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Abstract

Well Test Analysis is a section of reservoir engineering that
best describes the reservoir characteristics with principles of
fluid flow in porous media using pressure transient analysis.
The transient pressure distribution for fluid flowing through
the wellbore, across the porous reservoir model, at a constant
terminal flow rate can be determined by solving the partial
differential equation- diffusivity equation, along with the set
of boundary conditions that define the reservoir model. Since
the diffusivity equation has a non-linear quadratic term, it
is either solved analytically by ignoring the quadratic term
and thus compromising the model accuracy or solved using
numerical approaches that is complex and time-consuming.
This study provides an alternative and simpler approach to de-
termine the pressure distribution using the Neural Networks
method. This method could be applied to any type of reservoir
that has a defined diffusivity equation and boundary condi-
tions to predict the pressure distribution with good accuracy.
To validate this approach and demonstrate the accuracy of
the neural network with a greater level of confidence, for the
purpose of this study, we have chosen to validate against ana-
lytical solution as it could be applied to all types of reservoir
models in generic form.
Typical neural network-based approaches, however, were not
yielding good results for Well Test Analysis as it needed bulk
data since they typically ignored physical insights from the
scientific system under consideration. In this paper, this prob-
lem is resolved by Physics informed neural networks that are
trained to solve supervised learning tasks while honoring any
given physics law.

Introduction
The measurement of transient pressure distribution in a
single-phase homogeneous reservoir is significant to the re-
searchers in the area of petroleum reservoir engineering, as
this is the foundation for the Well Test Analysis, which helps
in the determination of permeability distribution in the reser-
voir. This pressure distribution can be derived for a transient
fluid flow through porous media by a non-linear diffusivity
equation.

There have been several studies in solving this diffusiv-
ity equation analytically, by ignoring the non-linear term

Copyright © 2021 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

and linearizing it for various boundary conditions. In one
study, the non-linear diffusivity equation was transformed
into a linear diffusivity equation of dimensionless form,
by substituting the variables like pressure (p(r, t)), radius
of investigation(r), and time(t) with their dimensionless
forms (pd), (rd) and (td) respectively (Ahmed and McKin-
ney 2005). (Van Everdingen, Hurst et al. 1949) proposed
an analytical solution for this linearized diffusivity equa-
tion for a specified list of assumptions. This work was ex-
panded by (Chatas 1953) and (Lee 1982) for two cases,
viz infinite-acting reservoir and finite-radial reservoir. In an-
other study, (Matthews and Russell 1967) proposed an ex-
ponential integral (Ei) function solution to the linear diffu-
sivity equation for the constant terminal rate scenario, which
is further simplified in (Ahmed and McKinney 2005) for a
specific range of Ei parameter value by log approximation.

Similarly, there have also been studies on analyzing the
pressure distribution problem using the diffusivity equation
without ignoring the quadratic gradient term. (Odeh, Babu
et al. 1988) had arrived with the approximate solutions for
the nonlinear PDE for three cases and compared the result
with the solutions of the linear equation. Another notable
work by (Chakrabarty, Ali, and Tortike 1993) solved the ra-
dial nonlinear PDE for a variety of boundary conditions to
analyze the pressure distribution around a large diameter in-
jection well, and presented the results for both constant pres-
sure and constant discharge-rate (with wellbore storage) in-
ner boundary conditions; the outer boundary conditions may
be infinite, closed, or constant pressure. Similar work carried
out by (Xu-long, Deng-ke, and Rui-he 2004) determined a
solution to the nonlinear real space flow equation for both
constant rate and constant pressure production using Weber
Transform. They also solved the flow equation for a finite
circular reservoir case using Henkel Transform and inferred
that the difference between the nonlinear and the linear pres-
sure solutions may reach about 8% in the long time. (Liu
et al. 2016) further demonstrated Well Testing with Non-
Linear PDE for a one-dimensional seepage flow problem
with threshold pressure gradient, that represents the uncon-
ventional reservoir with low permeability and porosity, by
constructing a moving boundary.

(Raissi, Perdikaris, and Karniadakis 2017b), (Raissi,
Perdikaris, and Karniadakis 2017a) and (Raissi, Perdikaris,
and Karniadakis 2019), introduced physics informed neural



networks that are trained to solve supervised learning tasks
while honoring any given physics law described by general
PDEs. Driven by this work, we built a physics informed
deep learning model for Well Test Analysis that enables the
synergistic combination of physics law, which is diffusivity
equation, and data, for regularizing the training in small data
regimes to predict pressure.

Mathematical Considerations
The constant terminal rate solution is a very important as-
pect of most of the transient test analysis methodologies,
e.g., drawdown and pressure buildup analysis. The well is
adjusted to produce at a constant flow rate and the pressure
values i.e., p(r, t) are measured as a function of time, in most
of these tests (Ahmed and McKinney 2005). For the purpose
of the experiment, the Ei function solution for constant ter-
minal flow rate has been considered to generate the data set.

The system is assumed to follow the radial flow model
where the slightly compressible fluid flows radially towards
the fully penetrating vertical well at a constant terminal flow
rate Qo (STB/day) from a homogeneous reservoir of con-
stant radius re (ft) and uniform thickness h (ft) and per-
meability k (md). The radius of investigation is r (ft). The
reservoir is considered to be at constant reservoir pressure
pi (psi) at initial time (t = 0) and there is no flow across
the reservoir boundary. By combining the continuity equa-
tion, transport equation, and compressibility equation with
the boundary conditions, the non-linear diffusivity equation
could be attained (Ahmed and McKinney 2005):
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where βf = Fluid compressibility (psi−1) and c = Dif-
fusivity constant (Equation (1) from (Chakrabarty, Ali, and
Tortike 1993)).

The quadratic gradient term is ignored, and the linear
diffusivity equation is expressed from equation (1.2.64)
of (Ahmed and McKinney 2005) as:
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Solving equation 2 through the form of Ei function arrived
at the following line source solution (Matthews and Russell
1967) which is expressed from equation (1.2.66) of (Ahmed
and McKinney 2005) as:
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[
70.6QoµBo

kh

]
Ei

[
−948φµctr2

kt

]
(3)

whereCt = Total compressibility (psi−1), µ = Viscosity (cp),
Bo = Oil Formation Volume factor (bbl/STB) and φ = Poros-
ity (fraction).

The exponential integral, Ei, can be approximated for
the range of values with x < 0.001 and the final equa-
tion (Ahmed and McKinney 2005) of the form could be
derived as mentioned in equation (1.2.70) of (Ahmed and

McKinney 2005) as:
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where t > 9.48 ∗ 104φµctr2/k
The pressure distribution dataset obtained from equation 4

is considered as reference for computing the performance of
the typical neural network and the physics informed neural
network in the following sections. Precisely, starting from an
initial condition p(r, t = 1), rε[0.25, 15.25], and assuming
periodic boundary conditions, we integrate equation up till
final time t = 120 to generate the data set. The entire dataset
is used as test data (29k) whereas the training dataset (0.1k)
is a subset of initial and boundary condition data.

Alternately, when the non-linear term is considered, the
diffusivity equation could not be simplified to an analytical
form and could be solved only using numerical methods. For
this condition, the parameters of the diffusivity equation, and
its boundary conditions should be altered to best describe the
reservoir conditions, to obtain the accurate pressure distribu-
tion confined to the considered reservoir model.

Model Architecture
Neural network architecture was adopted from (Raissi,
Perdikaris, and Karniadakis 2017b) and (Raissi, Perdikaris,
and Karniadakis 2017a). Network1 is implemented using
Tensorflow and is set up with 10 layers with 20 neurons per
hidden layer. The hyperbolic tangent function is used as an
activation function in all hidden layers. L-BFGS-B method
is used to optimize the loss function.

Data Informed Model
The pressure of the reservoir at any given radius (r) and time
(t) can be predicted by typical neural networks but needs to
be trained on huge volume of high-quality historical data.
With smaller training datasets, the model tends to overfit
training data exhibiting poorer accuracy during extrapola-
tion.

Given a set of Np = 100 randomly distributed initial and
boundary data, from the data generated from equation 4,
this model learns the latent solution p(r, t) using the mean
squared error loss of equation 5. Root Mean Square Error
(RMSE) of this model is 1.69.

MSE =
1

Np

Np∑
i=1

|p(ri, ti)− pi|2 (5)

Physics Informed Model
Physics informed surrogate models for Well Test Analysis
using linear diffusivity equation is built to predict pressure.
This approach is made possible by support from Tensor-
flow on automatic differentiation which differentiates neu-
ral networks with respect to their input variables and model
parameters. The idea of utilizing prior domain knowledge

1https://github.com/maziarraissi/PINNs



in a neural network by exploiting automatic differentia-
tion (Baydin et al. 2017) to differentiate neural networks
is derived from (Raissi, Perdikaris, and Karniadakis 2017b)
and (Raissi, Perdikaris, and Karniadakis 2017a).

Given a set of Nf = 500 collocation points, from the data
generated from equation 4, this model learns the latent so-
lution p(r, t), obeying linear diffusivity equation which is
represented as f(r, t).MSEf acts as a normalization mech-
anism that disciplines solutions to equation 6.
f(r, t) is given by:

f := prr +
1

r
∗ pr −

1

c
∗ pt (6)

where c = 0.0002637k/φµct
The trainable parameters shared between the neural net-

works p(r, t) and f(r, t) are learned by minimizing the mean
squared error loss (Equation (4) from (Raissi, Perdikaris,
and Karniadakis 2017b)):

MSE =MSEp +MSEf (7)

where MSEp = 1
Np

Np∑
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|p(ri, ti) − pi|2 and MSEf =

1
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p(r, t) denotes the data informed solution and f(r, t) de-
notes physics informed solution,
ri, ti, pi for i = {1, Np} denotes the initial and boundary
training data on p(r, t),
rif , t

i
f for i = {1, Nf} specifies the collocations points for

f(r, t).
Even with smaller training datasets, the model does not

overfit training data exhibiting good accuracy during extrap-
olation. Root Mean Square Error (RMSE) of this model is
0.28.

Figure 1: Model Performance at a randomly chosen radius
(r = 8.5) for different time instants

At a randomly chosen radius (r = 8.5) for different time
instants, Figure 1 displays model performance, Figure 2 dis-
plays Prediction error (|ppred − pactual|) and Figure 3 dis-
plays Nonconformity (|f(r, t)|) to linear diffusivity equa-
tion. Figure 1 shows that the pressure value predicted by the
Physics informed model is closer to the actual value. Fig-
ure 2 shows the absolute error between the predicted and
actual values from Figure 1. It is observed that the trends
of Figure 2 and Figure 3 are similar indicating that the non-
conformity to fundamental physics law impacts the models’
performance.

Figure 2: Prediction Error

Figure 3: Nonconformity to PDE

Conclusion
This study confirms that the physics informed neural net-
work can model Well Test Analysis for pressure drawdown
using generic linear diffusivity equation with commendable
accuracy. Apparently, PINN can model well testing using
linear or non-linear PDE. Thus, the physics informed neural
network model could be a simple and well-behaved alterna-
tive approach for pressure transient studies of any reservoir
variant, given that the linear or non-linear diffusivity equa-
tion, its parameters and boundary conditions are defined.
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