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Abstract

In particle physics the simulation of particle transport through
detectors requires an enormous amount of computational re-
sources, utilizing more than 50% of the resources of the
CERN Worldwide Large Hadron Collider Grid. This chal-
lenge has motivated the investigation of different, faster ap-
proaches for replacing the standard Monte Carlo simulations.
Deep Learning Generative Adversarial Networks are among
the most promising alternatives. Previous studies showed that
they achieve the necessary level of accuracy while decreas-
ing the simulation time by orders of magnitudes. In this pa-
per we present a newly developed neural network architec-
ture which reproduces a three-dimensional problem employ-
ing 2D convolutional layers and we compare its performance
with an earlier architecture consisting of 3D convolutional
layers. The performance evaluation relies on direct compari-
son to Monte Carlo simulations, in terms of different physics
quantities usually employed to quantify the detector response.
We prove that our new neural network architecture reaches a
higher level of accuracy with respect to the 3D convolutional
GAN while reducing the necessary computational resources.
Calorimeters are among the most expensive detectors in terms
of simulation time. Therefore we focus our study on an elec-
tromagnetic calorimeter prototype with a regular highly gran-
ular geometry, as an example of future calorimeters.

Introduction

Today, particle detectors are simulated using Monte Carlo-
based methods such as the Geant4 toolkit (Agostinelli et al.
2003). Due to complex detector geometries and manifold di-
verse physical processes, Monte Carlo simulations have a
high computational cost and require, currently, more than
half of the Worldwide Large Hadron Collider (LHC) Grid
resources (Albrecht et al. 2019). In the future High Lumi-
nosity phase of the LHC (HL-LHC) around 100 times more
simulated data are expected (Apollinari et al. 2017). Even
when taking the technological improvements into account,
this will exceed considerably the expected computational re-
sources at the HL-LHC regime.

In order to overcome this obstacle, intense research is
ongoing for developing faster alternatives to the standard
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Monte Carlo simulation. The main difficulty in search-
ing for a faster simulation approach is given by the high
level of accuracy required. Based on deep generative mod-
els, several prototypes demonstrated an enormous potential
by achieving similar accuracy than the traditional simula-
tion (de Oliveira et al. 2017; Paganini et al. 2018; Ghosh
2019; DiSipio et al. 2019; Chekalina et al. 2019). Gener-
ative Adversarial Networks (GANs) represent an example
of such models: so far, they have been employed primar-
ily for simulating calorimeters (Carminati et al. 2018). In
this paper we describe a novel GAN architecture which
uses two-dimensional convolutional layers (Conv2D) for
generating the three-dimensional volume of an electromag-
netic calorimeter. We compare our architecture to a previ-
ous three-dimensional convolutional (Conv3D) GAN model
developed for the same detector use case (Carminati et al.
2018). Results are compared to the corresponding Monte
Carlo simulation in terms of multiple physics validation
metrics. The Conv2D model improves the physics accuracy
while reducing the computation time.

In the following we provide a review of related work,
followed by a brief description of the electromagnetic
calorimeter and the training data set. Next, we introduce our
Conv2D prototype and we evaluate its performance in terms
of physics accuracy and computation time. The last section
summarizes our conclusions and plan for future work.

Related Work

GANSs belong to the group of generative models and are
nowadays used for a large variety of different tasks (Algah-
tani 2019). The whole GAN model consists of two deep neu-
ral networks: a generator network, which generates images
from a latent vector consisting of random numbers, and a
discriminator, trained to evaluate and distinguish between
the generated images of the generator and the training or
validation images. GANs are among the most promising ap-
proaches, which are being successfully investigated for re-
placing traditional Monte Carlo for simulating detectors and,
in particular, calorimeters. Several studies demonstrate that
GANSs achieve similar levels of accuracy as Monte Carlo,
while considerably decreasing the simulation time (Carmi-
nati et al. 2018) (Khattak et al. 2019) (Erdmann et al. 2019).

In this research we compare our results with the Conv3D
GAN model (Carminati et al. 2018) developed for the same
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Figure 1: Convolutional 3D generator neural network architecture from (Carminati et al. 2018). Input is a latent vector and

output is the 3-dimensional shower image.

calorimeter prototype. The model is available on GitHub
(Vallecorsa et al. 2020) and its generator architecture is
shown in figure 1 for reference. This model achieved in
(Carminati et al. 2018) a large speed up (4 ms simulation
time for a single electron compared to 17 s simulation time
using Geant4 on a Intel Xeon processor) while reaching
a good agreement with Monte Carlo in terms of physics
(Carminati et al. 2018).

(Quast 2020) used a different Conv2D network architec-
ture for simulating three dimensional calorimeter shower
images. This was achieved by generating 12 two dimen-
sional 15x7 images and stacking them to 3D images to-
gether. In our studies we have tested a similar architecture,
based on stacking a set of two dimensional images, each
representing one of the calorimeter layers. However this ap-
proach resulted in a worse performance, in terms of physics
and speed up, with respect to the model we suggest in this
research.

Electromagnetic Calorimeters

By measuring particles energy, calorimeters are one of
the core components of High Energy Physics experiments
(Brown and Cockerill 2012). The primary particles enter
and interact with the material of the calorimeter and deposit
their energies by creating secondary particles as they pass
through the detector. The secondary particles, in turn, create
other particles by the same mechanisms leading to the gen-
eration of showers. While the shower evolves, the energy of
the particles gradually reduces as it is absorbed or measured
by the calorimeter sensors. In our work, we simulate electro-
magnetic calorimeters, which are specially designed to mea-
sure energies of electrons, positrons and photons that inter-
act in the detector volume via electromagnetic interactions
(mainly bremsstrahlung for electrons and pair production for
photons). As stated above, calorimeters represent computa-
tionally the most demanding simulations and are, therefore,
the starting point for accelerating the simulation process. By
representing each of the calorimeter sensors as a pixel in
an image and the corresponding energy measurement as the
pixel intensity, it is possible to interpret the detector output
as an image and apply to it computer vision strategies and
methods. It should be noted, however, that such ”shower im-
ages” exhibit important differences with respect of typical
RGB pictures, notably their high level of sparsity and large
pixel intensity dynamic range, which can span several orders
of magnitude.

Our training and test data sets contain particle shower im-

Particle x=25

Figure 2: Representation of the 3D space (left) and an exam-
ple shower development at y = 13 (right).

ages recorded by the calorimeter, simulated using Geant4
for a future electromagnetic calorimeter prototype. For our
study, we use 200 000 electron shower images with initial
energies in the range of 2-500 GeV and a 3-dimensional
shape of 25x25x25 pixels. Details on the calorimeter archi-
tecture and the data set can be found in (Carminati et al.
2018). Figure 2 shows an example shower image cutout
in the central layer (y = 13), where the particle enters
the calorimeter perpendicular to the x-y-plane at position
z = 13, y = 13 and z = 0, the shower is evolving in the z-
direction. Particle shower images are parameterised accord-
ing to the energy of the primary particle E,,, which is the
energy of the electron entering the calorimeter volume and
the total energy measured by the calorimeter, which we in-
dicate as Ecal (for Electromagnetic CALorimeter). The re-
lation between Ecal and E;, depends on the type, geometry
and material of the calorimeter.

3D Generative Adversarial Networks

Replacing Conv3D layers, in neural networks, with Conv2D
layers reduces in general the computational complexity
and therefore, computing resources and training time per
epoch. However a non-trivial strategy is necessary to com-
bine Conv2D layer in order to reproduce correctly a three-
dimensional volume. Our Conv2D generator architecture,
shown in figure 3, uses a mix of 2D convolutional layers and
transposed 2D convolutional (Conv2D _transpose) layers (to
increase the image size to the desired dimension). Addition-
ally, we use batch normalization (BatchNorm) (loffe et al.
2015), a mix of rectified linear units (ReLU) and leaky rec-
tified linear units activation functions (LeakyReLU) (Maas
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Figure 3: Conv2D Generator neural network architecture. Input is a latent vector and output is the 3-dimensional shower image.

2013), in order to account for the image sparsity, and
dropout layers (Dropout) (Nitish et al. 2014) to prevent
mode collapse. The convolutional layers are organised in
three branches in order to enable the model to correctly
learn pixel-level correlations along the three canonical im-
age dimensions. Three-dimensional images, with 25x25x25
shapes are generated and parameterised (conditioned) using
the input particle energy F,. The hyper parameters, learning
rate and learning rate decay, which we use for our model are
found through a hyperparameter search with the Optuna tool
(Akiba et al. 2019).

Comparing the total number of parameters for the
Conv3D and the Conv2D generator (table 1), it can be noted
that the Conv2D model has more than twice the number of
parameters as the Conv3D model. Moreover, table 1 shows
that the Conv3D network has most of its parameters (630k)
in the first dense layer. This choice could represent a lim-
itation, of the Conv3D model, in terms of representational
power. On the other hand, the Conv2D model contains only
a small fraction of its parameters in the dense layer. The
advantage of having more parameters in the convolutional
layers (meaning more convolutional layers, more channels
and/or bigger filter sizes) is that convolutional layers per-
form better in learning images correlations. For this reason,
we expect the Conv2D model to have a higher learning ca-
pability and to be able to solve more sophisticated tasks.

The architecture differences have a direct impact on the
training and inference time. We bench-marked the inference
process by running 20 warm-up steps and then 100 infer-
ence steps including 20 batches in each step. As shown in
table 1, the Conv2D inference time is much shorter, despite
the larger number of parameters. The Conv2D model is also
faster in terms of training time: with only 105s per epoch, in-
stead of 291s for the Conv3D. All GAN runs are performed
on a NVIDIA Tesla V100-SXM2 GPU using TensorFlow
version 2.0, CUDA version 10.2 and a batch size of 128.
Unfortunately, Geant4 does not fully support GPU architec-
tures at this time, its simulation time is measured on a Intel
Xeon processor in (Carminati et al. 2018).

Table 1: Total number of parameters of the Conv2D and
Conv3D generator networks and the number of parameters
within the first dense layer. Inference times on GPU and the
respective speed up compared to Monte Carlo.

Model Total Dense Inference Speed Up

Conv2D 2.05M 0.12M 54s 8 000x
ConviD 0.87M 0.63M 7.0s 6 200x
Evaluation

In this section we evaluate the performance of our new
Conv2D model against the Conv3D model in (Carminati
et al. 2018) and the Monte Carlo approach (Geant4).

Performance evaluation of generative models remains a
difficult task for which, depending on the specific appli-
cations, several methods have been proposed (Borji 2018).
For evaluating the physics we measure the energy patterns
across the calorimeter volume focusing on specific quanti-
ties that are typically used to characterize calorimeter prop-
erties.

Firstly, we build the particle shower shapes along the y-
and z-axes for 20 000 samples within an energy range of 2-
500 GeV. The shower development along the z-axis is sim-
ilar to the y-axis and is therefore not shown. These shower
shapes are shown in figure 4 (left) on a linear energy axis
scale and (right) on a logarithmic scale. The GAN distribu-
tions agree with the expected Monte Carlo values within the
uncertainties. In particular, previous studies had indicated
poor performance at the edges of the simulated volume (the
first and last cells along the z- and y-axes) (Khattak et al.
2019). In figure 4 we can see that both GAN models per-
form worse when the energy depositions become very small
at the edges of the sensitive volume. However, the overall
Kolmogorov-Smirnov (two-samples) test (KS- 2008), yields
probability above 80% for most distributions and primary
particle energies.

In order to simplify the evaluation during training and
hyper-parameter tuning, we build a Mean Squared Error
(MSE) based on the above 2D shower shapes comparing the
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Figure 4: Particle shower distribution along the y- and z-axes on a linear energy axis scale (left) and on a logarithmic scale

(right).

GAN distribution with Monte Carlo. We measured for the
Conv2D model a MSE of 0.044 and for the Conv3D model
0.065, indicating a better accuracy (the lower the MSE the
better), in agreement with the results from the shower shape
plots from figure 4.

The sampling fraction is shown in figure 5 as the ratio be-
tween the total measured energy Ecal and the initial particle
energy E,. It represents the energy response of the genera-
tor network over the full energy range. We can see that the
Conv2D model maintains a exact agreement to Geant4 over
the whole energy range, whereas the Conv3D model per-
forms worse for E, energies below 100 GeV.

For calorimeter simulations it is important that the single
cell energy response is correctly reproduced by the GAN
models. Figure 6 shows the single cell energy deposition
for 20000 showers with input energies in the range of 2-
500 GeV. The GAN description is not exact, in particular for
small cell energy depositions, below 1 MeV. Additional re-
search is required in order to improve the agreement. How-
ever, it should be noted, that we applied a minimal energy
threshold of 1076 GeV to take the detector energy resolu-
tion into account.

Figures 7 and 8 compare the mean and standard deviations
of single cell energy distributions in GAN and Monte Carlo
samples for 1580 showers with input energy E, = 250 4= 2
GeV. For simplicity, we focus on the cells that constitute
the core of the energy showers, where the larger energy de-
positions occur, and we analyse the cells with coordinates
x,y,z € [10,16], for a total of 7- 7 -7 = 343 cells. The
expected ratio = 1 is drawn as a red line in both figures, for
comparison.
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Figure 5: Sampling fractions comparing the Conv3D and
Conv2D response to Geant4 over the full energy range.

Figure 7 shows that the mean energy deposition per cell is
extremely close to Geant4 for the Conv2D model, their ra-
tio averaging at 1.00. On the other hand, the Conv3D model
slightly underestimates the mean cell energy deposition with
respect to Geant4, the average ratio close to 0.93. Similarly,
figure 8 shows the GAN/Geant4 ratios in terms of the single
cell energy distribution standard deviations (STD), which
we use as a proxy for the single cell energy resolution. While
both models underestimate this quantity, the Conv2D archi-
tecture exhibits values that are closer to the Monte Carlo pre-
diction, with average ratios around 0.90 against the 0.86 ob-
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Figure 8: Single cell (pixel) energy standard deviations. The
Conv2D model has an overall standard deviation of 0.90 and
the Conv3D model an overall standard deviation of 0.86.

tained for Conv3D. In addition it is worthwhile for a further
study to look also in to the tails of the shower to demonstrate

the level of agreement.

The original GAN paper (Goodfellow et al. 2014) sug-
gests that GANs can learn any target distribution if suffi-
ciently large networks, training samples, and computation
time are given. However, the theoretical analysis conducted
in (Arora et al. 2017) showed that the training objective can
approach its optimum value even though the generated dis-
tribution is far from the target distribution. Moreover, GAN
models suffer from well-known problems, such as mode
dropping or mode collapse (Yazici et al. 2020), which affect
the quality of the generated sample. Understanding whether
GANSs can reproduce the same level of similarity exhibited
by the original Monte Carlo data set, is essential in the con-
text of scientific simulations. In order to better understand
the level of similarity/diversity among the images, we mea-
sure the Structural Similarity Index (SSIM) (Kumar et al.
2013). The SSIM estimates the perceptual difference be-
tween similar images, a value of 1 indicating two identical
images. The SSIM is adjusted by the parameter L, which ac-
counts for the pixel intensity dynamic range, and stabilizes
for L = 10~*. We calculate the SSIM building 2D windows
inside the image and sliding them across the calorimeter
x — y plane, while the z axis is treated as the image channel
dimension. We measure the index for random image pairs
from the Monte Carlo data (labelled as "MC vs MC”), the
GAN data ("GAN vs GAN”) or both sets ("MC vs GAN”).
Figure 9 shows the results, calculated for L = 10~—%. Over-
all, we observe that the SSIM of generated images vs. gen-
erated images of both GAN models is clearly higher than the
corresponding Monte Carlo value, indicating that, on aver-
age, GAN images are more similar to each other than Monte
Carlo images are. Or in other words, that the GANs fail to
reproduce the image diversity present in the Monte Carlo
sample. The Conv2D model does however perform better
with lower SSIM (green, in figure 9). It is equally interest-
ing to note that, by measuring the similarity between GAN
and Monte Carlo images (light blue and gray) we can con-
clude that both GAN models produce images that resemble
Monte Carlo’s with the equivalent level of similarity as the
Monte Carlo data set itself.
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Figure 9: SSIM between the different image sets.



While we plan to continue our investigation in order to
better quantify GAN performance in terms of support space
size, sample diversity and mode dropping effects, the current
result is well within the precision level required from fast
simulation models. The largest discrepancy is observed for
single cell energies, shown in figure 6, which we can adjust
by tuning the initial image pre-processing step.

Conclusion and Future Work

In this paper we introduce a novel Conv2D neural network
architecture for simulating high energy physics calorime-
ter detector outputs. We compare the Conv2D to a prior
Conv3D model and validate the results against Monte Carlo
simulations. The result evaluation is performed in terms of
several physics quantities, such as energy resolution, shower
shapes or sampling fraction and image analysis metrics such
as the SSIM. All things considered, the Conv2D model
achieves a extremely satisfactory level of agreement with
respect to Monte Carlo simulations. At the same time, the
SSIM index hints to a slightly more limited diversity among
the generated images. A full characterisation of the conse-
quences of this difference, with respect to typical simulated
data set use cases is needed. Together with a detailed study
to understand, whether image similarity can be correlated to
any specific bias in the generated data. On the computational
side, despite a larger number of parameters in the Conv2D
model, we obtain a significant speed up in terms both the
inference and training time.
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