation 5. Figure 6 and figure 7 (B)
show the learned potential and energy for this system.

Pöschl-Teller potential : The wave–function ψ gener-
ated by this potential is defined by Legendre functions
Pµλ (tanh(x)), λ = 1, 2, 3·; µ = 1, 2, ·, λ − 1, λ. For sim-
plicity, let µ = 1. We chose x ∈ [−3, 3] as input to our
model. We imposed an initial condition Uθ(0) = −λ(λ+1)

2
and used a similar auxiliary loss function as the one defined
above. Figure 6 and figure 7 (C) show the learned potential
and energy of the system.

A.2 Particle in a box (perturbed by some external
potential)

Now, we turn our attention to a quantum system where the
Schrödinger equation cannot be solved exactly, but can be
formulated in an approximate manner using perturbation
theory. A particle with no spin, of mass m, was placed in
an one dimensional square box, x ∈ [0, L], of length L.
Later the particle was presented with the external potential
V (x) = 10x2 as perturbation. The wave–function for the
perturbed system was approximated by considering first or-
der corrections for the unperturbed particle in a box wave–



Table 2: Wave–functions, Energies, and Potentials of various time independent systems

System Potential V (x) wave–function ψ(x) Energy

Harmonic Oscillator 1
2kx

2 1√
2n n!

(
mω
π~
)1/4

e−
mωx2

2~ Hn

(√
mω
~ x
)

~ω(n+ 1
2 )

Pöchl–Teller potential −λ(λ+1)
2 sech2(x) Pµλ (tanh(x)) − ~2

2m (λ− µ)

Radial Hydrogen atom l(l+1)
2r2 −

1
r e−r/n( 2r

na0
)lL2l+1

n+l ( 2r
na0

) − RH

(n+l)2

2D Harmonic Oscillator 1
2k(x2 + y2) Hnx

(√
mω
~ x
)
Hny

(√
mω
~ y
)
e−

mω(x2+y2)
2~ ~ω(nx + ny + 1)

function,

ψn = ψ0
n+
∑
n 6=k

< ψ0
n|V (x)|ψ0

k >

E0
n − E0

k

ψ0
k, n, k = 1, 2, 3, . . . ,

(11)
where ψ0

n and E0
n are the particle in a box’s unper-

turbed nth state wave–function and its energy, whereas,
< ψ0

n|V (x)|ψ0
k > indicates the following integral

< ψ0
n|V (x)|ψ0

k >=

∫
(ψ0
n)∗V (x)ψ0

kdx. (12)

For our computations, the wave–function, ψ0
n, obtained as

solution of the Schröedinger equation for the particle in a
box model reads,

ψ0
n =

√
2

L
sin(

nπ

L
)x n = 1, 2, 3, . . . , (13)

and the energy for the system is given by

E0
n =

n2~2π2

2mL2
n = 1, 2, 3, . . . . (14)

Here, we use the wave–function corrected only up to first or-
der and x ∈ [0, 1]. In this experiment we not only learned the
potential, but also the perturbed wave–function based only
in the systems initial conditions without perturbation. We
use two neural networks, one to learn the potential and the
other to learn the perturbed wave–function. The perturbed
wave–function was learned in a supervised manner, whereas
the potential was learned in an unsupervised manner. If Wθ

is the neural network learning the perturbed wave–function
ψpert, then our auxiliary loss function becomes

Lθ = ||Wθ − ψpert||22 + Lθ, (15)

where Lθ is the time–independent Schrödinger loss defined
in the main text, which was used to learn the potential and
calculated by the perturbed wave–function. Figure 8 shows
the results for this system. It seems that energy is not con-
served for this system, but that is merely due to the nature of
the truncated, first–order perturbation approximation.

A.3 2D Harmonic Oscillator
Unlike other NN, our QPNN scales easily and quickly to
higher dimensions. For the 2–dimensional Harmonic Oscil-
lator, the wave–function is defined as a product of two Her-
mite polynomials (such as the one defined in the main text).

Figure 8: A) Wave–function of the particle in a box; B) Po-
tential (y-axis) vs Position (x-axis) of the particle; C) Con-
servation of an ”energy” like object.

We chose x, y ∈ [0, 1] as input to our model and constrained
our output to [0, 1]. The loss function in this case is exactly
as the one defined for the 1D Harmonic Oscillator. Figure 9
shows the results for this system, as this figure shows, the
learned energy is a good approximation to the total energy
(z scale chosen from [4.99, 5.01]).

B Motivation behind the time–independent
Schrödinger Loss

We now present a brief, yet complete, explanation for our
time–independent Schrödinger loss function. The Hamilto-
nian Ĥ is the sum of the kinetic energy T̂ and the potential



Figure 9: 2D Harmonic Oscillator. (A) Ground Truth Poten-
tial. (B) Learned Potential by our network. (C) Ground Truth
Energy surface and Learned Energies by our model (z axis
is between 4.99 and 5.005).

energy V̂, where the kinetic energy is given by the Laplacian
operator,

Ĥ = − ~2

2m
∇2
x + V̂ (x). (16)

For the time independent case, the Schrödinger’s equation
boils down to

Ĥψ = Eψ (17)
where E is the energy of the system. For simplicity, let ~ =
m = 1. By using equation 16, equation 17 reads

(−1

2
∇2
x + V̂ (x))ψ = Eψ. (18)

Dividing the above equation by ψ yields

− 1
2∇

2
xψ

ψ
+ V̂ (x) = E. (19)

Since the energy of a given system is a scalar quantity,
the derivative with respect to x on the left hand side of
equation 19 is zero, which defines the time–independent
Schrödinger loss function.

C Wigner Functions
An alternative formulation of quantum dynamics may be
given by the Wigner function (Curtright, Fairlie, and Zachos
1998; Chen, Xiong, and Shao 2019). The Wigner function,
W (x, p, t), is a phase space distribution function which be-
haves similarly to the position |ψ (x) |2 and the momentum
|ψ (p) |2 distribution functions (Case 2008). Unlike wave–
functions, Wigner functions are real valued and bounded.
However, contrary to probability distributions, W (x, p, t)
can take negative values. Thus, the Wigner distribution is
termed as a quasi–probability distribution and in a sense
loses some of its classical appeal. Using the Schrödinger’s
equation (equation 1) and the Taylor expansion, the time

evolution of the Wigner function is given by an infinite or-
der partial differential equation called Wigner–Moyal equa-
tion (Case 2008).
∂W (x, p, t)

∂t
= − p

m

∂W (x, p, t)

∂x

+

∞∑
s=0

(−h2)s
1

(2s+ 1! )
(
1

2
)2s ∂

2s+1U(x)

∂x2s+1

× ∂2s+1W (x, p, t)

∂p2s+1
.

(20)

C.1 Learning Potentials from Wigner Functions
In the case of the Wigner function, our Neural Network was
trained by implementing a truncated Wigner–Moyal loss,

LWigner(θ) =

∣∣∣∣∣∣∣∣∂W (x, p, t)

∂t
+

p

m

∂W (x, p, t)

∂x

−
k∑
s=0

(−h2)s
1

(2s+ 1! )
(1/2)2s ∂

2s+1Uθ(x)

∂x2s+1

× ∂2s+1W (x, p, t)

∂p2s+1

∣∣∣∣∣∣∣∣2
2

,

(21)

where for all our experiments k = 0, 1. The case where k =
0 is known as the Liouville equation. However, we note that
equation 21 determines Uθ up to a constant. Thus, an initial
condition depending on each individual system was added.

C.2 Experiments with the Wigner functions
Harmonic Oscillator : The Wigner function for the har-
monic oscillator has the following form (Case 2008):

W (x, p, t) = e−(x2+p2)
(
x2 + p2 +

√
2x cos t−

√
2p sin t

)
.

Since ∂nU
∂xn = 0, ∀ n ≥ 3, the Moyal–Wigner equation in

this case regresses to the classical Liouville equation. Let
x, p, t ∈ [0, 1] and x is the input to the model. The initial
condition for this systems is Uθ(0) = 0 and the loss function
reads

L(θ) = LWigner(θ) + Uθ(0)2,

where LWigner is given by equation 21. Figure 10 (A) shows
the potential learned by the model.

Pöschl-Teller potential : The Wigner function in this
case (Chen, Xiong, and Shao 2019) is given by
W2,1,0(x, k, t) :

=
3

8

∫ ∞
−∞

sech2(x+
y

2
)sech2(x− y

2
)

×
[
2sinh(x+

y

2
)sinh(x− y

2
)

+
√

2sinh(x− y

2
)e

i3t
2

+
√

2sinh(x+
y

2
)e

−i3t
2 + 1

]
e−ikydy.

(22)



The Wigner function is a real–valued bounded function.
Thus by breaking the integral in equation 22 into real and
complex parts, we only focus on the real part. Using Euler’s
formula, we get the following:

g2,1,0(x, k, t) =
3

8

∫ ∞
−∞

sech2(x+
y

2
)sech2(x− y

2
)

×
[
2sinh(x+

y

2
)sinh(x− y

2
)cos(−ky)

+
√

2sinh(x− y

2
)cos(

3t

2
− ky)

+
√

2sinh(x+
y

2
)cos(−3t

2
− ky)

+ cos(−ky)

]
.

(23)

Note that the integral in equation 23 is invariant under the
change of variable y → −y. This implies that in order to
calculate g2,1,0(x, k, t), we only have to integrate from 0
to ∞ and multiply the integral by 2. Our final simplifica-
tion comes from studying the decay properties of the Wigner
functions. Using sech(x) = 2

ex+e−x and sinh(x) = ex−e−x

2 ,
we found that the integrand in equation 23 behaves like
O(e−y) (resp. O(ey)) as y → ∞ (resp. y → −∞). We
established a threshold of 10−9 to truncate the integral from
positive real axis to a bounded interval which gives the fol-
lowing form:

f2,1,0(x, k, t) =
3

4

∫ 20
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y

2
)sech2(x− y

2
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(24)

The Wigner method to study the time–frequency proper-
ties of dynamical systems involves taking the partial deriva-
tives with respect to time of the Wigner function. These
derivatives on the Wigner function yield what is known as
the Wigner–Moyal equation. The physical interpretations,
numerical difficulties and approximations of the Wigner–
Moyal equation have been widely discussed in the litera-
ture; for information about the mathematical challenges as-
sociated with the Wigner–Moyal equation, we recommend
readers to consult these references (Chen, Xiong, and Shao
2019; Case 2008; Galleani and Cohen 2002; Heller 1976;
Curtright, Fairlie, and Zachos 1998; Klimov, Sainz, and
Romero 2020; Athanassoulis 2008; Gomes and Silva 2008).
In this case, the potential is U(x) = −3sech(x)2 which
is infinitely differentiable. For this experiment we chose
x ∈ [0, 1] as input to our model and approximated the in-
finite order PDE (equation 20) by equation 21. Thus, one

cannot assume that any non–steady state solution predicted
by the truncated Wigner function is immediately valid, as
it can be shown that higher order quantum corrections are
responsible for quantum mechanical phase–space behavior.
The 0th order truncation matches the potential in a small
neighborhood of 0. Figure 10 summarizes some of our find-
ings,

Figure 10: A) Position (x-axis) vs Potential (y-axis) of Har-
monic oscillator using the Wigner function. B) Our approxi-
mation of the Wigner function of Pöschl–Teller potential. C)
Various approximations of the potential using the Wigner–
Moyal equation.

D Some training details and
hyperparameters

Our Neural Network is a 4-layer feedforward network with a
residual connection between the second and the third layers.
The activation and the scaling in the final layers varied from
experiment to experiment. Our main motivation for scaling
and using different activation is to show that an appropriate
architecture can perfectly learn the correct potential with-
out an initial condition. All the models are trained for 1000
epochs. Table 4 shows the activation, scaling and the size
of the training data for each of the studied systems. All the
training data was randomly sampled from the appropriate
domains and trained in a minibatch fashion with batch size
of 32.



Table 3: A quantitative analysis of our model

System RMSE between True and Learned Potentials RMSE between True and Learned Energies
Harmonic Oscillator 1.1× 10−1 ± 5.0× 10−2 1.0× 10−1 ± 2.0× 10−2

Pöchl–Teller potential 1.0× 10−4 ± 6.0× 10−5 8.0× 10−4 ± 6.0× 10−5

Radial Hydrogen atom 3.0× 10−4 ± 8.0× 10−5 3.0× 10−4 ± 7.0× 10−5

2D Harmonic Oscillator 3.0× 10−3 ± 9.0× 10−4 4.0× 10−3 ± 8.0× 10−4

Particle in a Box 4.3× 10−1 ± 6.0× 10−2 5.5× 10−1 ± 8.0× 10−1

Soliton 2.9× 10−1 ± 4.0× 10−2 -
Harmonic Oscillator from Wigner 4.0× 10−3 ± 8.0× 10−5 -

Table 4: Some training details and model hyperparameters

System Final Layer Activation Final Layer Scaling Size of training data
Harmonic Oscillator Sigmoid 12.5 2500

Pöchl–Teller potential None None 2500

Radial Hydrogen atom None None 2500

2D Harmonic Oscillator Sigmoid None 5000

Potential for Particle in a Box Sigmoid 10 4000

Perturbation for Particle in a Box None None 4000

Soliton None None 3000

Harmonic Oscillator from Wigner None Sigmoid 5000

Pöschl–Teller from Wigner None None 2000

E Additional Figures
Some additional figures of the wave–functions and Wigner
functions used in our experiments.

Figure 11: Left: 2p Radial wave–function for the Hydrogen
atom. Right: 2p Radial probability distribution for the Hy-
drogen atom.

Figure 12: Wave–function (Left) and Probability distribution
(Right) for the first bound state of the Pöschl–Teller poten-
tial.

Figure 13: Left: Wigner quasi–probability distribution for
the ground state of the Harmonic Oscillator. Right: Our ap-
proximation of the Wigner function for the Pöschl–Teller.

Figure 14: Left: 2D Harmonic Oscillator Wave–function.
Right: 2D Harmonic Oscillator Wave–function.


